A GPU-INSPIREDSOFT PROCESSOR FORHIGH-THROUGHPUT
ACCELERATION

Jeffrey Richard Code Kingyens

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science
Graduate Department of Electrical and Computer Engingerin

University of Toronto

Copyright(© 2008 by Jeffrey Richard Code Kingyens

Abstract

A GPU-Inspired Soft Processor for High-Throughput Accatiem

Jeffrey Richard Code Kingyens
Master of Applied Science
Graduate Department of Electrical and Computer Engingerin
University of Toronto

2008

In this thesis a soft processor programming model and a&atoite is proposed that is
inspired by graphics processing units (GPUs) and well-hetdo the strengths of FPGAs,
namely highly-parallel and pipelinable computation. Thegosed soft processor architecture
exploits multithreading, vector operations, and predicato supply a floating-point pipeline
of up to 60 stages via hardware support for up to 256 concutiezad contexts. The key new
contributions of this architecture are mechanisms for rgampthreads and register files that
maximize data-level and instruction-level parallelismi@lovercoming the challenges of port
limitations of FPGA block memories, as well as memory ancjaie latency. Through simu-
lation of a system that is (i) programmable via NVIDIAs hitgvel Cg language, (ii) supports
AMD’s r5xx GPU ISA, and (iii) is realizable on an XtremeDat&®X000 FPGA-based accel-
erator system, it is demonstrated that the proposed safepsor can achieve 100% utilization

of the deeply-pipelined floating-point datapath.

Acknowledgements

It is a pleasure to acknowledge those who have helped me #ilengay. | am grateful for the
much-valued advice and guidance provided by my advisoig Steffan. | thank Angela Tran,
for loving and being there for me each and every day. | trulyrapiate the love and support
from all of the Tran family. Finally, | thank my mom, dad anddasister who always have been

proud of me. Their support has given me tremendous confidererghe years.

Contents

1 Introduction
1.1 A GPU-Inspired Programming Model and Architecture
1.2 Research Goals

1.3 Organization. e

2 Reated Work

2.1 Behavioural Synthesis-based Compilers

211

2.2 Soft Processors

221
2.2.2
2.2.3
2.2.4

Trident

Vector Soft Processors

Multi-threaded Soft Processors

SPMD Soft Processors

Register File Access in Soft Processors

3 System Overview

3.1 GPU ShaderProcessors s

3.2 TheNVIDIACgLanguage ittt

3.3 AMD’s CTM SDK

4 A GPU-Inspired Architecture

4.1 Overview

4.2 Tolerating Limited Memory Ports 22

4.3 Avoiding PipelineBubbles 25
4.3.1 ControlFlow 28
I mplementation 29
5.1 The XtremeData XD1000 v i i 29
5.2 CentralRegisterFile 30
5.3 Batchlssuelogic 32
M easurement M ethodol ogy 35
6.1 System Simulation 35
6.1.1 HyperTransport e 36
6.2 Benchmarks 38
Utilization and Performance 39
7.1 Reducingthe RegisterFile 43
7.2 SUMMATY . . . o e e e e e e e e e e e e 45
Conclusions 46
8.1 Contributions 46
8.2 Future Work e 47
Cg Code 48
Al Photon e 48
A2 SgemMmM . .. e e 49
CTM Code 51
B.1 Photon e 51
B.2 Matrix Multiplication e 52
B.3 Sgemm 53

Bibliography

Vi

58

List of Tables

4.1 The schedule of operand reads from the central regitdofibatches of four
threads (TO-T3,T4-T7, etc.) decoding only ALU instrucgsoAn ALU instruc-
tion has up to three vector operands (A,B,C) which are reemsat¢hreads in a
batch over three cycles. In the steady state this schednlsustain the issue
of one ALU instruction from everycycle. 23
4.2 The schedule of operand reads from the central registefofi batches of
four threads (TO-T3,T4-T7, etc.) decoding both ALU and TEXtructions.
TEX instructions require only one source operand, henceameread source

operands for four threads ina singlecycle. 27

6.1 A breakdown of how each stage of an HT memory requestibates to over-

allaccesslatency. 6 3

vii

List of Figures

2.1

3.1

3.2

3.3

3.4

3.5

4.1

An example program for element-wise matrix multiplicatplus an offset,
describedinfrident. 8
The interaction of a shader program with input and outpemories. Input

buffers can be randomly accessed while output is limited figead location
for each shader program instance—hence the execution cidesprogram

implies the invocation of parallel instances across alinglets of the output

buffer. 13
An example shader program for element-wise matrix iplidation plus an
offset,describedi@. 14
An example shader program for element-wise matrix iplidation plus an
offset,describedi®g. 15
The software flow in our system. A software developeresrd high-leveCg

shader program and a host program. Tgeshader program is translated into

a CTM binary via thecgc andanuconp compilers and then folded into the

hostprogram. e 17
An example shader program for element-wise matrix iplidation plus an

offset, described in CTM assemblycode. 18
Overview of a GPU-like accelerator, connected to a Hyaesport (HT) mas-
terandslave. 21

4.2

5.1
5.2

5.3

5.4

7.1

7.2
7.3

The floating point units in a datapath that supports MADP3, and DP4
ALU instructions. The pipeline latency of each unit is shoemthe left (for
Altera floating point IP cores), and the total latency of thégbath is 53 cycles

without accounting for extra pipeline stages for multiptexbetween units. . . 25

An XtremeData system with a XD1000 module. 30
Mapping our register file architecture to four Stratis 84KB M-RAM blocks.

The read circuitry shows an example where we are readingangsracross
threads in a batch for a vector/scalar ALU instruction psicl{V): r 3 as an
operand for the vector instruction an8 as an operand for the scalar instruc-
tion. While not shown, register writes are implemented &irty. 31
A circuit for transposing the thread-interleaved opdesaread from the central

register file into a correctly-ordered sequence of operémdbie ALU datapath. 33

Batch issue logic for hardware managing 4 batch contexts. 34
ALU datapath utilization for the 8-bit HT interface prded with the XD1000
SYSIEM. . . . e e e e e 40
ALU datapath utilization for a 16-bit HT interface. 42
Speedup vs a single hardware batch context for (a) 8Akiit(h) 16-bit HT

interfaces. e, 44

Chapter 1

| ntroduction

As FPGAs become increasingly dense and powerful, with Bjgged I/Os, hard multipliers and
plentiful memory blocks, they have consequently becomeerdesirable platforms for com-
puting. Recently there is building interest in using FPGAaecelerators for high-performance
computing, leading to commercial products such as the SG®ahich integrates FPGAs
into a blade server platform, and XtremeData and Nallateahdffer FPGA accelerator mod-

ules that can be installed alongside a conventional CPUtaralard dual-socket motherboard.

The challenge for such systems is to provide a programmirdgiribat is easily accessible
for the programmers in the scientific, financial, and othé¢a-ahiven arenas that will use them.
Developing an accelerator design in a hardware descrijdioguage such as verilog is diffi-
cult, requiring an expert hardware designer to performfathe implementation, testing, and
debugging required for developing real hardware. Behalvsymthesis techniques—that allow
a programmer to write code in a high-level language sucbtasat is then automatically trans-
lated into custom hardware circuits—have long-term prenil®, 14, 23], but currently have
many limitations and often require the designer to massagie tode to get the best result

from synthesis.

What is needed is a high-level programming model specifi¢allored to making the cre-

ation of custom FPGA-based accelerators easy. In contrfisttine approaches of custom

CHAPTER 1. INTRODUCTION 2

hardware and behavioral synthesis, a more familiar model isse a standard high-level lan-
guage and environment to program a processor, or in thisstaB® GA-based soft processor.
In general, a soft-processor-based system has the adeardfgj) supporting a familiar pro-

gramming model and environment, and (ii) being portablessdifferent FPGA products and
families, while (iii) still allowing the flexibility to be catomized to the application. While
soft processors themselves can be augmented with acoetethat are in turn created either
by hand or via behavioral synthesis, our long-term goal ideeelopa new soft processor

architecture that ismore naturally capable of fully-utilizing the FPGA.

1.1 A GPU-Inspired Programming M odel and Architecture

Another recent trend is the increasing interest in usingaf@hics Processing Units (GPUS) in
standard PC graphics cards as general-purpose accedeliatduding NVIDIAs CUDA and
AMD (ATI)’s Close-to-the-Metal (CTM) [8] programming emanments. While the respec-
tive strengths of GPUs and FPGAs are different—GPUs exciébaiing-point computation,
while FPGAs are better suited to fixed-point and non-stahtd@rwidth computations—they
are both very well-suited to highly-parallel and pipelitabomputation. These programming
models are gaining traction which can potentially be legedif a similar programming model
can be developed for FPGAs.

In addition to the programming model, there are also seveaath architectural features of
GPUs that are very desirable for a high-throughput softgseaor. In particular, while some
of these features have been implemented previously intisnland shown to be beneficial for
soft processors, our research highlights that when impi¢&aen concert they are key for the

design of a high-throughput soft processor.

Multithreading Through hardware support for multiple threads, a soft pgscecan tolerate
memory and pipeline latency and avoid the area and potetbiek frequency costs of hazard

detection logic—as demonstrated in previous work for piyes of up to seven stages and

CHAPTER 1. INTRODUCTION 3

support for up to eight threads [6, 13, 18]. In our high-tlgloput soft processor we essentially
avoid stalls of any kind for very deeply pipelined functibaaits (up to 60 stages) via hardware
support for many concurrent threads (currently up to 256atis), and group threads into

batches (also similar to a GPU) to decrease the overheadaraging threads individually.

Vector Operations A vector operation specifies an array of memory or regisemehts on

which to perform an operation. Vector operations explotadavel parallelism as described
by software, allowing fewer instructions to command lar@eounts of computation, and pro-
viding a powerful axis along which to scale the size of a sngpft processor to improve

performance [25, 26].

Predication To allow program flexibility it is necessary to support cahftow within a thread,
although any control flow will make it more challenging to gebe datapath fully utilized—
hence we support predicated instructions that executendgiitc@nally, but have no impact on

machine state for control paths that are not taken.

Multiple Processors While multithreading can allow a single datapath to be fuitfized,

instantiating multiple processors can allow a design todadesl up to use available FPGA re-
sources [16]. The GPU programming model specifies an abeed#Hrthreads, and is agnostic
to whether those threads are executed in the multithreaoletgxts of a single processor or
across multiple processors. Hence the programming modehiahitecture are fully capable

of supporting multiple processors, although we do not etalsuch systems in this work.

Together, the above features provide the latency tolergrarllelism, and architectural
simplicity required for a high-throughput soft processBather than invent a new program-
ming model, ISA, and processor architecture to supporetifestures, as a starting point for
this research we have ported an existing GPU programminghaod architecture to an FPGA
accelerator system. Specifically, we have implement&y st enC simulation of a GPU-
inspired soft processor that (i) is programmable via NVIBIAigh-level C-based language

calledCg [15], (ii) supports arapplication binary interfac€ABI) based the AMD CTM r5xx

CHAPTER 1. INTRODUCTION 4

GPU ISA [8], and (iii) is realizable on an XtremeData XD10Gdlopment system composed
of a dual-socket motherboard with an AMD Opteron CPU and &/ module which com-
municate via a HyperTransport (HT) link. The long-term gato use this system to gain
insight on how to best architect a soft processor and progriagh model for FPGA-based

acceleration.

1.2 Research Goals

The focus of this dissertation is to develop and demonstinatpromise of a GPU-inspired soft

processor architecture and programming model. To thiswadhave the following goals:

1. To architect a GPU-inspired soft-processor that suportexisting GPU ISA and high-

level programming language.

2. To overcome the port limitations of FPGA block memorieghia design of the register

file.

3. To avoid all bubbles for a deeply-pipelined floating-galatapath by tolerating memory

and pipeline latency.

4. To build a simulation infrastructure to (i) estimate tlegfprmace of the proposed archi-
tecture on an XtremeData XD1000 FPGA-based accelerat&iesy and to (ii) evaluate

the resulting utilization of the deeply-pipelined floatipgint datapath.

1.3 Organization

This thesis is organized as follows. Chapter 2 highlights/jmus work related to the high-
level programming of FPGA accelerators as well as the saftgssor design optimization

techniques we use in this work. Chapter 3 provides an owgrgfeour programming model,

CHAPTER 1. INTRODUCTION 5

which is primarily a background in the GPU hardware and pogning model we are imple-
menting. Chapter 4 defines the architecture of the hardveabe tinstantiated on the FPGA
accelerator and highlights the design challenges andisofut Chapter 5 describes how we
are to map this architecture onto the Xtremedata XD100Ggshat Chapter 6 describes our
simulation framework and the benchmark we have selecteéxperimentation. Chapter 7
presents the results of our utilization experiments. Gira®draws together conclusions from

our proposed programming model and results, and summamizes/erall contributions.

Chapter 2

Related Work

A common approach to compiling high-level code for FPGAduhacceleration is the use of
behavioural synthesis techniques [4] to transform higiellenput code, directly into hardware
gates. In Section 2.1 we give an overview of these techniquesprovide deeper insight
into Trident, a synthesis-based hardware compiler forifiggboint C code in Section 2.1.1.
Instead of generating a custom hardware circuit for conmguai given task, our work uses soft
processors to execute software code describing such altaSection 2.2 we give a general
overview of soft processors and highlight some of the previ@search that has explored soft

processor design optimizations which we use to desigriglr-throughpusoft processor.

2.1 Behavioural Synthesis-based Compilers

The main challenge of behavioural synthesis algorithms identify parallelism in high-level
code and generate a hardware circuit to provide concurreaiion of operations. There are
many academic and commercial compilers that are based timesysito generateaistomized
circuit for a given task. Examples of such compilers incllim@ulse Accelerated Technolo-
gies’ ImpulseC, Altera’s C2H [14], Trident [23], Mitrions¢ Mitrion-C [12], SRC Computer’s
SRC Carte, ASC [17] and Celoxica’s Handel-C [19]. Typicathese tools will compile C-like

code to circuit descriptions in HDL which can then synthediby standard FPGA CAD tools

CHAPTER 2. RELATED WORK 7

for deployment on accelerator systems such as the Xtrem&d1000.

A synthesis-based compiler will exploit data-dependesicidigh-level code to build local,
point-to-point routing at the circuit level. Computatioren potentially be wired directly from
producer to consumer, bypassing a register store for irgiate computations; a step which
is required for general purpose processors. This synthesied technique of customized cir-
cuits can be especially practical for GPU-like computaticais programs are typically short
sequences of code. Where the computation is data-flow doediyiais also possible to exploit

data-level parallelism (DLP) by pipelining independentad&rough the custom circuit.

211 Trident

Trident [23] is the hardware synthesis tool most relatedupwork as it is primarily used
for scientific algorithms requiring floating point types.sal we are able to provide a more in
depth treatment as the compiler is academic and open samd¢herefore we are able to learn
implementation details which are not available in comnadnqgackages.

Trident’'s programming model is based on a subset of GNU QurEig@.1 shows a sample
program that assumes 2 input matrices, naeohd B of dimensions¥ DTH and HEI GHT
have been loaded into off-chip memory arrays. The scalabiasx andy defined agxt er n
in the sample code refer to the primary inputs of the FPGA laca®r circuit. When new
andy values are written to this circuit the hardware accelenagoforms a multiplication of the
components of the two matrices and adds the offset 1.0. Buét is stored in a third matrixc.
Declaring these matrix arraysest er n f | oat indicates to the compiler that data is located
in off-chip SRAM.

Trident off-chip memory is assumed to be very low-latencyB(dycles) SRAM directly
connected to the FPGA. As such, the underlying scheduliggrithm of Trident depends on
this fact for performance. There is no means of pre-fetcfanghe purpose of hiding latency.
Long latency memory accesses will result in a low perforneagiccuit. For deployment in a

system like the Xtremedata XD1000, DMA engines are instémdi on the FPGA such that

CHAPTER 2. RELATED WORK 8

extern float x, vy;

extern float Al W DTH] [HEI GHT] ;
extern float B[W DTH] [HEI GHT] ;
extern float C[W DTH] [HEI GHT] ;

void mul tadd() {
float offset = 1.0f;

Ax][yl = Alx][yl*B[x][y] + offset;

Figure 2.1: An example program for element-wise matrix mplittation plus an offset, de-

scribed inTri dent .

memory can first be transferred from system SDRAM to privd/&A SRAM. The Trident
computation executes and the SRAM buffer is read back t@systemory.

Trident is not able t@ipelinecode such as that shown in the example. Instead, there will
be some fixed latency until the computation finishes for argkje/. Then, a new computation
may begin by writing new input values to the primary inputsséntially, the compiler does not
have built in knowledge that we wish to perform tinal t add computation repetitively, in
a data-parallel manner. While not implying data-paraltele makes the programming model
much more flexible, for code thabuld map well to a data-parallel model, Trident does not

make any efforts to take advantage of the afforded parsitheli

2.2 Soft Processors

Soft processors are microprocessors instantiated on a FRIG®. Two examples of indus-
trial soft processors are the Altera NIOS [2] and the Xilinichdblaze [1]. As these proces-

sors are deployed on programmable logic, they come in vastandard configurations and

CHAPTER 2. RELATED WORK 9

also provide customizable parameters for applicatiorciipgrocessing. The ISA of NIOS
soft processors is based on a MIPS instruction set archre@iSA), while that of Microblaze
is a proprietary reduced instruction set computer (RIS@). ISPREE [24] is a development
tool for automatically generating custom soft processamfa given specification. These soft
processor architectures are fairly simple, single-theegutocessors that do not exploit paral-
lelism other than pipelining. The following subsectionsci#be more recent work extending
soft processors to better exploit parallelism. We also iesdn detail work on soft processor

register file design as it is a central issue for this disserta

2.2.1 Vector Soft Processors

Yu et. al.[27] and Yiannacourast. al.[25] have implemented soft vector processors where the
architecture is partitioned into independent vector lapash with a local vector register file.
This technique maps naturally to the dual port nature of FRGAhip RAMs and allows the
architecture to scale to a large number of vector lanes,evd@ch lane is provided with its own
dual port memory. While the success of this architectuiesaln the ability to vectorize code,
for largely data-parallel workloads, such as those stuiedir work, this is not a challenge.
Soft vector processors are interesting with respect to arkwecause we also rely on
the availability of data-parallelism to achieve perforrm@nmprovements. However, while
vector processors scale to many independent lanes eaclawitiall local register file, our
high throughput soft processors focus on access to a siegister file. Hence our techniques

are independent and therefore make it possible to use batmibination.

2.2.2 Multi-threaded Soft Processors

Yiannacourast. al.[16] use multi-threading in soft processor designs and Isénsvn that
it can improve area efficiency dramatically. While their Wéocuses on augmenting a RISC-

based processor architecture with multithreading caip@isil we focus on supporting a GPU

CHAPTER 2. RELATED WORK 10

stream processor ISA. As the GPU ISA is required to suppaatifig point-baseanultiply-

addoperations, the pipeline depth is much longer. Therefoeeextend the technique here to
match the pipeline depth of our functional units. Althoughrequire many more simultaneous
threads, the data-parallel nature of the GPU programmirdghprovides an abundance of such

threads.

2.2.3 SPMD Soft Processors

The GPU programming model is only one instance in the gers#agk of Single-Program
Multiple-Data (SPMD) programming models. There has beeripus work in soft processor
systems supporting SPMD. James-Roxbyal.[10] implement a SPMD soft processor sys-
tem using a collection of Microblaze soft processors attddio a global shared bus. All soft
processors are connected to a unified instruction memonraes &e executing instructions
from the same program. All soft processors are free to erandependently. When a proces-
sor finishes executing the program for one piece of data|lit@juest more work from a soft
processor designated to dispatch workloads.

While their work focuses on a multi-processor system gliittention is paid to the opti-
mization of a single core. This is primarily because the werfocused on SPMD using soft
processors as a rapid prototyping environment. While thid @®gramming model is scalable
to many processors, we focus on the optimization of a singlegssor instance. The system-
level techniques used in [10] such as instruction memoryisdetween processors could be

applied in a multi-processor design of our high-throughgmit processors.

2.2.4 Register File Accessin Soft Processors

As instruction-level parallelism increases in a soft pesog design, more read and write ports
are required to sustain superscalar instruction issue amanit rates. In trying to support the

AMD r5xx GPU ISA, we were confronted with the same problemthés ISA requires 4 read

CHAPTER 2. RELATED WORK 11

and 3 write accesses from a single register file, each clodle cif we are to fully pipeline the
processor datapath.

Joneset. al.[11] implement a register file using logic elements as opg@dsebuilt-in
SRAMs. However, they show that using this technique resultsgister file with very high
area consumption, low clock frequency and poor scalalidity large number of registers.

Saghiret. al.[21] use multiple dual-port memories to implement a banlegister file,
allowing the writeback of two instructions per cycle in casehere access conflicts do not
occur. In a sense, this is similar to the solution we suppoadur work. While they must rely
on the compiler to schedule register accesses within ag@noguch that writes are conflict-free,
the fact that we execute multiple threads in lock-step alow to build conflict-free accesses
to a banked register file in hardware. While they bank thestegfile across multiple on-chip
memories, we provide banked access both within a singlstexgthrough interleaving with a

wide memory port, in addition to accessing across multipéemory blocks.

Chapter 3

System Overview

In this section we give an overview of our system as well as §PUparticular their shader
processors. We also briefly describe the two software ated that we use to build our system:
(i) NVIDIAs Cg language for high-level programming, and (ii) the AMD CTM KDBhat

defines the application binary interface (ABI) that our swticessor implements.

3.1 GPU Shader Processors

While GPUs are composed of many fixed-function and progralphenanits, the shader proces-
sors are the cores of interest for our work. For a graphic&had, shader processors perform
a certain computation on every vertex or pixel in an inputatn, as described by a shader
program. Since the computation across vertices or pixelsrisially independent, shader pro-
cessors are architected to exploit this parallelism: tleyaavily multithreaded and pipelined,
with an ISA that supports both vector parallelism as well esdjgation. Furthermore, there
are normally multiple shader processors to improve ovénedughput.
Figure 3.1 illustrates how a shader program can interadt mgmory: input buffers can

be randomly accessed while output is limited to a fixed l@cafor each shader program in-
stance, as specified by an input register. Hence the exeaft@ shader program implies the

invocation of parallel instances across all elements ofotlitput buffer. This separation and

12

CHAPTER 3. SYSTEM OVERVIEW 13

(Xo,Yo)
Register <j Fetch(#.x.y) I
File —/ Shader ||]
Program N
Constant [—I\ Data -
Registers 4
Input Buffers

A

Output Buffer

<4 Domain Size

Figure 3.1: The interaction of a shader program with inpat @amtput memories. Input buffers
can be randomly accessed while output is limited to a fixedtlon for each shader program
instance—hence the execution of a shader program impkas¥bcation of parallel instances

across all elements of the output buffer.

limitation for writing memory simplifies issues of data coéece and is more conducive to

high-bandwidth implementations.

3.2 TheNVIDIA CgLanguage

In our system we exploit NVIDIA<g [15], a high-levelC-based programming language that
targets GPUs. To give a taste of tGg language, Figure 3.3 shows a sample program written
in Cg for element-wise multiplication of two matrices, with thddition of a unit offset; for

comparison, ANSC code is provided for the same routine in Figure 3.2C¢n thenul t add

CHAPTER 3. SYSTEM OVERVIEW 14

fl oat Al W DTH] [HEI GHT] ; [l input buffer A
fl oat B[W DTH] [HElI GHT] ; /1 input buffer B
fl oat C[WDTH] [HEI GHT] ; /1l output buffer

voi d mul t add(voi d){
for(int j=0;j<HEl GHT;|j ++)
for(int i=0;i<WDTH; i ++)
Aillil = Alillil«BlI][j] + 1.0f;

Figure 3.2: An example shader program for element-wiseiriatwltiplication plus an offset,

described irC.

function defines a computation which is implicitly executanioss each element in the output
domain, hence there are no expliciir loops for iterating over the output buffer dimensions
as there are in th€ version. The dimensions of the buffers are configured paaxecution

of the shader program and hence do not appear i€gheode either.

Looking at theCg code, there are three parameters passed totheadd function. First,
2D floating-point coordinates por d) directly give the position for output in the output buffer
and are also used to compute the positions of values in ingtarb (i.e., the Xy,Yo) input pair
shown in Figure 3.1). The second and third paramet&ien@B) define the input buffers, as-
sociated with a buffer numbeFEXUNI TO andTEXUNI T1) and a memory addressing mode,
uni f or m sanpl er 2D, that in this case tells the compiler to compute addresses sayC
computes memory addresses for 2D arrdyex 2D) is an intrinsic function to read data from
an input buffer, and implements the addressing mode spa:tifiéts first parameter on the co-
ordinates specified by its second parameter. For this pmogra values manipulated including

the output value are all of typel oat 4, a vector of four 32-bit floating-point values—hence

CHAPTER 3. SYSTEM OVERVIEW 15

struct data_out {

float4 sum: COLOR
}s

dat a_out
mul t add(fl oat2 coord : TEXCOORDO,
uni form sanpl er2D A: TEXUNI TO,
uni form sanpl er2D B: TEXUNI T1) {
data_out r;
float4 offset = {1.0f, 1.0f, 1.0f, 1.0f};
r.sum = tex2D(A coord)*xt ex2D(B, coor d) +of f set ;

return r;

Figure 3.3: An example shader program for element-wiseiriawltiplication plus an offset,

described irCg.

CHAPTER 3. SYSTEM OVERVIEW 16

the buffer sizes and addressing modes must account for this.
While Cg allows the programmer to abstract-away many of the dethilkeounderlying
GPU ISA, itis evident that an ideal high-level language fengral-purpose acceleration would

eliminate the remaining graphics-centric artifact€m

3.3 AMD’'sCTM SDK

The AMD CTM SDK is a programming specification and tool-sevaleped by AMD to
abstract the GPU’s shader processor core as a data-paadigerator [8, 20], hiding many
graphics-specific aspects of the GPU. As illustrated in l@dti4, we use thegc compiler
included in NVIDIA's Cg toolkit to compile and optimize shader programs writte@gn cgc
targets Microsoft pixel shader virtual assembly languaas3j), which we then translate via
CTM’s amuconp compiler into the AMD CTM application binary interface (ABbased on
the r5xx ISA.

The resulting CTM shader program binary is then folded inkmst progranthat runs on
the regular CPU. The host program interfaces with a low}l€JéM driverthat replaces a stan-
dard graphics driver, providing @mputeinterface (as opposed to graphics-based interface)
for controlling the GPU. Through driver API calls, the hosbgram running on the main CPU
configures several parameters prior to shader program gxegcincluding the base address
and sizes of input and output buffers as well as constanstexgilata (all illustrated in Fig-
ure 3.1). The host program also uses the CTM driver to loadeshiarogram binaries onto the
GPU for execution.

Figure 3.5 shows the resulting CTM code from the exampleeshaicbgram in Figure 3.3.
From left to right, the format of an instruction @@code destination andsources There are
several kinds of registers in the CTM ISA: (i) general-puspwector registers (r0-r127); (ii)
'sampler’ registers (s0-s15), used to specify the baseeaddand width of an input buffer (i.e.,
TEXUNI TO - TEXUNI T15 in Cg code); (iii) constant registers (c0-c255), used to specify

CHAPTER 3. SYSTEM OVERVIEW 17

Written by Developer:

Cg Shader _’ C/C++ Host p

Program Program ¢
............. i R S System Memory
cgc
ps3 asm :
CTM Driver
amucomp
wtm asm 1
| GPU T
ST SN Processor [

Figure 3.4: The software flow in our system. A software depetownrites a high-leveCg
shader program and a host program. Tgeshader program is translated into a CTM binary

via thecgc andanuconp compilers and then folded into the host program.

CHAPTER 3. SYSTEM OVERVIEW 18

mul t add:

TEX rl1 r0.rg sl

[l rl =r0.r + (r0.g*sl.wdth) + sl.base
TEX rO0 r0.rg sO

/'l rO =7r0.r + (r0.g*s0.w dth) + sO. base
MAD 00 r1 r0O cO

/Il o0 =r1l * r0 + cO (3 left-nost el ens)
mad o0 r1 r0 cO

/Il o0 =r1 * r0 + cO (1 right-nost elem
END

Figure 3.5: An example shader program for element-wiseiraultiplication plus an offset,

described in CTM assembly code.

constant values; and (iv) output registers (00-03) thauaesl as the destination for the final
output values which are streamed to the output buffer (shiavigure 3.1) when the shader
program instance completes. All registers are each a vetfour 32-bit elements where the
individual elements of the vector are namedg, b anda. Both base registers and constant
registers are configured during set-up by the CTM driverapetotherwise read-only.

CTM defines both TEX and ALU instructions. AEX instruction defines a memory load
from an input buffer, and essentially implements frex2D() call in Cg. The input coor-
dinates ¢oor d in Cg) are made available in registef at the start of the shader program
instance. The address is computed from lxddrand a sampler register (ie., sO). For example,
the address for the sources giverr@ rg sliscomputedasO.r + r0.g*sl.w dth

+ sl. base.
All ALU instructions are actually a VLIW operation-pair thean be issued in parallel:
a three-element vector operation specified in upper-calewked (on a new line) by a scalar

operation specified in lower case. In the example the ALUuasion is a pair omultiply-adds

CHAPTER 3. SYSTEM OVERVIEW 19

that specify three source operands and one destinatioamgbésr both the vector (MAD) and
scalar (mad) operations. ALU instructions can access ar+df27 and c0-c255 as any source
operand.

CTM allows many other options that we do not describe heieh as the ability to permute
(swizzl¢ the elements of the vectors after loading from input bsffer before performing
ALU operations, and also for selectivetgaskingthe elements of destination registers. A
complete description of the r5xx ISA and the associated ABinfat is available in the CTM
specification [20].

In summary, this software flow allows us to support existihgder programs written in

Cg, and also allows us to avoid inventing our own low-level ISA.

Chapter 4

A GPU-Inspired Architecture

In this section we describe the architecture of our higledlghput soft-processor accelerator,
as inspired by GPU architecture. First we describe an ogeref the architecture, and explain
in detail the components that are relatively straightfodMa map to an FPGA-based design.
We then describe three features of the architecture thatowes challenges of an FPGA-based

design.

4.1 Overview

Figure 4.1 illustrates the high-level architecture of thegmsed GPU-like accelerator. Our
architecture is designed specifically to interface with géhfransport (HT) master and slave,
although interfacing with other interconnects is possiblee following describes three impor-
tant components of the accelerator that are relativelygsttirward to map to an FPGA-based

design.

Coordinate Generation As described in Section 3 and by the CTM specification, a ghade
program instance is normally parameterized entirely byt afseput coordinates which range
from the top-left to the bottom-right of the compute domaifihe coordinate generator is

configured with the definition of the compute domain and gatesr streams of coordinates

20

CHAPTER 4. A GPU-INSPIREDARCHITECTURE 21

Accelerator
S:_;.-\r/e D Config i)| Coordinate Generator —
Constant File _’ Register File ‘_
—N—=T11]
2 <
A A B C
—> TEX
ALU
—— ‘
HT AT\ Fifo) L L
Master A 1L
:) Output Register <

Figure 4.1: Overview of a GPU-like accelerator, connected Hypertransport (HT) master

and slave.

which are written into the register file (registe®) for shader program instances to read—

replacing outer-looping control flow in most program kesnel

TEX and ALU Datapaths TEX instructions, which are essentially loads from inpuféxs in
memory to registers, are executed by the TEX datapath. Gmputed based on the specified
general-purpose and sampler registers, the load addresshkaged as an HT read request
packet and sent to the HT core—unless there are already B@hb-previous requests in
which case the current request is queued in a FIFO buffer. ivéheequest is satisfied, any
permutation operations (as described in Section 3.3) gvkealpto the returned data and the
result is written back to the register file. The CTM ISA alsoludes a method for specifying
that an instruction depends on the result of a previous mgneguest (via a special bit). Each

TEX instruction holds a semaphore that is cleared oncestdtres written back to the register

CHAPTER 4. A GPU-INSPIREDARCHITECTURE 22

file—which signals any awaiting instruction to continue. Alnstructions are executed by the

ALU datapath, and their results can be written to either éggster file or the output register.

Predication and Control Flow Conditional constructs such #sandelsestatements irCg
are supported in CTM instructions via predication. Thereng predicate bit per vector
lane that can be set using the boolean result from one of mamparison operations (eg.,
>, <=,==,! =). Subsequent ALU instructions can then impose a write masklitional on
the values of these bits. More complex control flow consgscich agor loops and subrou-
tines are supported via a control flow instructions (FLW} firavide control of hardware-level
call/return stacks, and branch and loop-depth hierarclhigshe FLW datapath does not inter-
act with the register file it is not shown in Figure 4.1. We defer explaination of control flow

instructions to Section 4.3.1.

Output Similar to input buffers, the base addresses and widthseobtitput buffers are pre-
configured by the CTM driver in advance (in the registers 8D-dNVhen a shader program
instance completes, the contents of the output registersvatten to the appropriate output
buffers in memory: the contents of the output registers aokaged into an HT write request
packet, using an address derived from one of the outputitodiee addresses and the original
input coordinates (from the coordinate generator). Wrtguests ar@osted meaning that

there is no response packet and hence no limit on the maxinuamber of outstanding writes.

4.2 Tolerating Limited Memory Ports

In Figure 4.1 we observe that there are a large number of fegtiing into and out of the
central register file (which holds r0-r127). One of the bigigehallenges in high-performance
soft processor design is the design of the register file: istnolerate the port limitations
of FPGA block memories that are normally limited to only tworgs. To fully-pipeline the
ALU and TEX datapaths, the central register file for our GIRspired accelerator requires

four read and three write ports. If we attempted a designréed all of the ALU and TEX

CHAPTER 4. A GPU-INSPIREDARCHITECTURE 23

Clock | Inst Register ALU

Cycle | Phase File Read Ready
0 ALU, | ALU:A(TO,T1,T2,T3) -
1 ALU, | ALU:B(TO,T1,T2,T3) -
2 | ALU, | ALU:C(TO,T1,T2,T3) -
3 - - TO
4 ALU, | ALU:A(T4,T5,T6,T7) T1
5 ALU; | ALU:B(T4,T5,T6,T7) T2
6 ALU, | ALU:C(T4,T5,T6,T7) T3
7 - - T4
8 ALU, | ALU:A(T8,T9,T10,T11)| T5
9 ALU, | ALU:B(T8,T9,T10,T11)| T6
10 | ALU, | ALU:C(T8,T9,T10,T11)| T7
11

Table 4.1: The schedule of operand reads from the centrateedile for batches of four
threads (TO-T3,T4-T7, etc.) decoding only ALU instrucsorAn ALU instruction has up to
three vector operands (A,B,C) which are read across thieaa$atch over three cycles. In

the steady state this schedule can sustain the issue of ddenstruction from every cycle.

source operands (four of them) of a single thread in a singteecwe would be required to
have replicated copies of the register file across multijdekomemories to have enough ports.
However, with this solution you cannot have more than ong¢ewgort, since each replicant
would have to use one port for reading operands and the othefqe broadcast-writing the

latest destination register value (i.e., being kept updte with one write every cycle).

We solve this problem by exploiting the fact that all threadsexecuting different instances
of the same shader program: all threads will execute thet sgmce sequence of instructions,

since even control flow is equalized across threads via gmédn. This symmetry across

CHAPTER 4. A GPU-INSPIREDARCHITECTURE 24

threads allows us to group threads into batches and exdwmutedtructions of batched threads
in lock-step. This lock-step execution in turn allows us ¢bedule the access of registers to

alleviate the ports problem.

Rather than attempt to read all operands of a thread each, ayelinstead read a single
operand across many threads per cycle from a given block myesmd do this across separate
block memories for each component of the vector registdiield. 1 illustrates how we sched-
ule register file accesses in this way for batches of fouratiigeeach that are decoding only
ALU instructions (for simplicity). Since there are threesoands to read for ALU instructions
this adds a three-cycle decode latency for such instrugtibtowever, in the steady-state we
can sustain our goal of the execution of one ALU instructien gycle, hence this latency is
tolerable. This schedule also leaves room for another réad operand across threads in a
batch. Ideally we would be able to issue the register file feacd TEX instruction during
this slot, which would allow us to fully-utilize the centnagister file, ALU datapath and TEX
datapath: every fourth cycle we would read operands for ehbaft four threads for a TEX
instruction, then be able to issue a TEX instruction for eafdiose threads over the next four

cycles. We give the nanteansposeo this technique of scheduling register access.

This transposed register file design also eases the imptati@nof write ports. In fact,
the schedule in Table 4.1 uses only one read port per blockameneaving the other port
free for writes. From the table we see that ALU instructionié generate at most one register
write across threads in a batch every four cycles. Thereny@ther events which result in a
write to the central register file: (i) a TEX instruction col@igs, meaning that the result has
returned from memory and must be written-back to the appatgpdestination register; (ii) a
shader program instance completes for a batch of threads aew batch is configured, so that
the input coordinates must be set for that new batch (regi§te These two types of register
write are performed immediately if the write port is freehetwise they are queued until a

subsequent cycle.

CHAPTER 4. A GPU-INSPIREDARCHITECTURE 25

multiply
l L l L l l l l
FPMULT FPMULT FPMULT

FPADD AL U

T T 1T 1)
<
<
<

Figure 4.2: The floating point units in a datapath that sugp#ADD, DP3, and DP4 ALU
instructions. The pipeline latency of each unit is showntenleft (for Altera floating point IP
cores), and the total latency of the datapath is 53 cycldsowitaccounting for extra pipeline

stages for multiplexing between units.

4.3 Avoiding Pipeline Bubbles

In the previous section we demonstrated that a transpoggsteefile design can allow the

hardware to provide the register reads and writes necessaystain the execution of one
ALU instruction every cycle across threads. However, tlagesthree reasons why issuing in-
structions to sustain such full utilization of the datajgatha further challenge. The first reason
is as follows. In the discussion of Table 4.1 we describetitt@ideal sequence of instruc-

tions for fully utilizing the ALU and TEX datapaths is an ingttion stream which alternates

CHAPTER 4. A GPU-INSPIREDARCHITECTURE 26

between ALU and TEX instructions. This is very unlikely tqip&n naturally in programs, and
the result of other non-ideal sequences of instructionsheilundesirable bubbles in the two
datapaths. The second reason, as shown in Figure 4.2, ithéhdatapath for implementing
floating-point operations such as multiply-addAD) and dot productOT3, DOT4) instruc-
tions is very long and deeply pipelined (more than 53 cloaes): since ALU instructions
within a thread will often have register dependences betweem, this can prevent an ALU
instruction from issuing until a previous ALU instructioaropletes. This potentially long stall
will also result in unwanted bubbles in the ALU datapath. Thied reason is that TEX instruc-
tions can incur significant latency since they load from nma@mory; since an ALU instruction
often depends on a previous TEX instruction for a sourceamkrthe ALU instruction would

have to stall until the TEX instruction completes.

We address all three of these problems by storing the candéxtultiple batches of threads
in hardware, and dynamically switching between batchesyesycle. We capitalize on the
fact that all threads can be computed independently, singdietween batches to (i) choose a
batch with an appropriate next instruction to match thelalse issue phase (TEX or ALU),
and (ii) to hide both pipeline and memory latency. This aBaws to potentially fully-utilize
both the ALU and TEX datapaths as illustrated in Table 4.®yioled that ALU and TEX
instructions across all batch contexts are ready to isswmwdquired. Specifically, to sustain
this execution pattern we generally require that the rdtibld) to TEX instructions be 1.0 or
greater: for a given shader program if TEX instructions autber ALU instructions then in
the steady-state this alone could result in pipeline busbbBtoring the contexts (i.e., register
file state) of multiple batches is relatively straightfordzait requires only growing the depth
of the register file to accommodate the additional registaishough this may require multiple
block memories to accomplish. In the next section we desdhle implementation of batch

issue logic in greater detalil.

CHAPTER 4. A GPU-INSPIREDARCHITECTURE 27

Clock | Inst Register ALU | TEX

Cycle | Phase File Read Ready| Ready
0 ALU, | ALU:A(TO,T1,T2,T3) - -
1 ALU,; | ALU:B(TO,T1,T2,T3) - -
2 | ALU, | ALU:C(TO,T1,T2,T3) - -
3 TEX TEX:A(TO,T1,T2,T3) TO -
4 ALU, | ALU:A(T4,T5,T6,T7) T1 TO
5 ALU,; | ALU:B(T4,T5,T6,T7) T2 T1
6 ALU, | ALU:C(T4,T5,T6,T7) T3 T2
7 TEX TEX:A(T4,T5,T6,T7) T4 T3
8 ALU, | ALU:A(T8,T9,T10,T11)| T5 T4
9 ALU, | ALU:B(T8,T9,T10,T11)| T6 T5
10 | ALU, | ALU:C(T8,T9,T10,T11)| T7 T6
11

Table 4.2: The schedule of operand reads from the centrateedile for batches of four
threads (TO-T3,T4-T7, etc.) decoding both ALU and TEX iastrons. TEX instructions
require only one source operand, hence we can read sourcandpefor four threads in a

single cycle.

CHAPTER 4. A GPU-INSPIREDARCHITECTURE 28

4.3.1 Control Flow

The thread batching and scheduling solutions above preseblems for the control flow in-
struction, FLW. The first problem of finding time to scheduie execution of such instructions
is easily solved. Column 2 in Table 4.2 shows 2 cycles eadbg&rere the ALU is fetching
operandd andC. As the batch scheduler and instruction issue logic is idiengd this time,
the hardware can be used to schedule an FLW instructione $ib&/ requires neither a read
or write to the register file, no structural hazards arise.

The second problem is how to resolve diverging control floviveRying control flow is
when threads within a batch decide to take alternate braatiisp It turns out, the r5xx ISA
has encoded support within the FLW instruction to resolve $pecific problem. This is be-
cause GPUs use the same technique to resolve divergingtpath when executing multiple
threads using SIMD hardware. The way these instructionkamdled is through the hardware
management of thread states which aoévisible to the programmer. These thread states are
manipulated by the control flow instructions, dependinghtangrevious thread states (the state
beforean FLW instruction is executed), the evaluation of the binazendition, and a resolution
function when threads disagree. Much of this hardware lemalagement is considered on a
case-by-case basis. For example, as threads execute ogteamstruction the active state
of each thread is flipped. This requires all threads to exeseatially through all branch paths
and mask register writes when they are inactive. Feingl.[7] have explored optimizations
of this technique in more detail. For more details of how thexrISA programs and handles

control flow, see the CTM specification [20].

Chapter 5

| mplementation

This section describes our work to implement our GPU-irezpaccelerator on the XtremeData
platform. After an overview of the XtremeData XD1000 and heevmap the CTM system to
it, we describe the low-level implementation of the two keynponents of our accelerator: the

central register file and the batch issue logic.

5.1 The XtremeData XD1000

As illustrated in Figure 5.1, the XtremeData XD1000 is aneé@@tor module that contains
an Altera Stratix || EPS180 FPGA, and that plugs into a steshdZPU socket on a multi-
socket AMD Opteron motherboard. IP cores are availableHerRPGA which allow access
to system memory via Hypertransport (HT) that provides glsiphysical link per direction,
each of which is a 16-bit-wide 400MHz DDR interface and cams$fer 1.6GB/sec. The host
CPU treats the XD1000 as an end-point that is configured byftava® driver to respond
to a memory-mapped address range using the HT slave irgedanilar to other regular pe-
ripherals. The FPGA application can also initiate DMA read arite transactions to system
memory by constructing and sending HT request packetsigpnogvefficient access to memory
without involving the CPU.

In our work we extend the XtremeData system to conform to thiel@terface by adding a

29

CHAPTER 5. IMPLEMENTATION 30

Dual Socket Motherboard

xd1000 HT
Driver { } Slave \ll
1 System
Memory —} :r(;(t:slr
Host HT
Program N 4 Master B
CPU FPGA

Figure 5.1: An XtremeData system with a XD1000 module.

driver layer on top of the XD1000 driver, and by memory-maygythe hardware configuration
state registers and instruction memory of our accelerattheé HT slave interface. Instruc-
tion memory resides completely on-chip and stores up to B4t2uctions—the limit currently
defined by CTM. Each instruction is defined by the ABI to be 188, lhence the instruction
store requires three M4K RAM blocks. The RAM blocks have tveotg: one is configured
as a write port that is connected directly to the configuralilock so that the CTM driver can
write instructions into it; the other is configured as a read o allow the accelerator to fetch
instructions. The CTM driver initializes the acceleratathithe addresses of the start and end

instruction of the shader program and initiates executjowtiting to a predetermined address.

5.2 Central Register File

While our transposed design allows us to architect a higfepmaance register file using only
two ports, the implementation has the additional challeraj€i) supporting the vast memory

capacity required, and (ii) performing the actual tran#pms Each batch is composed of

CHAPTER 5. IMPLEMENTATION 31

M-RAM M-RAM M-RAM M-RAM
64KB 64KB 64KB 64KB
r g .b a
C R] C R] C R] R
REG=3 r3.rp.3 r3.9o-3 r3.bo.3 r5.a9.3 REG=5
4 512 Bits >

Figure 5.2: Mapping our register file architecture to fouragx 1I's 64KB M-RAM blocks.
The read circuitry shows an example where we are readingn@sracross threads in a batch
for a vector/scalar ALU instruction pair (VLIWY): 3 as an operand for the vector instruction
andr 5 as an operand for the scalar instruction. While not showgister writes are imple-

mented similarly.

four threads that each require up to 128 registers, whelte reggster is actually a vector of
four 32-bit elements. We therefore require the centralstegifile to support 8KB of on-chip
memory per batch. For example, 32 batches would require B5§kon-chip memory, which
means that we must use four of the 64KB M-RAM blocks availabkbe Stratix Il chip in the
XD1000 module, as illustrated in Figure 5.2. Figure 5.3 shtlve circuit we use to transpose
the operands read across threads in a batch for ALU insbnggo that the three operands for
a single instruction are available in the same cycle: a safeegisters buffer the operands

until they can be properly transposed.

CHAPTER 5. IMPLEMENTATION 32
5.3 Batch Issuelogic

As described previously in Section 4.3, to ensure that th& Alatapath is fully utilized our
soft processor schedules instructions to issue acrossdsatEor a given cycle, we ideally want
to find either an ALU or TEX instruction to issue. Figure 5.4€gfs the circuit that performs
this batch scheduling, for an example where we want to find lad #struction to issue. We
can trivially compare the desired next instruction type (Aln this case) with the actual next
instruction type for each batch as recorded in the batcle ségfister, since this information
about the next instruction is encoded in each machine ictsdru (as defined by the CTM
ABI). As shown in the figure, we take the set of boolean sigttzds indicate which batches
have the desired next instruction ready to issue and rdtat®,tthen feed the rotated result
into a priority encoder that gives the batch number to issilee rotation is performed such
that the previously-selected batch is in the lowest-pyguosition. In the example we rotate
such that the signal for batch 2 is in the lowest-priorityhtignost position, and the priority
encoder hence chooses batch 0 as the first batch with a reddyn&truction. For a GPU-like
programming model where all threads are executing the sameesce of instructions, this is
sufficient to ensure forward progress. The batch issue Isgiipelined, hence during a second
cycle the batch number is used to index the context memoma the program counter value
for that batch, and during a third cycle the program courdérevis used to index the instruction

memory for the appropriate instruction.

CHAPTER 5. IMPLEMENTATION 33
| |
| Regfile . |
| 4 4 x 32 bit floats > |
- | N | - ——--
S T Read Port e g
C3 C2 Cl CO
Bg Bz Bl BO
A Az Ay Ao
A w
< 9 9 q
3 cycle latency per
thread from when :
operand A is read until :
operand Cisread
N
< < <
[
<
|
i i ¢ vV VvV VvV Vv v vV v
2 1 0 3 2 1 0 3 2 1 0
A B c Thread Select
A3 BS C3
Az B2 CZ
Al Bl Cl
Ao Bo CO
_ |————=
————| 1x32float 1 x 32 float 1x32float |-——4

ALU Input for 1 Channel: r, g, b, or a

Figure 5.3: A circuit for transposing the thread-interle@woperands read from the central

register file into a correctly-ordered sequence of operémdbe ALU datapath.

CHAPTER 5. IMPLEMENTATION 34

Next Type: ex) ALU

| |
: TEx Current :
ALU ALU .
: Ready Ready Y Waiting Batch :
States
I 0 1 2 3 I
- - - rr - - - -5 _ I — — - J
True True False False
4} Rotate
Last Batch = 2
3 0 1 2
False True True False
Highest ..
Prgiomy Priority Encode _
Instruction
RAM

Next Batch = 0 _}
Context 4}Program

RAM Counter[0]

v v

Next Batch (to decode) Instruction (to decode)

Figure 5.4: Batch issue logic for hardware managing 4 babchexts.

Chapter 6

M easurement M ethodology

In this section we describe the system simulation and beadhapplications that we use to

measure the performance of our GPU-inspired soft procesgiéementation.

6.1 System Simulation

We have developed a complete simulation framework in SySt¢3h to measure the ALU

utilization and overall performance of workloads on our GIiXg soft processor.

Clock Frequency Since we do not have a full RTL implementation of our soft @ssor, we
instead assume a system clock frequency of 100MHz. We chhbissiequency to match the
100MHz HT IP core, which in turn is designed to match a 4x driof the physical link clock
frequency (that is 400MHz). We feel that this clock frequerscachievable since (i) other soft
processor designs easily do so for Stratix Il FPGAs sucheabIl®S Il /f which executes up to
220MHz, and (ii) the GPU programming model and abundanckrefts allows us to heavily

pipeline all components in our design to avoid any longHayestages.

Cycle-Accurate Simulation Our simulator is cycle-accurate at the block interfacesvsho
in Figure 4.1. For each block we estimate a latency based@obkrations and data-types

present in a behaviorél code implementation. In most cases, we sketch the desigoiafiat

35

CHAPTER 6. MEASUREMENTMETHODOLOGY 36

Action Stage Latency (ns)

Request | FPGA HT IP core 70
host HT controller 32

SDRAM | access and data fetch 51

Response host builds response packet 12

host HT controller 30
FPGA HT IP core 110
Total Latency 305

Table 6.1: A breakdown of how each stage of an HT memory requuegributes to overall

access latency.

implementing the required C-code functionality and corepthe latency of the critical path.
We assume that the batch issue logic shown previously inr€igd is fully pipelined, allowing

us to potentially sustain the instruction issue schedubvstpreviously in Table 4.2.

6.1.1 HyperTransport

Our simulation infrastructure faithfully models the bandili and latency of the HT links
between the host CPU and the FPGA on the XD1000 platform.

Modeling of bandwidth requires cycle accurate communicetietween the output request
FIFOs and the HT IP core. Each HT read packet can request up bytés of contiguous
physical memory from system memory. As our threads are bdiaach execution of a TEX
instruction corresponds to 4 individual HT read packetd sehin sequence. Each HT read
request is an 8 byte control packet identifying the endstligvice (FPGA) and the request
address; in this case, from system memory. Data is retumied iresponse packets consisting
of a 4 byte control packet identifying the transaction IDpestatus, and payload size, followed
by a data packet containing the actual data. While it is lyijkély that threads within a batch

will request copies of some overlapping data duprtigram locality we do not assume there

CHAPTER 6. MEASUREMENTMETHODOLOGY 37

is hardware available to merge these requests to reduce goitetion overhead. Hence, each

threadgenerates one HT request which typically returns a vectpster of data (16 bytes).

When a batch completes, write request packets are sent klthie core. A write request
consists of an 8 byte request control packet identifyingsthé&ce device, length of the data to
write and the target address. This is followed by a data pgaufkep to 64 contiguous bytes.
A thread can write 16 bytes to each of 4 possible output b&iffévriting to different buffers
results in separate HT request packets as the output bafierst interleaved in memory such
that writing data is contiguous between them. However, tliok-step completion of threads
within a batch allows us to merge write data from 4 threadsdimgle output buffer, reducing
overhead. The coordinate generator shown in Figure 4.ta#s the coordinates into batches
such that each batch represents 4 contiguous coordindtesefdre, it is possible to compute
the system memory address for the first coordinate in thénpata write output data for all 4

threads in a minimal number of individual packets.

To model latency, we impose a delay in simulation time betwgben the HT request is
sent out and the response is available to the acceleratisrd@lay is constant and computed as
a sum of individual latencies listed in Table 6.1. We assumag @ur soft processor is running
at 100MHz as described above, and that the memory speaficatithe standard DDR-333
(166 MHz Bus) SDRAM that comes with the XD1000 system. We @asa constant SDRAM
access latency of 51ns; while a constant latency is of caumsgalistic,since it contributes only
17% of total latency we are confident that modeling the smadtdiations of this latency would
not significantly impact our results. The latencies of the IRTcore (both input and output
paths) were obtained from Slogsmdat al.[22], and the latencies for the the host HT controller,
DDR controller, and DDR access were obtained from Holden@®jr HyperTransport model
is somewhat idealized since we do not account for possibletidrs nor contention by the

host CPU for memory.

The HT protocol specification states that a device may onlyeh# to 32 outstanding

request packets. We model this by checking a counter andnigaddiditional requests back in

CHAPTER 6. MEASUREMENTMETHODOLOGY 38

a queue if the outstanding count reaches 32.

6.2 Benchmarks

Since our system is compatible with the interface specifie@BM we can execute existing
CTM applications, includingcg applications, by simply re-linking the CTM driver to our sim
ulation infrastructure. We evaluate our system using tHeviing three applications that have
a variety of instruction mixes and behavior. Note that inwark so far we have not observed
any applications with the potentially problematic instrac mix of more TEX instructions

than ALU instructions.

Matmatmult MATMATMULT is included with the CTM SDK as CTM assembly code, and
performs dense matrix-matrix multiplication based on tlweknof Fatahaliaret. al.[5]. We
selected this application because of its heavy use of TEXUcBoNs to access row and column

vectors of an input matrix: the ratio of ALU to TEX instructie for MATMATMULT is 2.25.

Sgemm SGEMM computesCpew = a(A - B) + 5C,q and represents a core routine of
the BLAS math library, and was also included with the CTM SDKGI'M assembly code.
SGEMM also makes heavy use of TEX instructions to access two inptiiees. The ratio of

ALU to TEX instructions for SEMM is 2.56.

Photon PHOTON is a kernel from a Monte Carlo radiative heat transfer sitmtg included
with the open-source Trident [23] FPGA compiler. We porteid aipplication by hand t€g
such that each instance of the resulting shader programarpesfthe computation for a single
particle, and input buffers store previous particle possiand other physical quantities. We
selected this benchmark to be representative of applitcsatiath higher ratios of ALU to TEX

instructions: for ROTON it is exactly 4.00.

Chapter 7

Utilization and Perfor mance

Our foremost goal is to fully-utilize the ALU datapath. Indlsection we measure the ALU
datapath utilization for several configurations of our &sstture, and also measure the impact
on performance of increasing the number of hardware batetegts. Recall that an increasing
number of batches provides a greater opportunity for futilizing the pipeline and avoiding
bubbles by scheduling instructions to issue across a largaber of threads.

Figure 7.1 shows ALU utilization assuming the 8-bit HT iridéexe provided with the XD1000
system, for a varying number of hardware batch contextsm-fsoe to 64 batches. Since each
batch contains four threads, this means that we support fooimto 256 threads. We limit
the number of batch contexts to 64 because this design iesladentral register file that con-
sumes 512KB of on-chip memory, and thus eight of the nine MVRAvailable in a Stratix
Il FPGA (64KB each). In the figure we plot ALU utilizatioru{ilized) as the fraction of all
clock cycles when an ALU instruction was issued. We alsolbdsavn the ALU idle cycles
into the reasons why no ALU instruction from any batch cowdddsued (i.e., averaged across
all batches contexts). In particular, we may be unable teeissr ALU instruction for a given

batch for one of the following three reasons.

e Semwait The next instruction is an ALU instruction, but it is waigirfor a memory

semaphore because it depends on an already in-flight TEXigt&tin (memory load).

39

CHAPTER 7. UTILIZATION AND PERFORMANCE 40

100%
80% [inside_alu
B semwait
- [notalu
W utilized
£ 60%
N
5
2 40%
<
20%
0% — N < [ee] © N <
— (3] ©
Number of Hardware Batch Contexts
(@) PHOTON

100%

80% inside_alu
semwait
notalu

s) utilized
] 60%
N
5
2 40%
<

20%

O% — N < [ee] [} o <

- [32} ©
Number of Hardware Batch Contexts
(b) MATMATMULT
100% T
80% [inside_alu
B semwait
O notalu

S W utilized
S 6%
©
N
=1
3 40%
<

20%

0%

- N [ee] ©o N
~ (3]

64

Number of Hardware Batch Contexts

(c) SGEMM

Figure 7.1: ALU datapath utilization for the 8-bit HT intade provided with the XD1000

system.

CHAPTER 7. UTILIZATION AND PERFORMANCE 41

¢ Inside ALU The nextinstruction is a ready-to-issue ALU instructibat there is already
a previous ALU instruction executing for that batch: sinigere is no hazard detection
logic, a batch must conservatively wait until a previous Aiddtruction completes be-

fore issuing a new one, to ensure that any register depeesamne satisfied.

e NOtALU: The next instruction is not an ALU instruction.

From the figure we observe that when only one hardware batotexiois supported that
the ALU datapath is severely underutilized (less than 10%zation), and that the majority of
the idle cycles are due to prior ALU instructions in the ALUpgline gxecuting. Utilization
steadily improves for all three benchmarks as we increasatmber of hardware batch con-
texts up to 16 batches, at which pointAWMATMULT and SsEMM achieve utilization of 70%
and 75% respectively. However, neithemMIATMULT nor SGEMM benefit from increasing
further to 32 batches: in both cases waiting for memory istitdeneck Semwal), indicating
that both applications have consumed available memoryaiatial Similarly, increasing even
further to 64 batches yields no improvement, with the menhatyleneck becoming more pro-
nounced. In contrast, forHOTON the increase from 16 to 32 batches results in near perfect
utilization of the ALU datapath; correspondingly, the iease from 32 to 64 batches cannot
provide further benefit. Intuitively, FOTON is able to better-utilize the ALU datapath because
it has a larger ratio of ALU to TEX instructions (four to one).

While the HT IP core provided for the XD1000 is limited to arb®8-HT interface, the
actual physical link connecting the FPGA and CPU is 16 bitec&memory appears to be
a bottleneck limiting ALU utilization, we investigate thepact of a 16-bit HT link such as
the one described in [22] as shown in Figure 7.2. For this avwgd system we observe that
the memory bottleneck is sufficiently reduced to allow fuilization of the ALU datapath for
all three benchmarks when 32 hardware batch contexts apoged. In turn, this implies
that support for 64 or more hardware batch contexts remaingaessary. The fact that 32

batches seems sufficient makes intuitive sense since 3RBdsatomprises 128 threads, while

CHAPTER 7. UTILIZATION AND PERFORMANCE

42

100%
80% [inside_alu
B semwait
- [notalu
W utilized
£ 60%
N
5
2 40%
<
20%
0% — «~ < ®© © o <
— (3] ©
Number of Hardware Batch Contexts
(@) PHOTON

100%

80% inside_alu
semwait
notalu

s) utilized
] 60%

N

5

2 40%

<

20%

O% — N < [ee] [} o <
- [32) ©
Number of Hardware Batch Contexts
(b) MATMATMULT

100%

80% inside_alu
semwait
notalu

s utilized
= 60%
<
N
=1
S 40%
<
20%
0%

64

© N
- N < © =1 >

Number of Hardware Batch Contexts

(c) SGEMM

Figure 7.2: ALU datapath utilization for a 16-bit HT intecia

CHAPTER 7. UTILIZATION AND PERFORMANCE 43

the ALU datapath pipeline is roughly only 53 cycles deep dngtrequires only that many
ALU instructions to be fully utilized—more deeply pipelidhéALU functional units would
likely continue to benefit from increased contexts.

While maximizing ALU datapath utilization is our overall @ it is also important to
understand the impact of increasing the number of hardwatighlzontexts on performance.
Figure 7.3 shows speedup relative to a single hardware loatdiext for both 8-bit and 16-bit
HT interfaces. Interestingly, speedup is perfectly linfsarbetween two and eight contexts
for all benchmarks and both HT designs, but for 16 and mor¢eztsispeedup is sub-linear.
For the 8-bit HT interface, performance does not improveobeyl6 contexts, while for the
16-bit HT interface 32 contexts provides an improvementdutontexts does not. Looking at
the 16-bit HT interface for 32 contexts, we see that for eamichmark speedup is inversely-
related to the ratio of ALU to TEX instructions: applicateowith a smaller fraction of TEX
instructions benefit less from the latency-tolerance gtediby a larger number of contexts. In
detail, FHOTON benefits the least and has a ratio of 4.00, followed Bg®m that has a ratio

of 2.56, and M\TMATMULT benefits the most and has a ratio of 2.25.

7.1 Reducingthe Register File

While we have demonstrated that 32 hardware batch contestsficient to achieve near per-
fect ALU datapath utilization, as shown in Section 5.2 tisigjuite costly, requiring four M-
RAMs on the Altera Stratix 1. While this may not be a problerhem instantiating a single
soft processor, when trying to scale the number of procegeohigher throughput, M-RAMs
would be the limiting resource.

This base register file design supports the full 128 genargbgse vector registers per
thread defined by CTM, most of which will not be used for manplegations. In our archi-
tecture it is straightforward to reduce the number of regsssupported by a power of two

to reduce the total memory requirements for the centraktegfile. For example, HOTON,

CHAPTER 7. UTILIZATION AND PERFORMANCE 44

20
18 [re e e e

16 ' sgemm
14 - e -

12 [. N B
10 [. o N

Speedup Over Single Batch Context Configuration

2 4 8 16 32 64

Number of Hardware Batch Contexts

(a) 8-bit HT interface.

20
18 [

16 @ sgemm T
14 - PR 2 N N e

12 [. o N
10 [. o B

Speedup Over Single Batch Context Configuration

2 4 8 16 32 64

Number of Hardware Batch Contexts

(b) 16-bit HT interface.

Figure 7.3: Speedup vs a single hardware batch context Y@-k& and (b) 16-bit HT inter-

faces.

CHAPTER 7. UTILIZATION AND PERFORMANCE 45

MATMATMULT , and SSEMM each use only 4, 15, and 21 general-purpose registers, tience
proposed customization would reduce the size of the cerdgater file by 32x, 8x, and 4x
respectively; for ROTON this would instead allow us to build the central register Giteng

only 16 of the much smaller M4AK memory blocks.

7.2 Summary

These results indicate that even for a deeply pipelined AELB3oclock cycles we are able to
fully utilize this datapath by interleaving the executidnimstructions from different batches.
This is made possible by the abundance of independent thpradlided by the data-parallel

GPU programming model.

Chapter 8

Conclusions

We have presented a GPU-inspired soft processor that ak®4&A-based acceleration sys-
tems to be programmed using high-level languages. Sinolar GPU, our design exploits
multithreading, vector operations, and predication tobémghe full utilization of a deeply-
pipelined datapath. The GPU programming model providesbandance of threads that all
execute the same instructions, allowing us to group thriedd$atches and execute the threads
within a batch in lock-step. Batched threads allow us tool@rate the limited ports available
in FPGA block memories by transposing the operand reads atebvwf instructions within a
batch, and (ii) to avoid pipeline bubbles by issuing indliarts across batches. Through faithful
simulation of a system that is realizable on an XtremeDatd I FPGA-based acceleration
platform we demonstrate that our GPU-inspired architedindeed capable of fully utilizing

a 53-stage ALU datapath when 32 batch contexts are supporteddware.

8.1 Contributions

This thesis (i) proposes a new GPU-inspired architectudepaogramming model for FPGA-
based acceleration based on soft-processors that exphttithreading, vector instructions,
predication, and multiple processors; (ii) describes rmagms for managing threads and

register files that maximize data-level and instructiorelgoarallelism while overcoming the

46

CHAPTER 8. CONCLUSIONS 47

challenge of port limitations of FPGA block memories; (di@monstrates that these features,
when implemented in concert, result in a soft processogddsiat can fully-utilize a deeply-
pipelined datapath; (iv) contributes an expandable soéwanulator for executing the CTM
programming specification, with performance estimatess $imulator will be used in future

research and for reference in a hardware implementation.

8.2 FutureWork

This work motivates several avenues of further researchilé/ur current design supports
floating-point based ALUs to remain compatible with the CTri¢erface, FPGAs would likely

excel at other forms of computation such as fixed-point orstandard-bit-width computation.
It would also be beneficial to exploit much wider vector opierss rather than the 4-element
vectors defined by CTM. Beyond reducing the register file tocinéhe needs of the applica-
tion, there are many other avenues for customizing the texctiire. Finally, the long term goal
of this research is to discover new high-level programmiraglets that allow users to fully-

exploit the potential of FPGA-based acceleration platigwe believe that GPU-inspired pro-

gramming models and architectures are a step in the rigidtibn.

Appendix A

Cg Code

A.1 Photon

struct data_in {
float3 color : COLORO;
float2 coord : TEXCOORDO;
I

struct data_out {

float2 data : COLOR;
H

data_out main(data_in IN, uniformsanpler2D delrhs : TEXUNI TO,
uni f or m sanpl er 2D pos: TEXUNI T1,
uni form sanpl er 2D sqgl e : TEXUNI T2,

uni formsanpler2D I's : TEXUNI T3)
{
dat a_out OUT;
float ssq = 0.0;
QUT.data.x = 0.0;
I/l fetch the |, le and Ii val ue

float3 tls = tex2D(ls, IN coord).xyz;
if(tls.x I=tls.y) { /11 I=1le

float4 sqlet = tex2D(sqgle, IN coord).xyzw,
float4 delrhst = tex2D(delrhs, IN. coord).xyzw,
float det = dot(sqglet.yz, delrhst.yx); // det = exxdelyl - eyxdelxl;
float absdet = abs(det);
i f(absdet <= 1.0000000133514319600181e- 10)
det = 1.0000000133514319600181e- 10;
float dtinv = 1.0/det;
float xi = dtinv * (delrhst.x*delrhst.z - sqglet.y*delrhst.w);
float yi = dtinv » (delrhst.y+delrhst.z - sqglet.zxdelrhst.w);

float4 post = tex2D(pos, IN coord).xyzw, // fetch position informtion

48

APPENDIXA. CG CODE

ssq = (xi - post.x)*(xi - post.x) + (xi -
(yi - post.y)*(yi - post.y) + (yi -
if(ssq <= sqglet.

x) {

QUT.data.x = tls.x;

}
}

QUT. data.y = ssq;

return OUT,
}

A.2 Sgemm

sanpl er 2D mAX
sanpl er 2D mAY
sanpl er 2D mAZ
sanpl er 2D mAW

sanpl er 2D nmBX
sanpl er 2D nBY
sanpl er 2D nBZ
sanpl er 2D nBW

float4 step
int N

struct bl ock_t

{

register(s0);
register(s2);
regi ster(s4);

regi ster(s6);

register(sl);
register(s3);
regi ster(s5);

register(s7);

regi ster(c0);

register(i0);

float4 X, VY, Z, W

I

void mul tiply_block(inout block_t C,

{
float4 AX =
float4 AY =
float4 AZ =
float4 AW=
C. X. xyzw +=
C. Y. xyzw +=

C. Z. xyzw +=

C. Wxyzw +=

tex2D(mAX, pos.yz), BX

tex2D(mAZ, pos.yz

)
tex2D(mAY, pos.yz), BY

). BZ

)

tex2D(mAW pos.yz

AX. xxzz*BX. yzyz + AX. wayy* BX. wxwx

AY. wwyy* BZ. wxwx;

AX. xxzz*BY.yzyz + AX. wwyy*BY. wxwx

AY. wwyy* BW wxwx ;

AZ. xxzz*BX. yzyz + AZ. wawyy*BX. wxwx

AW wwyy* BZ. Wxwx;

AZ. xxzz*BY.yzyz + AZ. wwyy*BY. wxwx

AW wwy y * BW wxwx ;

bl ock_t main(float2 vpos : VPOS) : COLOR

{

float3 pos = vpos. xyy*step. ywy;

tex2D(
tex2D(
tex2D(

, BW= tex2D(

post.z)*(xi - post.z) +

post.w) *(yi - post.w);

in float3 pos)

nBX, pos.xy);

nBY, pos.xy);

nBZ, pos.xy);
mBW pos.xy);

+

+

+

AY. xxzz*BZ.yzyz

AY. xxzz*xBWyzyz

AW xxzz*BZ.yzyz

AW xxzz*BWyzyz

APPENDIXA. CG CODE

block_t C = {0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0};

for (int i =0; i < NX; i++)

{
mul tiply_block(C pos); pos.
mul tiply_block(C pos); pos.
mul tiply_block(C pos); pos.
mul tiply_block(C pos); pos.

}

return G

+= step.y;
+= step.y;
+= step.y;

+= step.y;

50

Appendix B

CTM Code

B.1 Photon

1 000: /fuli TEXrl rO.rgrr sO

1001: /fuli TEX r2.000x r0.rgrr s2
1002: fuli TEX r3.00xx r0.rgrr s3
1003: /pluli/v TEXr0 rO.rgrr sl

1004: /p MAD (r1 r2 r3) ré4.oox src0.gr0 srcl.gb0 src0.000

mad (c0 cO0 c0) r2 src2.r src2.1 -src2.g
1 005: MAD (r4 r2 c0) r2.xox srcO.rar srcl.0g0
mad (rl cO c0) r3 srcO.r src0.1 srcO0.g
1 006: MAD (r2 c0 c0) r2.xxo srcl.rra src0. 00
cnmp (r3 rl1 c0) rl src0.1 src0.0 -|srcO

o

1007: MAD (r1 r2 c0) rl.oxx src0.r00 src0.b00
cnp (r2rl1 c0) rl src0.0 srcl -|srcO

1008: MAD (rl1 r2 c0O) r2.xox src0.0g0 src0.0bO
cnmp (r1 r3 c0) r3 srcl src0.0 -srcO

1009: MAD r 2. xxo r3.00r c0.111 -c0.00g
rcprlr3

1010: MAD (rl1 cO cO) rl.oxo srcO.ara src0.r0
mad (rl cO c0) r0.x src0.0 src0.0 src0.0

1011: MAD (r2 c0O c0) r2.xox srcO.rar src0.0g0

mad (rl1 c0 cO0) r0.x src0.0 src0.0 src0.0

1012: D2A (sub r0 rl1 r2) r0.oxx srcp.rb0 srcp

mad (bias r0 cO c0) r0O -srcO src2.1 src2.g

1013: MAD (sub r0 r2 c0) r0.xxx src0.000 srcO

mad (bias cO cO cO) r3 srcp.g srcp.g srcO.r
1014: MAD (cO cO c0) r0.xxx src0.000 src0.000
mad (r0 r3 c0) r3 srcO srcO srcl

1015: CMP (r2 c0 c0) r0.oxx src0.000 srcO.arr
mad (r3 c0 c0) r0.x src0.0 src0.0 src0.0

1016: MAD r 0. xxx 00.xox r0.0r0 c0.111 c0.000
mad r0.x 00.x ¢0.0 c0.0 c0.0

1017: MAD (sub r0 r2 c0) r0.xxx src0.000 srcO

cnp (bias c¢0 cO c0) r3 src0.1 src0.0 srcp.r

src0. 000

src0. 000

-srcl. goo

-srcl. 0b0

src0. 000

src0. 000

rb0 src0. 000

000 src0.000

src0. 000

-| src0. b0O

000 src0.000

51

APPENDIXB. CTM CoDE 52

1018: MAD (c0 cO c0) ro0.xxx src0.000 src0.000 src0.000

cmp (r2 r3 ¢c0) r3 src0.0 srcl -|srcO]

1019: CMP (r3 c0 c0) r0.xxx 00.o0xx src0.000 src0.r00 -src0.arr
mad (r3 c0 c0) r0.x 00.x src0.0 src0.0 src0.0

END

HALT

B.2 Matrix Multiplication

MAD r1 r0.0g0 1.0 0.0
mad r1 0.0 1.0 0.0
MAD r2 r0.r00 1.0 0.0
mad r2 0.0 1.0 0.0

MAD r7 0.0 0.0 0.0
mad r7 0.0 0.0 0.0
MAD r8 0.0 0.0 0.0
mad r8 0.0 0.0 0.0
MAD r9 0.0 0.0 0.0
mad r9 0.0 0.0 0.0

MAD r10 0.0 0.0 0.0
mad r10 0.0 0.0 0.0

LOP done i0 junpNoGo

start:

/w/u TEX r3 ri1 sO
/u TEX r5 r2 si

Ju TEX r11 rl1 s2

Ip /v /uTEXTr6 r2 s3

/p MMDr7 r3.rrb r5.rgr r7
mad r7 r3.b r5.9 r7

/u TEX r4 rl s4
/u TEX r13 r2 s5
Ju TEX r12 r1 s6
Ip /v /u TEX r14 r2 s7

MAD r7 r3.gga r5.bab r7

mad r7 r3.ar5.ar7

MAD r8 r3.rrb r6.rgr r8
md r8 r3.br6.g r8
MAD r8 r3.gga r6.bab r8

mad r8 r3.ar6.ar8

MAD r9 r4.rrb r5.rgr r9
md r9r4.br5gr9
MAD r9 r4.gga r5.bab r9
mad r9 rd.ar5.ar9

MAD r10 r4.rrb r6.rgr ri10

APPENDIXB. CTM CoDE

mad r10 r4.b r6.g r10

MAD r10 r4.gga r6.bab r10

mad r10 r4.a r6.a ri10

/p MAD r7 rl1l.rrb r13.rgr r7

mad r7 r1l.b ri13.g

MAD r7 r1l.gga r13.

mad r7 rll.a ri3.a

MAD r8 rll.rrb ri14.

mad r8 r1l.b ril4.g
MAD r8 ril.gga r14.
mad r8 rll.a rld. a

MAD r9 rl12.rrb ri13.

mad r9 r12.b r13.g
MAD r9 ri12.gga r13.
mad r9 rl2.a r13.a

MAD r10 r12.rrb ri4
mad r10 r12.b rld.g
MAD r10 r12.gga rl4

mad r10 r12.a rld. a

r7
bab r7
r7

rgr r8
r8
bab r8
r8

rgr r9
r9
bab r9
r9

.rgr rlo0
rio
.bab r10
ri1o

MAD r1.oxx 1.0 1.0 r1.r00

frcr0.x 0.0

MAD r2.xox 1.0 1.0 r2.0g0

frcr0.x 0.0

ELP start i0 junpGo junplfAny

done:

MAD r0. xxx 00 r7 1.
mad r0.x 00 r7 1.0
MAD r0. xxx ol r8 1.
mad r0.x o1 r8 1.0
MAD r0. xxx 02 r9 1.
mad r0.x 02 r9 1.0

/'p MAD r0.xxx o3 r10

© © ©o o © ©

0
0
0
0
0
0
1

.00.0

mad r0.x 03 r10 1.0 0.0

HALT

B.3 Sgemm

mai n:
1000:
nmad
1001:
mad
1002:

mad

1003:

MAD (cO r0 cO
(c0 cO0 c0) r18
MAD r18. xxo r
r14 c0.0 c0.1
MAD (r18 r0 c
(r18 c0 c0) r1

) r17 srcl.rgg src0.gag src0.000
srcl.r src0.g src0.0

17.00b c0.111 c0. 000

c0.0

0) r19.xo00 src0.0ba src0.111 src0. 000

5 srcl.g srcl src0.0

MAD r 14 c0.000 c0.111 c0. 000

53

APPENDIXB. CTM CoDE

mad

1004

mad

1 005:

mad

1 006:

mad

1007:
1008:

mad

1009:
1010:
1011:
1012:
1013:
1014

1015:
1016:
1017:

mad

1018:

mad

1019:

mad

1020:

mad

1021:

mad

1022:

mad

1023:

mad

1024

mad

1025:

mad

1026:

mad

1027:

mad

1028:

mad

1029:

mad

1030:

mad

1031:

mad

1032:

mad

1033:

mad

1034
1035:
1036:

r0.x c0.0 cO

MAD r13 ri14
ri3 ri4 c0.1
MAD r20 r14
rl6 ri14 c0.1
MAD r16 r14
ri2 r14 c0.1
REP 1118 b0

0 c0.0

c0. 111 c0. 000
c0.0

c0. 111 c0. 000
c0.0

c0. 111 c0. 000
c0.0

i0 junpNoGo

MAD r 0. xxx ¢0.000 c0.000 c0.000

rl7 r15 c0.1

c0.0

/wu/i TEX r0 rl7.abaa sO

/uli TEXr1l
luli TEX r2
/fuli TEX r3
luli TEX r4
/uli TEXr5
/uli TEXr6

rl7.rarr sl
rl7. abaa s2
rl7.rarr s3
rl7. abaa s4
rl7.rarr s5

r17. abaa s6

/pluli/v TEX r7 ril7.rarr s7

/p MAD (r0 rl1 c0O) r8 src0.aag sr

(r0r1 c0) r8 srcO0.g srcl.r srcO
MAD (r0 rl1 r8) r8 srcO.rrb srcl
(r8 c0 c0) r8 src0.b srcl.b srcO

MAD (r2 r5r8) r8 srcO.rrb srcl

(r8 c0 c0) r8 src0.b srcl. b srcO
MAD (r2 r5 r8) r8 src0.aag srcl

(r2 r5r8) r8 src0.g srcl.r src2

MAD (r0 r3 c0) r9 src0.aag srcl

(r0r3 c0) r0 srcO0.g srcl.r srcO
MAD (r0 r3 r9) r0 srcO.rrb srcl
(r0 cO c0) r0 srcO0.b srcl. b srco
MAD (r2 r7 r0) r0 srcO.rrb srcl

(r0 cO c0) r0 srcO0.b srcl.b srcO
MAD (r2 r7 r0) r0 src0.aag srcl

(r2 r7 r0) r0 srcO0.g srcl.r src2

MAD (rl1 r4 c0) r2 srcO.ara srcl

(rl1r4 cO) rl srcO.r srcl.g srcO
MAD (rl1 r4 r2) rl1 src0.gbg srcl
(rl1 cO c0) r1 srcO.b srcl.b srco
MAD (r5 r6 r1) rl src0O.ghg srcl

(rl1 cO cO) rl srcO.b srcl.b srcO

MAD (r5r6 rl1) rl srcO.ara srcl

(r5r6rl1) rl1 srcO.r srcl.g src2
MAD (r3 r4 c0) r2 src0.ara srcl

(r3r4 c0) r2 srcO.r srcl.g srcO

MAD (r3 r4 r2) r2 src0.ghg srcl
(r2 c0 c0) r2 srcO0.b srcl.b srco
MAD (r6 r7 r2) r2 srcO.rrb srcl
(r2 cO c0) r2 srcO0.b srcl.b srcO

MAD (r6 r7 r2) r2 src0O.aag srcl

(r6 r7r2) r2 src0.g srcl.r src2
MAD (cO cO c0) r18.xox srcO.rar

(r15 r12 r8)

r8 srcl src2.1 src2

/w uli TEX r3 r18.gbgg sO

/uli TEX r4
/uli TEXr5

r18. agaa sl
r18. ghgg s2

cl.ara src0.000

0

gbg src2

gbg src2

ara src2

ara src0.000

gbg src2

gbg src2

ara src2

aag src0.000

rrb src2

rrb src2

aag src2

aag src0.000

rrb src2

gbg src2

ara src2

src0. 111 src0. 0go

54

APPENDIXB. CTM CoDE

1037: /u/i TEX r6 r18.agaa s3

1038: /u/i TEX r7 r18.ghgg s4

1039: /u/i TEX r9 r18.agaa s5

1040: /u/i TEX r10 r18.gbgg s6

1041: /p/uli/v TEX r1l r18. agaa s7

1042: /p MAD (r3 r4 c0) r12 src0O.aag srcl.ara src0.000
mad (r3 r4 c0) r12 srcO0.g srcl.r src0.0

1043: MAD (r3 r4 r12) r12 srcO.rrb srcl. gbhg src2
mad (r12 c0 c0) r12 src0.b srcl.b srcO

1044: MAD (r5 r9 r12) r12 srcO.rrb srcl.gbg src2
mad (r12 c0 c0) r12 src0.b srcl.b srcO

1045: MAD (r5 r9 r12) r12 src0O.aag srcl.ara src2
mad (r5 r9 r12) r12 src0.g srcl.r src2

1046: MAD (add r8 r16 r12) r8 srcp src2.111 src2
mad (bias r8 r12 c0) r8 srcO srcl.1 srcl

1047: MAD (r3 r6 c0) r12 src0.aag srcl.ara src0.000
mad (r3 r6 c0) r3 src0.g srcl.r src0.0

1048: MAD (r3 r6 r12) r3 srcO.rrb srcl.gbg src2
mad (r3 c0 c0) r3 srcO0.b srcl.b srcO

1049: MAD (r5 r11 r3) r3 srcO.rrb srcl.ghg src2
mad (r3 c0 c0) r3 srcO0.b srcl.b srcO

1050: MAD (r5 r11 r3) r3 src0.aag srcl.ara src2
mad (r5 r11 r3) r3 srcO0.g srcl.r src2

1051: MAD (add rO r20 r3) r0 srcp src2.111 src2
mad (add r0 r16 r3) r0 srcp src2.1 src2

1052: MAD (r4 r7 c0) r3 src0O.ara srcl.aag src0.000
mad (r4 r7 c0) r3 srcO.r srcl.g src0.0

1053: MAD (r4 r7 r3) r3 src0.gbg srcl.rrb src2
mad (r3 cO0 c0) r3 src0.b srcl.b srcO

1054: MAD (r9 r10 r3) r3 src0.gbg srcl.rrb src2
mad (r3 c0 c0) r3 srcO0.b srcl.b srcO

1055: MAD (r9 r10 r3) r3 src0.ara srcl.aag src2
mad (r9 r10 r3) r3 srcO.r srcl.g src2

1056: MAD (add r1 r13 r3) rl1 srcp src2.111 src2
mad (add r1 r13 r3) rl srcp src2.1 src2

1057: MAD (r6 r7 c0) r3 srcO.ara srcl.aag src0.000
mad (r6 r7 c0) r3 srcO.r srcl.g src0.0

1058: MAD (r6 r7 r3) r3 src0.gbg srcl.rrb src2
mad (r3 c0 c0) r3 srcO0.b srcl.b srcO

1059: MAD (r10 r11 r3) r3 srcO.rrb srcl.gbg src2
mad (r3 c0 c0) r3 srcO0.b srcl.b srcO

1060: MAD (r10 r11 r3) r3 src0O.aag srcl.ara src2
mad (r10 r11 r3) r3 src0.g srcl.r src2

1061: MAD (add r2 r14 r3) r2 srcp src2.111 src2
mad (add r2 r14 r3) r2 srcp src2.1 src2

1062: MAD (r18 cO c0) r18.o00x src0.gl0 srcO. lar srcl.gg0
mad (r15 c0 c0) r0.x src0.0 src0.0 src0.0

1063: /wu/i TEXr3 r18.rbrr sO

1064: /u/i TEX r4 rl18.araa sl

1065: /u/i TEX r5 ri18.rbrr s2

1066: /u/i TEX r6 ri18.araa s3

1067: /u/i TEX r7 r18.rbrr s4

1068: /u/i TEX r9 r18.araa s5

1069: /u/i TEXr10 r18.rbrr s6

1070: /p/uli/v TEX r1l r18.araa s7

APPENDIXB. CTM CoDE

1071: /p MAD (r3 r4 c0) r12 src0O.aag srcl.ara src0.000
mad (r3 r4 c0) r12 srcO0.g srcl.r src0.0

1072: MAD (r3 r4 r12) r12 srcO.rrb srcl. gbhg src2
mad (r12 c0 c0) r12 src0.b srcl.b srcO

1073: MAD (r5 r9 r12) r12 srcO.rrb srcl.gbg src2
mad (r12 c0 c0) r12 src0.b srcl.b srcO

1074: MAD (r5 r9 r12) r12 src0.aag srcl.ara src2
mad (r5 r9 r12) r12 src0.g srcl.r src2

1075: MAD (r3 r6 c0) ri13 src0.aag srcl.ara src0.000
mad (r3 r6 c0) r3 src0.g srcl.r src0.0

1076: MAD (r3 r6 r13) r3 srcO.rrb srcl.gbg src2
mad (r3 c0 c0) r3 src0.b srcl.b srcO

1077: MAD (r5 r11 r3) r3 srcO.rrb srcl.ghg src2
mad (r3 c0 c0) r3 srcO0.b srcl.b srcO

1078: MAD (r5 r11 r3) r3 src0.aag srcl.ara src2
mad (r5 r11 r3) r3 srcO0.g srcl.r src2

1079: MAD (r4 r7 c0) r5 src0O.ara srcl.aag src0.000
mad (r4 r7 cO0) r4 srcO.r srcl.g src0.0

1080: MAD (r4 r7 r5) r4 src0.gbg srcl.rrb src2

mad (r4 cO0 c0) r4 src0.b srcl.b srcO

1081: MAD (r9 r10 r4) r4 src0.gbg srcl.rrb src2
mad (r4 c0 c0) r4 srcO0.b srcl.b srcO

1082: MAD (r9 r10 r4) r4 src0.ara srcl.aag src2
mad (r9 r10 r4) r4 srcO.r srcl.g src2

1083: MAD (r6 r7 c0) r5 src0O.ara srcl.aag src0.000
mad (r6 r7 c0) r5 srcO.r srcl.g src0.0

1084: MAD (r6 r7 r5) r5 src0.gbg srcl.rrb src2
mad (r5 c¢0 c0) r5 srcO0.b srcl.b srcO

1085: MAD (r10 r11 r5) r5 srcO.rrb srcl.gbhg src2
mad (r5 cO0 c0) r5 src0.b srcl.b srcO

1086: MAD (r10 r11 r5) r5 src0.aag srcl.ara src2
mad (r10 r11 r5) r5 src0.g srcl.r src2

1087: MAD (r18 cO c0) r19.oxx src0.r00 srcl.111 srcl. g0o0
mad (r8 r12 c0) r8 srcO srcl.1 srcl

1088: /wu/i TEXr6 r19.rgrr sO

1089: /u/i TEX r7 r19.brbb si1

1090: /u/i TEXr9 r19.rgrr s2

1091: /u/i TEX r10 r19.brbb s3

1092: /u/i TEX r1l r19.rgrr s4

1093: /u/i TEX r13 r19.brbb s5

1094: /u/i TEXr14 r19.rgrr s6

1095: /p/uli/v TEX r15 r19. brbb s7

1096: /p MAD (r6 r7 c0) r16 srcO.aag srcl.ara src0.000
mad (r6 r7 c0) r12 srcO0.g srcl.r src0.0

1097: MAD (r6 r7 r16) ri16 srcO.rrb srcl.gbg src2
mad (r12 c0 c0) r12 src0.b srcl.b srcO

1098: MAD (r9 r13 r16) r16 srcO.rrb srcl.gbhg src2
mad (r12 c0 c0) r12 src0.b srcl.b srcO

1099: MAD (r9 r13 r16) r16 src0O.aag srcl.ara src2
mad (r9 r13 r12) r12 src0.g srcl.r src2

1100: MAD (add r12 r8 r16) r16 srcp src2.111 src2
mad (bias r8 r12 c0) r12 srcO srcl.1 srcl

1101: MAD (r6 r10 c0) r8 src0.aag srcl.ara src0.000
mad (r6 r10 c0) r6 srcO0.g srcl.r src0.0

1102: MAD (r6 r10 r8) r6 srcO.rrb srcl.ghg src2

APPENDIXB. CTM CoDE

mad
1103:
mad
1104
mad
1105:
mad
1106:
mad
1107:
mad
1108:
mad
1109:
mad
1110:
mad
1111:
mad
1112:
mad
1113:

mad

1114:

o

ma

1115:

mad

1116:

mad

1117:
1118:

mad

1119:

mad

1120:

mad

1121:

mad
END
HALT

(r6 cO c0) r6 src0.b srcl. b srcO

MAD (r9 r15 r6) r6 srcO.rrb srcl.ghg src2
(r6 cO c0) r6 src0.b srcl.b srco

MAD (r9 r15 r6) r6 srcO.aag srcl.ara src2
(r9ri15 r6) r6 srcO0.g srcl.r src2

MAD (add r3 r0O r6) r20 srcp src2.111 src2
(add r3 r0 r6) rl1l6 srcp src2.1 src2

MAD (r7 r11 c0) rO srcO.ara srcl.aag src0.000
(r7 r11 c0) r0 srcO.r srcl.g src0.0

MAD (r7 r11 r0) rO srcO.gbg srcl.rrb src2
(r0 cO0 c0) r0 srcO0.b srcl.b srcO

MAD (r13 r14 r0) r0 src0.gbg srcl.rrb src2
(r0 cO c0) r0 srcO0.b srcl.b srco

MAD (r13 r14 r0) r0O srcO.ara srcl.aag src2
(r13 r14 r0) r0 srcO.r srcl.g src2

MAD (add r4 r1 r0) ri13 srcp src2.111 src2
(add r4 r1 r0) r13 srcp src2.1 src2

MAD (r10 r11 cO) r0O srcO.ara srcl.aag src0.000
(r10 r11 c0) r0 srcO.r srcl.g src0.0

MAD (r10 r11 r0) rO src0.gbg srcl.rrb src2
(r0 cO c0) r0 srcO0.b srcl. b srco

MAD (r14 r15 r0) r0O srcO.rrb srcl.ghg src2
(r0 cO0 c0) r0 srcO0.b srcl.b srcO

MAD (r14 r15 r0) r0O src0O.aag srcl.ara src2
(r14 r15 r0) r0 src0.g srcl.r src2

MAD (add r5 r2 r0) ri14 srcp src2.111 src2
(add r5 r2 r0) rl14 srcp src2.1 src2

MAD (r19 c0 c0) r0.xxx src0.000 src0.000 src0.000
(cO0 cO0 c0) r15 srcO.r srcl.1 srcl.g

ERP 1008 b0 i 0 junpGo junplfAny

/p MAD r0.xxx 03 r14 c0.111 c0. 000

r0.x o3 r14 c0.1 c0.0

MAD r 0. xxx 02 r13 c0.111 c0.000

r0.x 02 r13 c0.1 c0.0

MAD r 0. xxx ol r20 c0.111 c0. 000

r0.x o1 r16 c0.1 c0.0

MAD r 0. xxx 00 r16 c0.111 c0.000

r0.x o0 r12 c0.1 c0.0

57

Bibliography

[1] Microblaze: http://www.xilinx.com/products/desigasources/pracentral/microblaze.htm.

World Wide Web electronic publication, 2008.

[2] Nios: http://www.altera.com/products/ip/processaros/nio-index.html. World Wide

Web electronic publication, 2008.

[3] Guido Arnout. SystemC standard. ASP-DAC '00: Proceedings of the 2000 conference
on Asia South Pacific design automatigrages 573-578, New York, NY, USA, 2000.
ACM.

[4] Rall Camposano. Synthesis techniques for digitalesystdesign. IDAC '85: Pro-
ceedings of the 22nd ACM/IEEE conference on Design automgtages 475-481, New
York, NY, USA, 1985. ACM.

[5] K. Fatahalian, J. Sugerman, and P. Hanrahan. Undelsigrde efficiency of GPU
algorithms for matrix-matrix multiplication. IHWWS '04: Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics hardvpeages 133-137, New
York, NY, USA, 2004. ACM.

[6] Blair Fort, Davor Capalija, Zvonko G. Vranesic, and Step D. Brown. A Multithreaded
Soft Processor for SOPC Area Reductidield-Programmable Custom Computing Ma-

chines, 2006. FCCM '06. 14th Annual IEEE Symposiunpages 131-142, April 2006.

58

BIBLIOGRAPHY 59

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Wilson W. L. Fung, Ivan Sham, George Yuan, and Tor M. Aamdaynamic Warp For-
mation and Scheduling for Efficient GPU Control Flow.NHCRO '07: Proceedings of
the 40th Annual IEEE/ACM International Symposium on Micchéecture pages 407—
420, Washington, DC, USA, 2007. IEEE Computer Society.

Justin Hensley. AMD CTM overview. IISBIGGRAPH '07: ACM SIGGRAPH 2007
coursespage 7, New York, NY, USA, 2007. ACM.

Brian Holden. Latency Comparison Between HyperTramsaod PCI-Express In Com-

munications Systems, 2006. World Wide Web electronic alilon, 2006.

P. James-Roxby, P. Schumacher, and C. Ross. A singtggromultiple data paral-
lel processing platform for FPGA%=ield-Programmable Custom Computing Machines,

2004. FCCM 2004. 12th Annual IEEE Symposiumpmages 302—-303, April 2004.

A.K. Jones, R. Hoare, I.S. Kourtev, J. Fazekas, D. KugicFoster, S. Boddie, and
A. Muaydh. A 64-way VLIW/SIMD FPGA architecture and desigavil Electronics,
Circuits and Systems, 2004. ICECS 2004. Proceedings ofG64 21th IEEE Interna-

tional Conference ompages 499-502, Dec. 2004.

J.J. Koo, D. Fernandez, A. Haddad, and W.J. Gross. [tialu of a High-Level-
Language Methodology for High-Performance Reconfigur&adenputers.Application
-specific Systems, Architectures and Processors, 2007RP.AEEE International Conf.

on, pages 30-35, July 2007.

M. Labrecque and J.G. Steffan. Improving Pipelined Bobcessors with Multithreading.
Field Programmable Logic and Applications, 2007. FPL 20@ifernational Conference
on, pages 210-215, Aug. 2007.

David Lau, Orion Pritchard, and Philippe Molson. Autated Generation of Hardware

Accelerators with Direct Memory Access from ANSI/ISO StaraiC FunctionsField-

BIBLIOGRAPHY 60

Programmable Custom Computing Machines, 2006. FCCM '0& AMnual IEEE Sym-

posium onpages 45-56, April 2006.

[15] William R. Mark, R. Steven Glanville, Kurt Akeley, andak J. Kilgard. Cg: a system
for programming graphics hardware in a C-like language.SIGGRAPH '03: ACM
SIGGRAPH 2003 Paperpages 896-907, New York, NY, USA, 2003. ACM.

[16] Peter Yiannacouras Martin Labrecque and J. Gregorifabte Scaling Soft Processor
Systems. INEEE Symposium on Field-Programmable Custom ComputinghMas
April 2008.

[17] O.Mencer. ASC: a stream compiler for computing with FGComputer-Aided Design
of Integrated Circuits and Systems, IEEE Transaction$26i({9):1603—-1617, Sept. 2006.

[18] Roger Moussali, Nabil Ghanem, and Mazen A. R. Saghippduing Multithreading in
Configurable Soft Processor Cores.QASES 200 pages 155-159, October.

[19] I. Page. Closing the gap between hardware and softwenelware-software cosynthe-
sis at Oxford. Hardware-Software Cosynthesis for Reconfigurable Sys{Bmest No:

1996/036), IEE Colloquium gmpages 2/1-211, Feb 1996.

[20] Mark Peercy, Mark Segal, and Derek Gerstmann. A perémue-oriented data parallel
virtual machine for GPUs. II5IGGRAPH '06: ACM SIGGRAPH 2006 Sketchemsge
184, New York, NY, USA, 2006. ACM.

[21] Mazen A. R. Saghir, Mohamad EI-Majzoub, and Patrick .AKlatapath and ISA Cus-
tomization for Soft VLIW ProcessorsReconfigurable Computing and FPGA’s, 2006.
ReConFig 2006. IEEE International Conference pages 1-10, Sept. 2006.

[22] David Slogsnat, Alexander Giese, and Ulrich Brunigversatile, low latency Hyper-

Transport core. IfFPGA '07: Proceedings of the 2007 ACM/SIGDA 15th internaaio

BIBLIOGRAPHY 61

[23]

[24]

[25]

[26]

[27]

symposium on Field programmable gate arrgyages 45-52, New York, NY, USA, 2007.
ACM.

Justin L. Tripp, Kristopher D. Peterson, Christine ahs, Jeffrey D. Poznanovic, and
Maya Gokhale. Trident: An FPGA Compiler Framework for FiogtPoint Algorithms.
FPL, pages 317-322, 2005.

Peter Yiannacouras, Jonathan Rose, and J. GregorfaisteThe microarchitecture of
FPGA-based soft processors.@ASES '05: Proceedings of the 2005 international con-
ference on Compilers, architectures and synthesis for e systempages 202-212,

New York, NY, USA, 2005. ACM.

Peter Yiannacouras, J. Gregory Steffan, and Jonatlbae.RVESPA: Portable, Scalable,
and Flexible FPGA-Based Vector Processors.CIRSES’08: International Conference

on Compilers, Architecture and Synthesis for Embeddec®ngs2008.

Jason Yu, Guy Lemieux, and Christopher Eagleston.orgnbcessing as a soft-core CPU
accelerator. IfrPGA '08: Proceedings of the 16th international ACM/SIGAposium

on Field programmable gate array2008.

Jason Yu, Guy Lemieux, and Christpher Eagleston. \fgmtocessing as a soft-core CPU
accelerator. IfrPGA '08: Proceedings of the 16th international ACM/SIGAposium
on Field programmable gate arraypages 222—-232, New York, NY, USA, 2008. ACM.

