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Abstract

A GPU-Inspired Soft Processor for High-Throughput Acceleration

Jeffrey Richard Code Kingyens

Master of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

2008

In this thesis a soft processor programming model and architecture is proposed that is

inspired by graphics processing units (GPUs) and well-matched to the strengths of FPGAs,

namely highly-parallel and pipelinable computation. The proposed soft processor architecture

exploits multithreading, vector operations, and predication to supply a floating-point pipeline

of up to 60 stages via hardware support for up to 256 concurrent thread contexts. The key new

contributions of this architecture are mechanisms for managing threads and register files that

maximize data-level and instruction-level parallelism while overcoming the challenges of port

limitations of FPGA block memories, as well as memory and pipeline latency. Through simu-

lation of a system that is (i) programmable via NVIDIA’s high-levelCg language, (ii) supports

AMD’s r5xx GPU ISA, and (iii) is realizable on an XtremeData XD1000 FPGA-based accel-

erator system, it is demonstrated that the proposed soft processor can achieve 100% utilization

of the deeply-pipelined floating-point datapath.
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Chapter 1

Introduction

As FPGAs become increasingly dense and powerful, with high-speed I/Os, hard multipliers and

plentiful memory blocks, they have consequently become more desirable platforms for com-

puting. Recently there is building interest in using FPGAs as accelerators for high-performance

computing, leading to commercial products such as the SGI RASC which integrates FPGAs

into a blade server platform, and XtremeData and Nallatech that offer FPGA accelerator mod-

ules that can be installed alongside a conventional CPU in a standard dual-socket motherboard.

The challenge for such systems is to provide a programming model that is easily accessible

for the programmers in the scientific, financial, and other data-driven arenas that will use them.

Developing an accelerator design in a hardware descriptionlanguage such as verilog is diffi-

cult, requiring an expert hardware designer to perform all of the implementation, testing, and

debugging required for developing real hardware. Behavioral synthesis techniques—that allow

a programmer to write code in a high-level language such asC that is then automatically trans-

lated into custom hardware circuits—have long-term promise [12, 14, 23], but currently have

many limitations and often require the designer to massage their code to get the best result

from synthesis.

What is needed is a high-level programming model specifically tailored to making the cre-

ation of custom FPGA-based accelerators easy. In contrast with the approaches of custom

1



CHAPTER 1. INTRODUCTION 2

hardware and behavioral synthesis, a more familiar model isto use a standard high-level lan-

guage and environment to program a processor, or in this casean FPGA-based soft processor.

In general, a soft-processor-based system has the advantages of (i) supporting a familiar pro-

gramming model and environment, and (ii) being portable across different FPGA products and

families, while (iii) still allowing the flexibility to be customized to the application. While

soft processors themselves can be augmented with accelerators that are in turn created either

by hand or via behavioral synthesis, our long-term goal is todevelopa new soft processor

architecture that is more naturally capable of fully-utilizing the FPGA.

1.1 A GPU-Inspired Programming Model and Architecture

Another recent trend is the increasing interest in using theGraphics Processing Units (GPUs) in

standard PC graphics cards as general-purpose accelerators, including NVIDIA’s CUDA and

AMD (ATI)’s Close-to-the-Metal (CTM) [8] programming environments. While the respec-

tive strengths of GPUs and FPGAs are different—GPUs excel atfloating-point computation,

while FPGAs are better suited to fixed-point and non-standard-bit-width computations—they

are both very well-suited to highly-parallel and pipelinable computation. These programming

models are gaining traction which can potentially be leveraged if a similar programming model

can be developed for FPGAs.

In addition to the programming model, there are also severalmain architectural features of

GPUs that are very desirable for a high-throughput soft processor. In particular, while some

of these features have been implemented previously in isolation and shown to be beneficial for

soft processors, our research highlights that when implemented in concert they are key for the

design of a high-throughput soft processor.

Multithreading Through hardware support for multiple threads, a soft processor can tolerate

memory and pipeline latency and avoid the area and potentialclock frequency costs of hazard

detection logic—as demonstrated in previous work for pipelines of up to seven stages and
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support for up to eight threads [6,13,18]. In our high-throughput soft processor we essentially

avoid stalls of any kind for very deeply pipelined functional units (up to 60 stages) via hardware

support for many concurrent threads (currently up to 256 threads), and group threads into

batches (also similar to a GPU) to decrease the overheads of managing threads individually.

Vector Operations A vector operation specifies an array of memory or register elements on

which to perform an operation. Vector operations exploit data-level parallelism as described

by software, allowing fewer instructions to command largeramounts of computation, and pro-

viding a powerful axis along which to scale the size of a single soft processor to improve

performance [25,26].

Predication To allow program flexibility it is necessary to support control flow within a thread,

although any control flow will make it more challenging to keep the datapath fully utilized—

hence we support predicated instructions that execute unconditionally, but have no impact on

machine state for control paths that are not taken.

Multiple Processors While multithreading can allow a single datapath to be fullyutilized,

instantiating multiple processors can allow a design to be scaled up to use available FPGA re-

sources [16]. The GPU programming model specifies an abundance of threads, and is agnostic

to whether those threads are executed in the multithreaded contexts of a single processor or

across multiple processors. Hence the programming model and architecture are fully capable

of supporting multiple processors, although we do not evaluate such systems in this work.

Together, the above features provide the latency tolerance, parallelism, and architectural

simplicity required for a high-throughput soft processor.Rather than invent a new program-

ming model, ISA, and processor architecture to support these features, as a starting point for

this research we have ported an existing GPU programming model and architecture to an FPGA

accelerator system. Specifically, we have implemented aSystemC simulation of a GPU-

inspired soft processor that (i) is programmable via NVIDIA’s high-levelC-based language

calledCg [15], (ii) supports anapplication binary interface(ABI) based the AMD CTM r5xx
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GPU ISA [8], and (iii) is realizable on an XtremeData XD1000 development system composed

of a dual-socket motherboard with an AMD Opteron CPU and the FPGA module which com-

municate via a HyperTransport (HT) link. The long-term goalis to use this system to gain

insight on how to best architect a soft processor and programming model for FPGA-based

acceleration.

1.2 Research Goals

The focus of this dissertation is to develop and demonstratethe promise of a GPU-inspired soft

processor architecture and programming model. To this end,we have the following goals:

1. To architect a GPU-inspired soft-processor that supports an existing GPU ISA and high-

level programming language.

2. To overcome the port limitations of FPGA block memories inthe design of the register

file.

3. To avoid all bubbles for a deeply-pipelined floating-point datapath by tolerating memory

and pipeline latency.

4. To build a simulation infrastructure to (i) estimate the performace of the proposed archi-

tecture on an XtremeData XD1000 FPGA-based acceleration system, and to (ii) evaluate

the resulting utilization of the deeply-pipelined floating-point datapath.

1.3 Organization

This thesis is organized as follows. Chapter 2 highlights previous work related to the high-

level programming of FPGA accelerators as well as the soft processor design optimization

techniques we use in this work. Chapter 3 provides an overview of our programming model,
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which is primarily a background in the GPU hardware and programming model we are imple-

menting. Chapter 4 defines the architecture of the hardware to be instantiated on the FPGA

accelerator and highlights the design challenges and solutions. Chapter 5 describes how we

are to map this architecture onto the Xtremedata XD1000 platform. Chapter 6 describes our

simulation framework and the benchmark we have selected forexperimentation. Chapter 7

presents the results of our utilization experiments. Chapter 8 draws together conclusions from

our proposed programming model and results, and summarizesour overall contributions.



Chapter 2

Related Work

A common approach to compiling high-level code for FPGA-based acceleration is the use of

behavioural synthesis techniques [4] to transform high-level input code, directly into hardware

gates. In Section 2.1 we give an overview of these techniquesand provide deeper insight

into Trident, a synthesis-based hardware compiler for floating point C code in Section 2.1.1.

Instead of generating a custom hardware circuit for computing a given task, our work uses soft

processors to execute software code describing such a task.In Section 2.2 we give a general

overview of soft processors and highlight some of the previous research that has explored soft

processor design optimizations which we use to design ourhigh-throughputsoft processor.

2.1 Behavioural Synthesis-based Compilers

The main challenge of behavioural synthesis algorithms is to identify parallelism in high-level

code and generate a hardware circuit to provide concurrent execution of operations. There are

many academic and commercial compilers that are based on synthesis to generate acustomized

circuit for a given task. Examples of such compilers includeImpulse Accelerated Technolo-

gies’ ImpulseC, Altera’s C2H [14], Trident [23], Mitrionics’ Mitrion-C [12], SRC Computer’s

SRC Carte, ASC [17] and Celoxica’s Handel-C [19]. Typically, these tools will compile C-like

code to circuit descriptions in HDL which can then synthesized by standard FPGA CAD tools

6



CHAPTER 2. RELATED WORK 7

for deployment on accelerator systems such as the Xtremedata XD1000.

A synthesis-based compiler will exploit data-dependencies in high-level code to build local,

point-to-point routing at the circuit level. Computationscan potentially be wired directly from

producer to consumer, bypassing a register store for intermediate computations; a step which

is required for general purpose processors. This synthesis-based technique of customized cir-

cuits can be especially practical for GPU-like computations, as programs are typically short

sequences of code. Where the computation is data-flow dominated, it is also possible to exploit

data-level parallelism (DLP) by pipelining independent data through the custom circuit.

2.1.1 Trident

Trident [23] is the hardware synthesis tool most related to our work as it is primarily used

for scientific algorithms requiring floating point types. Also, we are able to provide a more in

depth treatment as the compiler is academic and open source,and therefore we are able to learn

implementation details which are not available in commercial packages.

Trident’s programming model is based on a subset of GNU C. Figure 2.1 shows a sample

program that assumes 2 input matrices, namedA andB of dimensionsWIDTH andHEIGHT

have been loaded into off-chip memory arrays. The scalar variablesx andy defined asextern

in the sample code refer to the primary inputs of the FPGA accelerator circuit. When newx

andy values are written to this circuit the hardware acceleratorperforms a multiplication of the

components of the two matrices and adds the offset 1.0. The result is stored in a third matrix,C.

Declaring these matrix arrays asextern float indicates to the compiler that data is located

in off-chip SRAM.

Trident off-chip memory is assumed to be very low-latency (1-3 cycles) SRAM directly

connected to the FPGA. As such, the underlying scheduling algorithm of Trident depends on

this fact for performance. There is no means of pre-fetchingfor the purpose of hiding latency.

Long latency memory accesses will result in a low performance circuit. For deployment in a

system like the Xtremedata XD1000, DMA engines are instantiated on the FPGA such that
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extern float x, y;

extern float A[WIDTH][HEIGHT];

extern float B[WIDTH][HEIGHT];

extern float C[WIDTH][HEIGHT];

void multadd() {

float offset = 1.0f;

C[x][y] = A[x][y]*B[x][y] + offset;

}

Figure 2.1: An example program for element-wise matrix multiplication plus an offset, de-

scribed inTrident.

memory can first be transferred from system SDRAM to private FPGA SRAM. The Trident

computation executes and the SRAM buffer is read back to system memory.

Trident is not able topipelinecode such as that shown in the example. Instead, there will

be some fixed latency until the computation finishes for a givenx, y. Then, a new computation

may begin by writing new input values to the primary inputs. Essentially, the compiler does not

have built in knowledge that we wish to perform thismultadd computation repetitively, in

a data-parallel manner. While not implying data-parallel code makes the programming model

much more flexible, for code thatcould map well to a data-parallel model, Trident does not

make any efforts to take advantage of the afforded parallelism.

2.2 Soft Processors

Soft processors are microprocessors instantiated on a FPGAfabric. Two examples of indus-

trial soft processors are the Altera NIOS [2] and the Xilinx Microblaze [1]. As these proces-

sors are deployed on programmable logic, they come in various standard configurations and
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also provide customizable parameters for application-specific processing. The ISA of NIOS

soft processors is based on a MIPS instruction set architecture (ISA), while that of Microblaze

is a proprietary reduced instruction set computer (RISC) ISA. SPREE [24] is a development

tool for automatically generating custom soft processors from a given specification. These soft

processor architectures are fairly simple, single-threaded processors that do not exploit paral-

lelism other than pipelining. The following subsections describe more recent work extending

soft processors to better exploit parallelism. We also describe in detail work on soft processor

register file design as it is a central issue for this dissertation.

2.2.1 Vector Soft Processors

Yu et. al.[27] and Yiannacouraset. al.[25] have implemented soft vector processors where the

architecture is partitioned into independent vector lanes, each with a local vector register file.

This technique maps naturally to the dual port nature of FPGAon-chip RAMs and allows the

architecture to scale to a large number of vector lanes, where each lane is provided with its own

dual port memory. While the success of this architecture relies on the ability to vectorize code,

for largely data-parallel workloads, such as those studiedin our work, this is not a challenge.

Soft vector processors are interesting with respect to our work because we also rely on

the availability of data-parallelism to achieve performance improvements. However, while

vector processors scale to many independent lanes each witha small local register file, our

high throughput soft processors focus on access to a single register file. Hence our techniques

are independent and therefore make it possible to use both incombination.

2.2.2 Multi-threaded Soft Processors

Yiannacouraset. al. [16] use multi-threading in soft processor designs and haveshown that

it can improve area efficiency dramatically. While their work focuses on augmenting a RISC-

based processor architecture with multithreading capabilities, we focus on supporting a GPU
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stream processor ISA. As the GPU ISA is required to support floating point-basedmultiply-

addoperations, the pipeline depth is much longer. Therefore, we extend the technique here to

match the pipeline depth of our functional units. Although we require many more simultaneous

threads, the data-parallel nature of the GPU programming model provides an abundance of such

threads.

2.2.3 SPMD Soft Processors

The GPU programming model is only one instance in the generalclass of Single-Program

Multiple-Data (SPMD) programming models. There has been previous work in soft processor

systems supporting SPMD. James-Roxbyet. al. [10] implement a SPMD soft processor sys-

tem using a collection of Microblaze soft processors attached to a global shared bus. All soft

processors are connected to a unified instruction memory as each are executing instructions

from the same program. All soft processors are free to execute independently. When a proces-

sor finishes executing the program for one piece of data, it will request more work from a soft

processor designated to dispatch workloads.

While their work focuses on a multi-processor system, little attention is paid to the opti-

mization of a single core. This is primarily because the workis focused on SPMD using soft

processors as a rapid prototyping environment. While the GPU programming model is scalable

to many processors, we focus on the optimization of a single processor instance. The system-

level techniques used in [10] such as instruction memory sharing between processors could be

applied in a multi-processor design of our high-throughputsoft processors.

2.2.4 Register File Access in Soft Processors

As instruction-level parallelism increases in a soft processor design, more read and write ports

are required to sustain superscalar instruction issue and commit rates. In trying to support the

AMD r5xx GPU ISA, we were confronted with the same problem, asthis ISA requires 4 read



CHAPTER 2. RELATED WORK 11

and 3 write accesses from a single register file, each clock cycle, if we are to fully pipeline the

processor datapath.

Joneset. al. [11] implement a register file using logic elements as opposed to built-in

SRAMs. However, they show that using this technique resultsa register file with very high

area consumption, low clock frequency and poor scalabilityto a large number of registers.

Saghiret. al. [21] use multiple dual-port memories to implement a banked register file,

allowing the writeback of two instructions per cycle in cases where access conflicts do not

occur. In a sense, this is similar to the solution we support in our work. While they must rely

on the compiler to schedule register accesses within a program such that writes are conflict-free,

the fact that we execute multiple threads in lock-step allows us to build conflict-free accesses

to a banked register file in hardware. While they bank the register file across multiple on-chip

memories, we provide banked access both within a single register, through interleaving with a

wide memory port, in addition to accessing across multiple memory blocks.



Chapter 3

System Overview

In this section we give an overview of our system as well as GPUs, in particular their shader

processors. We also briefly describe the two software interfaces that we use to build our system:

(i) NVIDIA’s Cg language for high-level programming, and (ii) the AMD CTM SDK that

defines the application binary interface (ABI) that our softprocessor implements.

3.1 GPU Shader Processors

While GPUs are composed of many fixed-function and programmable units, the shader proces-

sors are the cores of interest for our work. For a graphics workload, shader processors perform

a certain computation on every vertex or pixel in an input stream, as described by a shader

program. Since the computation across vertices or pixels isnormally independent, shader pro-

cessors are architected to exploit this parallelism: they are heavily multithreaded and pipelined,

with an ISA that supports both vector parallelism as well as predication. Furthermore, there

are normally multiple shader processors to improve overallthroughput.

Figure 3.1 illustrates how a shader program can interact with memory: input buffers can

be randomly accessed while output is limited to a fixed location for each shader program in-

stance, as specified by an input register. Hence the execution of a shader program implies the

invocation of parallel instances across all elements of theoutput buffer. This separation and

12
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Shader

Program

(Xo,Yo)

Register 

File

Output Buffer

Xo

Yo

Input Buffers

Fetch(#,x,y)

DataConstant

Registers

Domain Size

Figure 3.1: The interaction of a shader program with input and output memories. Input buffers

can be randomly accessed while output is limited to a fixed location for each shader program

instance—hence the execution of a shader program implies the invocation of parallel instances

across all elements of the output buffer.

limitation for writing memory simplifies issues of data coherence and is more conducive to

high-bandwidth implementations.

3.2 The NVIDIA Cg Language

In our system we exploit NVIDIA’sCg [15], a high-level,C-based programming language that

targets GPUs. To give a taste of theCg language, Figure 3.3 shows a sample program written

in Cg for element-wise multiplication of two matrices, with the addition of a unit offset; for

comparison, ANSIC code is provided for the same routine in Figure 3.2. InCg, themultadd
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float A[WIDTH][HEIGHT]; // input buffer A

float B[WIDTH][HEIGHT]; // input buffer B

float C[WIDTH][HEIGHT]; // output buffer

void multadd(void){

for(int j=0;j<HEIGHT;j++)

for(int i=0;i<WIDTH;i++)

C[i][j] = A[i][j]*B[i][j] + 1.0f;

}

Figure 3.2: An example shader program for element-wise matrix multiplication plus an offset,

described inC.

function defines a computation which is implicitly executedacross each element in the output

domain, hence there are no explicitfor loops for iterating over the output buffer dimensions

as there are in theC version. The dimensions of the buffers are configured prior to execution

of the shader program and hence do not appear in theCg code either.

Looking at theCg code, there are three parameters passed to themultadd function. First,

2D floating-point coordinates (coord) directly give the position for output in the output buffer

and are also used to compute the positions of values in input buffers (i.e., the (X0,Y0) input pair

shown in Figure 3.1). The second and third parameters (A andB) define the input buffers, as-

sociated with a buffer number (TEXUNIT0 andTEXUNIT1) and a memory addressing mode,

uniform sampler2D, that in this case tells the compiler to compute addresses same wayC

computes memory addresses for 2D arrays.Tex2D() is an intrinsic function to read data from

an input buffer, and implements the addressing mode specified by its first parameter on the co-

ordinates specified by its second parameter. For this program the values manipulated including

the output value are all of typefloat4, a vector of four 32-bit floating-point values—hence
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struct data_out {

float4 sum : COLOR;

};

data_out

multadd(float2 coord : TEXCOORD0,

uniform sampler2D A: TEXUNIT0,

uniform sampler2D B: TEXUNIT1){

data_out r;

float4 offset = {1.0f, 1.0f, 1.0f, 1.0f};

r.sum = tex2D(A,coord)*tex2D(B,coord)+offset;

return r;

}

Figure 3.3: An example shader program for element-wise matrix multiplication plus an offset,

described inCg.
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the buffer sizes and addressing modes must account for this.

While Cg allows the programmer to abstract-away many of the details of the underlying

GPU ISA, it is evident that an ideal high-level language for general-purpose acceleration would

eliminate the remaining graphics-centric artifacts inCg.

3.3 AMD’s CTM SDK

The AMD CTM SDK is a programming specification and tool-set developed by AMD to

abstract the GPU’s shader processor core as a data-parallelaccelerator [8, 20], hiding many

graphics-specific aspects of the GPU. As illustrated in Figure 3.4, we use thecgc compiler

included in NVIDIA’sCg toolkit to compile and optimize shader programs written inCg. cgc

targets Microsoft pixel shader virtual assembly language (ps3), which we then translate via

CTM’s amucomp compiler into the AMD CTM application binary interface (ABI) based on

the r5xx ISA.

The resulting CTM shader program binary is then folded into ahost programthat runs on

the regular CPU. The host program interfaces with a low-level CTM driverthat replaces a stan-

dard graphics driver, providing acomputeinterface (as opposed to graphics-based interface)

for controlling the GPU. Through driver API calls, the host program running on the main CPU

configures several parameters prior to shader program execution, including the base address

and sizes of input and output buffers as well as constant register data (all illustrated in Fig-

ure 3.1). The host program also uses the CTM driver to load shader program binaries onto the

GPU for execution.

Figure 3.5 shows the resulting CTM code from the example shader program in Figure 3.3.

From left to right, the format of an instruction isopcode, destination, andsources. There are

several kinds of registers in the CTM ISA: (i) general-purpose vector registers (r0-r127); (ii)

’sampler’ registers (s0-s15), used to specify the base address and width of an input buffer (i.e.,

TEXUNIT0 - TEXUNIT15 in Cg code); (iii) constant registers (c0-c255), used to specify
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Cg Shader 
Program 

CTM Binary

cgc

C/C++ Host 
Program

Written by Developer:

CTM Driver

GPU 
Processor

System Memory

amucomp

ps3 asm

ctm asm

Figure 3.4: The software flow in our system. A software developer writes a high-levelCg

shader program and a host program. TheCg shader program is translated into a CTM binary

via thecgc andamucomp compilers and then folded into the host program.
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multadd:

TEX r1 r0.rg s1

// r1 = r0.r + (r0.g*s1.width) + s1.base

TEX r0 r0.rg s0

// r0 = r0.r + (r0.g*s0.width) + s0.base

MAD o0 r1 r0 c0

// o0 = r1 * r0 + c0 (3 left-most elems)

mad o0 r1 r0 c0

// o0 = r1 * r0 + c0 (1 right-most elem)

END

Figure 3.5: An example shader program for element-wise matrix multiplication plus an offset,

described in CTM assembly code.

constant values; and (iv) output registers (o0-o3) that areused as the destination for the final

output values which are streamed to the output buffer (shownin Figure 3.1) when the shader

program instance completes. All registers are each a vectorof four 32-bit elements where the

individual elements of the vector are namedr, g, b anda. Both base registers and constant

registers are configured during set-up by the CTM driver, butare otherwise read-only.

CTM defines both TEX and ALU instructions. ATEX instruction defines a memory load

from an input buffer, and essentially implements theTex2D() call in Cg. The input coor-

dinates (coord in Cg) are made available in registerr0 at the start of the shader program

instance. The address is computed from bothr0 and a sampler register (ie., s0). For example,

the address for the sources given asr0.rg s1 is computed asr0.r + r0.g*s1.width

+ s1.base.

All ALU instructions are actually a VLIW operation-pair that can be issued in parallel:

a three-element vector operation specified in upper-case, followed (on a new line) by a scalar

operation specified in lower case. In the example the ALU instruction is a pair ofmultiply-adds
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that specify three source operands and one destination operand for both the vector (MAD) and

scalar (mad) operations. ALU instructions can access any ofr0-r127 and c0-c255 as any source

operand.

CTM allows many other options that we do not describe here, such as the ability to permute

(swizzle) the elements of the vectors after loading from input buffers or before performing

ALU operations, and also for selectivelymaskingthe elements of destination registers. A

complete description of the r5xx ISA and the associated ABI format is available in the CTM

specification [20].

In summary, this software flow allows us to support existing shader programs written in

Cg, and also allows us to avoid inventing our own low-level ISA.



Chapter 4

A GPU-Inspired Architecture

In this section we describe the architecture of our high-throughput soft-processor accelerator,

as inspired by GPU architecture. First we describe an overview of the architecture, and explain

in detail the components that are relatively straightforward to map to an FPGA-based design.

We then describe three features of the architecture that overcome challenges of an FPGA-based

design.

4.1 Overview

Figure 4.1 illustrates the high-level architecture of the proposed GPU-like accelerator. Our

architecture is designed specifically to interface with a HyperTransport (HT) master and slave,

although interfacing with other interconnects is possible. The following describes three impor-

tant components of the accelerator that are relatively straightforward to map to an FPGA-based

design.

Coordinate Generation As described in Section 3 and by the CTM specification, a shader

program instance is normally parameterized entirely by a set of input coordinates which range

from the top-left to the bottom-right of the compute domain.The coordinate generator is

configured with the definition of the compute domain and generates streams of coordinates

20
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Figure 4.1: Overview of a GPU-like accelerator, connected to a Hypertransport (HT) master

and slave.

which are written into the register file (registerr0) for shader program instances to read—

replacing outer-looping control flow in most program kernels.

TEX and ALU Datapaths TEX instructions, which are essentially loads from input buffers in

memory to registers, are executed by the TEX datapath. Once computed based on the specified

general-purpose and sampler registers, the load address ispackaged as an HT read request

packet and sent to the HT core—unless there are already 32 in-flight previous requests in

which case the current request is queued in a FIFO buffer. When a request is satisfied, any

permutation operations (as described in Section 3.3) are applied to the returned data and the

result is written back to the register file. The CTM ISA also includes a method for specifying

that an instruction depends on the result of a previous memory request (via a special bit). Each

TEX instruction holds a semaphore that is cleared once its result is written back to the register
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file—which signals any awaiting instruction to continue. ALU instructions are executed by the

ALU datapath, and their results can be written to either the register file or the output register.

Predication and Control Flow Conditional constructs such asif andelsestatements inCg

are supported in CTM instructions via predication. There isone predicate bit per vector

lane that can be set using the boolean result from one of many comparison operations (eg.,

>, <=, ==, ! =). Subsequent ALU instructions can then impose a write mask conditional on

the values of these bits. More complex control flow constructs such asfor loops and subrou-

tines are supported via a control flow instructions (FLW) that provide control of hardware-level

call/return stacks, and branch and loop-depth hierarchies. As the FLW datapath does not inter-

act with the register file it is not shown in Figure 4.1. We defer our explaination of control flow

instructions to Section 4.3.1.

Output Similar to input buffers, the base addresses and widths of the output buffers are pre-

configured by the CTM driver in advance (in the registers o0-o3). When a shader program

instance completes, the contents of the output registers are written to the appropriate output

buffers in memory: the contents of the output registers are packaged into an HT write request

packet, using an address derived from one of the output buffer base addresses and the original

input coordinates (from the coordinate generator). Write requests areposted, meaning that

there is no response packet and hence no limit on the maximum number of outstanding writes.

4.2 Tolerating Limited Memory Ports

In Figure 4.1 we observe that there are a large number of portsfeeding into and out of the

central register file (which holds r0-r127). One of the biggest challenges in high-performance

soft processor design is the design of the register file: it must tolerate the port limitations

of FPGA block memories that are normally limited to only two ports. To fully-pipeline the

ALU and TEX datapaths, the central register file for our GPU-inspired accelerator requires

four read and three write ports. If we attempted a design thatread all of the ALU and TEX
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Clock Inst Register ALU

Cycle Phase File Read Ready

0 ALU 0 ALU:A(T0,T1,T2,T3) -

1 ALU 1 ALU:B(T0,T1,T2,T3) -

2 ALU 2 ALU:C(T0,T1,T2,T3) -

3 - - T0

4 ALU 0 ALU:A(T4,T5,T6,T7) T1

5 ALU 1 ALU:B(T4,T5,T6,T7) T2

6 ALU 2 ALU:C(T4,T5,T6,T7) T3

7 - - T4

8 ALU 0 ALU:A(T8,T9,T10,T11) T5

9 ALU 1 ALU:B(T8,T9,T10,T11) T6

10 ALU 2 ALU:C(T8,T9,T10,T11) T7

11 ... ... ...

Table 4.1: The schedule of operand reads from the central register file for batches of four

threads (T0-T3,T4-T7, etc.) decoding only ALU instructions. An ALU instruction has up to

three vector operands (A,B,C) which are read across threadsin a batch over three cycles. In

the steady state this schedule can sustain the issue of one ALU instruction from every cycle.

source operands (four of them) of a single thread in a single cycle, we would be required to

have replicated copies of the register file across multiple block memories to have enough ports.

However, with this solution you cannot have more than one write port, since each replicant

would have to use one port for reading operands and the other port for broadcast-writing the

latest destination register value (i.e., being kept up-to-date with one write every cycle).

We solve this problem by exploiting the fact that all threadsare executing different instances

of the same shader program: all threads will execute the exact same sequence of instructions,

since even control flow is equalized across threads via predication. This symmetry across
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threads allows us to group threads into batches and execute the instructions of batched threads

in lock-step. This lock-step execution in turn allows us to schedule the access of registers to

alleviate the ports problem.

Rather than attempt to read all operands of a thread each cycle, we instead read a single

operand across many threads per cycle from a given block memory and do this across separate

block memories for each component of the vector register. Table 4.1 illustrates how we sched-

ule register file accesses in this way for batches of four threads each that are decoding only

ALU instructions (for simplicity). Since there are three operands to read for ALU instructions

this adds a three-cycle decode latency for such instructions. However, in the steady-state we

can sustain our goal of the execution of one ALU instruction per cycle, hence this latency is

tolerable. This schedule also leaves room for another read of an operand across threads in a

batch. Ideally we would be able to issue the register file readfor a TEX instruction during

this slot, which would allow us to fully-utilize the centralregister file, ALU datapath and TEX

datapath: every fourth cycle we would read operands for a batch of four threads for a TEX

instruction, then be able to issue a TEX instruction for eachof those threads over the next four

cycles. We give the nametransposeto this technique of scheduling register access.

This transposed register file design also eases the implementation of write ports. In fact,

the schedule in Table 4.1 uses only one read port per block memory, leaving the other port

free for writes. From the table we see that ALU instructions will generate at most one register

write across threads in a batch every four cycles. There are two other events which result in a

write to the central register file: (i) a TEX instruction completes, meaning that the result has

returned from memory and must be written-back to the appropriate destination register; (ii) a

shader program instance completes for a batch of threads anda new batch is configured, so that

the input coordinates must be set for that new batch (register r0). These two types of register

write are performed immediately if the write port is free, otherwise they are queued until a

subsequent cycle.
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Figure 4.2: The floating point units in a datapath that supports MADD, DP3, and DP4 ALU

instructions. The pipeline latency of each unit is shown on the left (for Altera floating point IP

cores), and the total latency of the datapath is 53 cycles without accounting for extra pipeline

stages for multiplexing between units.

4.3 Avoiding Pipeline Bubbles

In the previous section we demonstrated that a transposed register file design can allow the

hardware to provide the register reads and writes necessaryto sustain the execution of one

ALU instruction every cycle across threads. However, thereare three reasons why issuing in-

structions to sustain such full utilization of the datapaths is a further challenge. The first reason

is as follows. In the discussion of Table 4.1 we described that the ideal sequence of instruc-

tions for fully utilizing the ALU and TEX datapaths is an instruction stream which alternates
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between ALU and TEX instructions. This is very unlikely to happen naturally in programs, and

the result of other non-ideal sequences of instructions will be undesirable bubbles in the two

datapaths. The second reason, as shown in Figure 4.2, is thatthe datapath for implementing

floating-point operations such as multiply-add (MAD) and dot product (DOT3, DOT4) instruc-

tions is very long and deeply pipelined (more than 53 clock cycles): since ALU instructions

within a thread will often have register dependences between them, this can prevent an ALU

instruction from issuing until a previous ALU instruction completes. This potentially long stall

will also result in unwanted bubbles in the ALU datapath. Thethird reason is that TEX instruc-

tions can incur significant latency since they load from mainmemory; since an ALU instruction

often depends on a previous TEX instruction for a source operand, the ALU instruction would

have to stall until the TEX instruction completes.

We address all three of these problems by storing the contexts of multiple batches of threads

in hardware, and dynamically switching between batches every cycle. We capitalize on the

fact that all threads can be computed independently, switching between batches to (i) choose a

batch with an appropriate next instruction to match the available issue phase (TEX or ALU),

and (ii) to hide both pipeline and memory latency. This allows us to potentially fully-utilize

both the ALU and TEX datapaths as illustrated in Table 4.2, provided that ALU and TEX

instructions across all batch contexts are ready to issue when required. Specifically, to sustain

this execution pattern we generally require that the ratio of ALU to TEX instructions be 1.0 or

greater: for a given shader program if TEX instructions outnumber ALU instructions then in

the steady-state this alone could result in pipeline bubbles. Storing the contexts (i.e., register

file state) of multiple batches is relatively straightforward: it requires only growing the depth

of the register file to accommodate the additional registers—although this may require multiple

block memories to accomplish. In the next section we describe the implementation of batch

issue logic in greater detail.
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Clock Inst Register ALU TEX

Cycle Phase File Read Ready Ready

0 ALU 0 ALU:A(T0,T1,T2,T3) - -

1 ALU 1 ALU:B(T0,T1,T2,T3) - -

2 ALU 2 ALU:C(T0,T1,T2,T3) - -

3 TEX TEX:A(T0,T1,T2,T3) T0 -

4 ALU 0 ALU:A(T4,T5,T6,T7) T1 T0

5 ALU 1 ALU:B(T4,T5,T6,T7) T2 T1

6 ALU 2 ALU:C(T4,T5,T6,T7) T3 T2

7 TEX TEX:A(T4,T5,T6,T7) T4 T3

8 ALU 0 ALU:A(T8,T9,T10,T11) T5 T4

9 ALU 1 ALU:B(T8,T9,T10,T11) T6 T5

10 ALU 2 ALU:C(T8,T9,T10,T11) T7 T6

11 ... ... ... ...

Table 4.2: The schedule of operand reads from the central register file for batches of four

threads (T0-T3,T4-T7, etc.) decoding both ALU and TEX instructions. TEX instructions

require only one source operand, hence we can read source operands for four threads in a

single cycle.
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4.3.1 Control Flow

The thread batching and scheduling solutions above presentproblems for the control flow in-

struction, FLW. The first problem of finding time to schedule the execution of such instructions

is easily solved. Column 2 in Table 4.2 shows 2 cycles each period where the ALU is fetching

operandsB andC. As the batch scheduler and instruction issue logic is idle during this time,

the hardware can be used to schedule an FLW instruction. Since FLW requires neither a read

or write to the register file, no structural hazards arise.

The second problem is how to resolve diverging control flow. Diverging control flow is

when threads within a batch decide to take alternate branch paths. It turns out, the r5xx ISA

has encoded support within the FLW instruction to resolve this specific problem. This is be-

cause GPUs use the same technique to resolve diverging control path when executing multiple

threads using SIMD hardware. The way these instructions arehandled is through the hardware

management of thread states which arenot visible to the programmer. These thread states are

manipulated by the control flow instructions, depending on the previous thread states (the state

beforean FLW instruction is executed), the evaluation of the branch condition, and a resolution

function when threads disagree. Much of this hardware levelmanagement is considered on a

case-by-case basis. For example, as threads execute over anelseinstruction the active state

of each thread is flipped. This requires all threads to execute serially through all branch paths

and mask register writes when they are inactive. Funget. al. [7] have explored optimizations

of this technique in more detail. For more details of how the r5xx ISA programs and handles

control flow, see the CTM specification [20].
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Implementation

This section describes our work to implement our GPU-inspired accelerator on the XtremeData

platform. After an overview of the XtremeData XD1000 and howwe map the CTM system to

it, we describe the low-level implementation of the two key components of our accelerator: the

central register file and the batch issue logic.

5.1 The XtremeData XD1000

As illustrated in Figure 5.1, the XtremeData XD1000 is an accelerator module that contains

an Altera Stratix II EPS180 FPGA, and that plugs into a standard CPU socket on a multi-

socket AMD Opteron motherboard. IP cores are available for the FPGA which allow access

to system memory via Hypertransport (HT) that provides a single physical link per direction,

each of which is a 16-bit-wide 400MHz DDR interface and can transfer 1.6GB/sec. The host

CPU treats the XD1000 as an end-point that is configured by a software driver to respond

to a memory-mapped address range using the HT slave interface, similar to other regular pe-

ripherals. The FPGA application can also initiate DMA read and write transactions to system

memory by constructing and sending HT request packets, providing efficient access to memory

without involving the CPU.

In our work we extend the XtremeData system to conform to the CTM interface by adding a

29
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Figure 5.1: An XtremeData system with a XD1000 module.

driver layer on top of the XD1000 driver, and by memory-mapping the hardware configuration

state registers and instruction memory of our accelerator to the HT slave interface. Instruc-

tion memory resides completely on-chip and stores up to 512 instructions—the limit currently

defined by CTM. Each instruction is defined by the ABI to be 192 bits, hence the instruction

store requires three M4K RAM blocks. The RAM blocks have two ports: one is configured

as a write port that is connected directly to the configuration block so that the CTM driver can

write instructions into it; the other is configured as a read port to allow the accelerator to fetch

instructions. The CTM driver initializes the accelerator with the addresses of the start and end

instruction of the shader program and initiates execution by writing to a predetermined address.

5.2 Central Register File

While our transposed design allows us to architect a high-performance register file using only

two ports, the implementation has the additional challenges of (i) supporting the vast memory

capacity required, and (ii) performing the actual transposition. Each batch is composed of
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Figure 5.2: Mapping our register file architecture to four Stratix II’s 64KB M-RAM blocks.

The read circuitry shows an example where we are reading operands across threads in a batch

for a vector/scalar ALU instruction pair (VLIW):r3 as an operand for the vector instruction

andr5 as an operand for the scalar instruction. While not shown, register writes are imple-

mented similarly.

four threads that each require up to 128 registers, where each register is actually a vector of

four 32-bit elements. We therefore require the central register file to support 8KB of on-chip

memory per batch. For example, 32 batches would require 256KB of on-chip memory, which

means that we must use four of the 64KB M-RAM blocks availablein the Stratix II chip in the

XD1000 module, as illustrated in Figure 5.2. Figure 5.3 shows the circuit we use to transpose

the operands read across threads in a batch for ALU instructions so that the three operands for

a single instruction are available in the same cycle: a series of registers buffer the operands

until they can be properly transposed.
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5.3 Batch Issue Logic

As described previously in Section 4.3, to ensure that the ALU datapath is fully utilized our

soft processor schedules instructions to issue across batches. For a given cycle, we ideally want

to find either an ALU or TEX instruction to issue. Figure 5.4 shows the circuit that performs

this batch scheduling, for an example where we want to find an ALU instruction to issue. We

can trivially compare the desired next instruction type (ALU in this case) with the actual next

instruction type for each batch as recorded in the batch state register, since this information

about the next instruction is encoded in each machine instruction (as defined by the CTM

ABI). As shown in the figure, we take the set of boolean signalsthat indicate which batches

have the desired next instruction ready to issue and rotate them, then feed the rotated result

into a priority encoder that gives the batch number to issue.The rotation is performed such

that the previously-selected batch is in the lowest-priority position. In the example we rotate

such that the signal for batch 2 is in the lowest-priority right-most position, and the priority

encoder hence chooses batch 0 as the first batch with a ready ALU instruction. For a GPU-like

programming model where all threads are executing the same sequence of instructions, this is

sufficient to ensure forward progress. The batch issue logicis pipelined, hence during a second

cycle the batch number is used to index the context memory to read the program counter value

for that batch, and during a third cycle the program counter value is used to index the instruction

memory for the appropriate instruction.
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Chapter 6

Measurement Methodology

In this section we describe the system simulation and benchmark applications that we use to

measure the performance of our GPU-inspired soft processorimplementation.

6.1 System Simulation

We have developed a complete simulation framework in SystemC [3] to measure the ALU

utilization and overall performance of workloads on our GPU-like soft processor.

Clock Frequency Since we do not have a full RTL implementation of our soft processor, we

instead assume a system clock frequency of 100MHz. We choosethis frequency to match the

100MHz HT IP core, which in turn is designed to match a 4x division of the physical link clock

frequency (that is 400MHz). We feel that this clock frequency is achievable since (i) other soft

processor designs easily do so for Stratix II FPGAs such as the NIOS II /f which executes up to

220MHz, and (ii) the GPU programming model and abundance of threads allows us to heavily

pipeline all components in our design to avoid any long-latency stages.

Cycle-Accurate Simulation Our simulator is cycle-accurate at the block interfaces shown

in Figure 4.1. For each block we estimate a latency based on the operations and data-types

present in a behavioralC code implementation. In most cases, we sketch the design of acircuit
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Action Stage Latency (ns)

Request FPGA HT IP core 70

host HT controller 32

SDRAM access and data fetch 51

Response host builds response packet 12

host HT controller 30

FPGA HT IP core 110

Total Latency 305

Table 6.1: A breakdown of how each stage of an HT memory request contributes to overall

access latency.

implementing the required C-code functionality and compute the latency of the critical path.

We assume that the batch issue logic shown previously in Figure 5.4 is fully pipelined, allowing

us to potentially sustain the instruction issue schedule shown previously in Table 4.2.

6.1.1 HyperTransport

Our simulation infrastructure faithfully models the bandwidth and latency of the HT links

between the host CPU and the FPGA on the XD1000 platform.

Modeling of bandwidth requires cycle accurate communication between the output request

FIFOs and the HT IP core. Each HT read packet can request up to 64 bytes of contiguous

physical memory from system memory. As our threads are batched, each execution of a TEX

instruction corresponds to 4 individual HT read packets sent out in sequence. Each HT read

request is an 8 byte control packet identifying the end-chain device (FPGA) and the request

address; in this case, from system memory. Data is returned in HT response packets consisting

of a 4 byte control packet identifying the transaction ID, error status, and payload size, followed

by a data packet containing the actual data. While it is highly likely that threads within a batch

will request copies of some overlapping data due toprogram locality, we do not assume there
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is hardware available to merge these requests to reduce communication overhead. Hence, each

threadgenerates one HT request which typically returns a vector register of data (16 bytes).

When a batch completes, write request packets are sent to theHT IP core. A write request

consists of an 8 byte request control packet identifying thesource device, length of the data to

write and the target address. This is followed by a data packet of up to 64 contiguous bytes.

A thread can write 16 bytes to each of 4 possible output buffers. Writing to different buffers

results in separate HT request packets as the output buffersare not interleaved in memory such

that writing data is contiguous between them. However, the lock-step completion of threads

within a batch allows us to merge write data from 4 threads to asingle output buffer, reducing

overhead. The coordinate generator shown in Figure 4.1 allocates the coordinates into batches

such that each batch represents 4 contiguous coordinates. Therefore, it is possible to compute

the system memory address for the first coordinate in the batch, and write output data for all 4

threads in a minimal number of individual packets.

To model latency, we impose a delay in simulation time between when the HT request is

sent out and the response is available to the accelerator. This delay is constant and computed as

a sum of individual latencies listed in Table 6.1. We assume that our soft processor is running

at 100MHz as described above, and that the memory specification is the standard DDR-333

(166 MHz Bus) SDRAM that comes with the XD1000 system. We assume a constant SDRAM

access latency of 51ns; while a constant latency is of courseunrealistic,since it contributes only

17% of total latency we are confident that modeling the small fluctuations of this latency would

not significantly impact our results. The latencies of the HTIP core (both input and output

paths) were obtained from Slogsnatet. al.[22], and the latencies for the the host HT controller,

DDR controller, and DDR access were obtained from Holden [9]. Our HyperTransport model

is somewhat idealized since we do not account for possible HTerrors nor contention by the

host CPU for memory.

The HT protocol specification states that a device may only have up to 32 outstanding

request packets. We model this by checking a counter and holding additional requests back in
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a queue if the outstanding count reaches 32.

6.2 Benchmarks

Since our system is compatible with the interface specified by CTM we can execute existing

CTM applications, includingCg applications, by simply re-linking the CTM driver to our sim-

ulation infrastructure. We evaluate our system using the following three applications that have

a variety of instruction mixes and behavior. Note that in ourwork so far we have not observed

any applications with the potentially problematic instruction mix of more TEX instructions

than ALU instructions.

Matmatmult MATMATMULT is included with the CTM SDK as CTM assembly code, and

performs dense matrix-matrix multiplication based on the work of Fatahalianet. al. [5]. We

selected this application because of its heavy use of TEX instructions to access row and column

vectors of an input matrix: the ratio of ALU to TEX instructions for MATMATMULT is 2.25.

Sgemm SGEMM computesCnew = α(A · B) + βCold and represents a core routine of

the BLAS math library, and was also included with the CTM SDK as CTM assembly code.

SGEMM also makes heavy use of TEX instructions to access two input matrices. The ratio of

ALU to TEX instructions for SGEMM is 2.56.

Photon PHOTON is a kernel from a Monte Carlo radiative heat transfer simulation, included

with the open-source Trident [23] FPGA compiler. We ported this application by hand toCg

such that each instance of the resulting shader program performs the computation for a single

particle, and input buffers store previous particle positions and other physical quantities. We

selected this benchmark to be representative of applications with higher ratios of ALU to TEX

instructions: for PHOTON it is exactly 4.00.
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Utilization and Performance

Our foremost goal is to fully-utilize the ALU datapath. In this section we measure the ALU

datapath utilization for several configurations of our architecture, and also measure the impact

on performance of increasing the number of hardware batch contexts. Recall that an increasing

number of batches provides a greater opportunity for fully-utilizing the pipeline and avoiding

bubbles by scheduling instructions to issue across a largernumber of threads.

Figure 7.1 shows ALU utilization assuming the 8-bit HT interface provided with the XD1000

system, for a varying number of hardware batch contexts—from one to 64 batches. Since each

batch contains four threads, this means that we support fromfour to 256 threads. We limit

the number of batch contexts to 64 because this design includes a central register file that con-

sumes 512KB of on-chip memory, and thus eight of the nine M-RAMs available in a Stratix

II FPGA (64KB each). In the figure we plot ALU utilization (utilized) as the fraction of all

clock cycles when an ALU instruction was issued. We also break down the ALU idle cycles

into the reasons why no ALU instruction from any batch could be issued (i.e., averaged across

all batches contexts). In particular, we may be unable to issue an ALU instruction for a given

batch for one of the following three reasons.

• Semwait: The next instruction is an ALU instruction, but it is waiting for a memory

semaphore because it depends on an already in-flight TEX instruction (memory load).
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(c) SGEMM

Figure 7.1: ALU datapath utilization for the 8-bit HT interface provided with the XD1000

system.
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• Inside ALU: The next instruction is a ready-to-issue ALU instruction,but there is already

a previous ALU instruction executing for that batch: since there is no hazard detection

logic, a batch must conservatively wait until a previous ALUinstruction completes be-

fore issuing a new one, to ensure that any register dependences are satisfied.

• NotALU: The next instruction is not an ALU instruction.

From the figure we observe that when only one hardware batch context is supported that

the ALU datapath is severely underutilized (less than 10% utilization), and that the majority of

the idle cycles are due to prior ALU instructions in the ALU pipeline (executing). Utilization

steadily improves for all three benchmarks as we increase the number of hardware batch con-

texts up to 16 batches, at which point MATMATMULT and SGEMM achieve utilization of 70%

and 75% respectively. However, neither MATMATMULT nor SGEMM benefit from increasing

further to 32 batches: in both cases waiting for memory is thebottleneck (Semwait), indicating

that both applications have consumed available memory bandwidth. Similarly, increasing even

further to 64 batches yields no improvement, with the memorybottleneck becoming more pro-

nounced. In contrast, for PHOTON the increase from 16 to 32 batches results in near perfect

utilization of the ALU datapath; correspondingly, the increase from 32 to 64 batches cannot

provide further benefit. Intuitively, PHOTON is able to better-utilize the ALU datapath because

it has a larger ratio of ALU to TEX instructions (four to one).

While the HT IP core provided for the XD1000 is limited to an 8-bit HT interface, the

actual physical link connecting the FPGA and CPU is 16 bits. Since memory appears to be

a bottleneck limiting ALU utilization, we investigate the impact of a 16-bit HT link such as

the one described in [22] as shown in Figure 7.2. For this improved system we observe that

the memory bottleneck is sufficiently reduced to allow full utilization of the ALU datapath for

all three benchmarks when 32 hardware batch contexts are supported. In turn, this implies

that support for 64 or more hardware batch contexts remains unnecessary. The fact that 32

batches seems sufficient makes intuitive sense since 32 batches comprises 128 threads, while
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Figure 7.2: ALU datapath utilization for a 16-bit HT interface.
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the ALU datapath pipeline is roughly only 53 cycles deep and thus requires only that many

ALU instructions to be fully utilized—more deeply pipelined ALU functional units would

likely continue to benefit from increased contexts.

While maximizing ALU datapath utilization is our overall goal, it is also important to

understand the impact of increasing the number of hardware batch contexts on performance.

Figure 7.3 shows speedup relative to a single hardware batchcontext for both 8-bit and 16-bit

HT interfaces. Interestingly, speedup is perfectly linearfor between two and eight contexts

for all benchmarks and both HT designs, but for 16 and more contexts speedup is sub-linear.

For the 8-bit HT interface, performance does not improve beyond 16 contexts, while for the

16-bit HT interface 32 contexts provides an improvement but64 contexts does not. Looking at

the 16-bit HT interface for 32 contexts, we see that for each benchmark speedup is inversely-

related to the ratio of ALU to TEX instructions: applications with a smaller fraction of TEX

instructions benefit less from the latency-tolerance provided by a larger number of contexts. In

detail, PHOTON benefits the least and has a ratio of 4.00, followed by SGEMM that has a ratio

of 2.56, and MATMATMULT benefits the most and has a ratio of 2.25.

7.1 Reducing the Register File

While we have demonstrated that 32 hardware batch contexts is sufficient to achieve near per-

fect ALU datapath utilization, as shown in Section 5.2 this is quite costly, requiring four M-

RAMs on the Altera Stratix II. While this may not be a problem when instantiating a single

soft processor, when trying to scale the number of processors for higher throughput, M-RAMs

would be the limiting resource.

This base register file design supports the full 128 general purpose vector registers per

thread defined by CTM, most of which will not be used for many applications. In our archi-

tecture it is straightforward to reduce the number of registers supported by a power of two

to reduce the total memory requirements for the central register file. For example, PHOTON,
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(a) 8-bit HT interface.
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(b) 16-bit HT interface.

Figure 7.3: Speedup vs a single hardware batch context for (a) 8-bit and (b) 16-bit HT inter-

faces.
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MATMATMULT , and SGEMM each use only 4, 15, and 21 general-purpose registers, hencethe

proposed customization would reduce the size of the centralregister file by 32x, 8x, and 4x

respectively; for PHOTON this would instead allow us to build the central register fileusing

only 16 of the much smaller M4K memory blocks.

7.2 Summary

These results indicate that even for a deeply pipelined ALU of 53 clock cycles we are able to

fully utilize this datapath by interleaving the execution of instructions from different batches.

This is made possible by the abundance of independent threads provided by the data-parallel

GPU programming model.
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Conclusions

We have presented a GPU-inspired soft processor that allowsFPGA-based acceleration sys-

tems to be programmed using high-level languages. Similar to a GPU, our design exploits

multithreading, vector operations, and predication to enable the full utilization of a deeply-

pipelined datapath. The GPU programming model provides an abundance of threads that all

execute the same instructions, allowing us to group threadsinto batches and execute the threads

within a batch in lock-step. Batched threads allow us to (i) tolerate the limited ports available

in FPGA block memories by transposing the operand reads and writes of instructions within a

batch, and (ii) to avoid pipeline bubbles by issuing instructions across batches. Through faithful

simulation of a system that is realizable on an XtremeData XD1000 FPGA-based acceleration

platform we demonstrate that our GPU-inspired architecture is indeed capable of fully utilizing

a 53-stage ALU datapath when 32 batch contexts are supportedin hardware.

8.1 Contributions

This thesis (i) proposes a new GPU-inspired architecture and programming model for FPGA-

based acceleration based on soft-processors that exploit multithreading, vector instructions,

predication, and multiple processors; (ii) describes mechanisms for managing threads and

register files that maximize data-level and instruction-level parallelism while overcoming the
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challenge of port limitations of FPGA block memories; (iii)demonstrates that these features,

when implemented in concert, result in a soft processor design that can fully-utilize a deeply-

pipelined datapath; (iv) contributes an expandable software simulator for executing the CTM

programming specification, with performance estimates. This simulator will be used in future

research and for reference in a hardware implementation.

8.2 Future Work

This work motivates several avenues of further research. While our current design supports

floating-point based ALUs to remain compatible with the CTM interface, FPGAs would likely

excel at other forms of computation such as fixed-point or non-standard-bit-width computation.

It would also be beneficial to exploit much wider vector operations rather than the 4-element

vectors defined by CTM. Beyond reducing the register file to match the needs of the applica-

tion, there are many other avenues for customizing the architecture. Finally, the long term goal

of this research is to discover new high-level programming models that allow users to fully-

exploit the potential of FPGA-based acceleration platforms; we believe that GPU-inspired pro-

gramming models and architectures are a step in the right direction.
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Cg Code

A.1 Photon
struct data_in {

float3 color : COLOR0;

float2 coord : TEXCOORD0;

};

struct data_out {

float2 data : COLOR;

};

data_out main(data_in IN, uniform sampler2D delrhs : TEXUNIT0,

uniform sampler2D pos: TEXUNIT1,

uniform sampler2D sqle : TEXUNIT2,

uniform sampler2D ls : TEXUNIT3)

{

data_out OUT;

float ssq = 0.0;

OUT.data.x = 0.0;

// fetch the l, le and li value

float3 tls = tex2D(ls, IN.coord).xyz;

if(tls.x != tls.y) { // l != le

float4 sqlet = tex2D(sqle, IN.coord).xyzw;

float4 delrhst = tex2D(delrhs, IN.coord).xyzw;

float det = dot(sqlet.yz, delrhst.yx); // det = ex*delyl - ey*delxl;

float absdet = abs(det);

if(absdet <= 1.0000000133514319600181e-10)

det = 1.0000000133514319600181e-10;

float dtinv = 1.0/det;

float xi = dtinv * (delrhst.x*delrhst.z - sqlet.y*delrhst.w);

float yi = dtinv * (delrhst.y*delrhst.z - sqlet.z*delrhst.w);

float4 post = tex2D(pos, IN.coord).xyzw; // fetch position information

48



APPENDIX A. CG CODE 49

ssq = (xi - post.x)*(xi - post.x) + (xi - post.z)*(xi - post.z) +

(yi - post.y)*(yi - post.y) + (yi - post.w)*(yi - post.w);

if(ssq <= sqlet.x) {

OUT.data.x = tls.x;

}

}

OUT.data.y = ssq;

return OUT;

}

A.2 Sgemm

sampler2D mAX : register(s0);

sampler2D mAY : register(s2);

sampler2D mAZ : register(s4);

sampler2D mAW : register(s6);

sampler2D mBX : register(s1);

sampler2D mBY : register(s3);

sampler2D mBZ : register(s5);

sampler2D mBW : register(s7);

float4 step : register(c0);

int N : register(i0);

struct block_t

{

float4 X, Y, Z, W;

};

void multiply_block( inout block_t C, in float3 pos )

{

float4 AX = tex2D( mAX, pos.yz ), BX = tex2D( mBX, pos.xy );

float4 AY = tex2D( mAY, pos.yz ), BY = tex2D( mBY, pos.xy );

float4 AZ = tex2D( mAZ, pos.yz ), BZ = tex2D( mBZ, pos.xy );

float4 AW = tex2D( mAW, pos.yz ), BW = tex2D( mBW, pos.xy );

C.X.xyzw += AX.xxzz*BX.yzyz + AX.wwyy*BX.wxwx + AY.xxzz*BZ.yzyz +

AY.wwyy*BZ.wxwx;

C.Y.xyzw += AX.xxzz*BY.yzyz + AX.wwyy*BY.wxwx + AY.xxzz*BW.yzyz +

AY.wwyy*BW.wxwx;

C.Z.xyzw += AZ.xxzz*BX.yzyz + AZ.wwyy*BX.wxwx + AW.xxzz*BZ.yzyz +

AW.wwyy*BZ.wxwx;

C.W.xyzw += AZ.xxzz*BY.yzyz + AZ.wwyy*BY.wxwx + AW.xxzz*BW.yzyz +

AW.wwyy*BW.wxwx;

}

block_t main(float2 vpos : VPOS) : COLOR

{

float3 pos = vpos.xyy*step.ywy;
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block_t C = {0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0};

for (int i = 0; i < N.x; i++)

{

multiply_block( C, pos ); pos.y += step.y;

multiply_block( C, pos ); pos.y += step.y;

multiply_block( C, pos ); pos.y += step.y;

multiply_block( C, pos ); pos.y += step.y;

}

return C;

}
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CTM Code

B.1 Photon

I000: /u/i TEX r1 r0.rgrr s0

I001: /u/i TEX r2.ooox r0.rgrr s2

I002: /u/i TEX r3.ooxx r0.rgrr s3

I003: /p/u/i/v TEX r0 r0.rgrr s1

I004: /p MAD (r1 r2 r3) r4.oox src0.gr0 src1.gb0 src0.000

mad (c0 c0 c0) r2 src2.r src2.1 -src2.g

I005: MAD (r4 r2 c0) r2.xox src0.rar src1.0g0 src0.000

mad (r1 c0 c0) r3 src0.r src0.1 src0.g

I006: MAD (r2 c0 c0) r2.xxo src1.rra src0.00b src0.000

cmp (r3 r1 c0) r1 src0.1 src0.0 -|src0|

I007: MAD (r1 r2 c0) r1.oxx src0.r00 src0.b00 -src1.g00

cmp (r2 r1 c0) r1 src0.0 src1 -|src0|

I008: MAD (r1 r2 c0) r2.xox src0.0g0 src0.0b0 -src1.0b0

cmp (r1 r3 c0) r3 src1 src0.0 -src0

I009: MAD r2.xxo r3.00r c0.111 -c0.00g

rcp r1 r3

I010: MAD (r1 c0 c0) r1.oxo src0.ara src0.r0r src0.000

mad (r1 c0 c0) r0.x src0.0 src0.0 src0.0

I011: MAD (r2 c0 c0) r2.xox src0.rar src0.0g0 src0.000

mad (r1 c0 c0) r0.x src0.0 src0.0 src0.0

I012: D2A (sub r0 r1 r2) r0.oxx srcp.rb0 srcp.rb0 src0.000

mad (bias r0 c0 c0) r0 -src0 src2.1 src2.g

I013: MAD (sub r0 r2 c0) r0.xxx src0.000 src0.000 src0.000

mad (bias c0 c0 c0) r3 srcp.g srcp.g src0.r

I014: MAD (c0 c0 c0) r0.xxx src0.000 src0.000 src0.000

mad (r0 r3 c0) r3 src0 src0 src1

I015: CMP (r2 c0 c0) r0.oxx src0.000 src0.arr -|src0.b00|

mad (r3 c0 c0) r0.x src0.0 src0.0 src0.0

I016: MAD r0.xxx o0.xox r0.0r0 c0.111 c0.000

mad r0.x o0.x c0.0 c0.0 c0.0

I017: MAD (sub r0 r2 c0) r0.xxx src0.000 src0.000 src0.000

cmp (bias c0 c0 c0) r3 src0.1 src0.0 srcp.r

51



APPENDIX B. CTM CODE 52

I018: MAD (c0 c0 c0) r0.xxx src0.000 src0.000 src0.000

cmp (r2 r3 c0) r3 src0.0 src1 -|src0|

I019: CMP (r3 c0 c0) r0.xxx o0.oxx src0.000 src0.r00 -src0.arr

mad (r3 c0 c0) r0.x o0.x src0.0 src0.0 src0.0

END

HALT

B.2 Matrix Multiplication

MAD r1 r0.0g0 1.0 0.0

mad r1 0.0 1.0 0.0

MAD r2 r0.r00 1.0 0.0

mad r2 0.0 1.0 0.0

MAD r7 0.0 0.0 0.0

mad r7 0.0 0.0 0.0

MAD r8 0.0 0.0 0.0

mad r8 0.0 0.0 0.0

MAD r9 0.0 0.0 0.0

mad r9 0.0 0.0 0.0

MAD r10 0.0 0.0 0.0

mad r10 0.0 0.0 0.0

LOP done i0 jumpNoGo

start:

/w /u TEX r3 r1 s0

/u TEX r5 r2 s1

/u TEX r11 r1 s2

/p /v /u TEX r6 r2 s3

/p MAD r7 r3.rrb r5.rgr r7

mad r7 r3.b r5.g r7

/u TEX r4 r1 s4

/u TEX r13 r2 s5

/u TEX r12 r1 s6

/p /v /u TEX r14 r2 s7

MAD r7 r3.gga r5.bab r7

mad r7 r3.a r5.a r7

MAD r8 r3.rrb r6.rgr r8

mad r8 r3.b r6.g r8

MAD r8 r3.gga r6.bab r8

mad r8 r3.a r6.a r8

MAD r9 r4.rrb r5.rgr r9

mad r9 r4.b r5.g r9

MAD r9 r4.gga r5.bab r9

mad r9 r4.a r5.a r9

MAD r10 r4.rrb r6.rgr r10
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mad r10 r4.b r6.g r10

MAD r10 r4.gga r6.bab r10

mad r10 r4.a r6.a r10

/p MAD r7 r11.rrb r13.rgr r7

mad r7 r11.b r13.g r7

MAD r7 r11.gga r13.bab r7

mad r7 r11.a r13.a r7

MAD r8 r11.rrb r14.rgr r8

mad r8 r11.b r14.g r8

MAD r8 r11.gga r14.bab r8

mad r8 r11.a r14.a r8

MAD r9 r12.rrb r13.rgr r9

mad r9 r12.b r13.g r9

MAD r9 r12.gga r13.bab r9

mad r9 r12.a r13.a r9

MAD r10 r12.rrb r14.rgr r10

mad r10 r12.b r14.g r10

MAD r10 r12.gga r14.bab r10

mad r10 r12.a r14.a r10

MAD r1.oxx 1.0 1.0 r1.r00

frc r0.x 0.0

MAD r2.xox 1.0 1.0 r2.0g0

frc r0.x 0.0

ELP start i0 jumpGo jumpIfAny

done:

MAD r0.xxx o0 r7 1.0 0.0

mad r0.x o0 r7 1.0 0.0

MAD r0.xxx o1 r8 1.0 0.0

mad r0.x o1 r8 1.0 0.0

MAD r0.xxx o2 r9 1.0 0.0

mad r0.x o2 r9 1.0 0.0

/p MAD r0.xxx o3 r10 1.0 0.0

mad r0.x o3 r10 1.0 0.0

HALT

B.3 Sgemm

main:

I000: MAD (c0 r0 c0) r17 src1.rgg src0.gag src0.000

mad (c0 c0 c0) r18 src1.r src0.g src0.0

I001: MAD r18.xxo r17.00b c0.111 c0.000

mad r14 c0.0 c0.1 c0.0

I002: MAD (r18 r0 c0) r19.xoo src0.0ba src0.111 src0.000

mad (r18 c0 c0) r15 src1.g src1 src0.0

I003: MAD r14 c0.000 c0.111 c0.000
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mad r0.x c0.0 c0.0 c0.0

I004: MAD r13 r14 c0.111 c0.000

mad r13 r14 c0.1 c0.0

I005: MAD r20 r14 c0.111 c0.000

mad r16 r14 c0.1 c0.0

I006: MAD r16 r14 c0.111 c0.000

mad r12 r14 c0.1 c0.0

I007: REP I118 b0 i0 jumpNoGo

I008: MAD r0.xxx c0.000 c0.000 c0.000

mad r17 r15 c0.1 c0.0

I009: /w/u/i TEX r0 r17.abaa s0

I010: /u/i TEX r1 r17.rarr s1

I011: /u/i TEX r2 r17.abaa s2

I012: /u/i TEX r3 r17.rarr s3

I013: /u/i TEX r4 r17.abaa s4

I014: /u/i TEX r5 r17.rarr s5

I015: /u/i TEX r6 r17.abaa s6

I016: /p/u/i/v TEX r7 r17.rarr s7

I017: /p MAD (r0 r1 c0) r8 src0.aag src1.ara src0.000

mad (r0 r1 c0) r8 src0.g src1.r src0.0

I018: MAD (r0 r1 r8) r8 src0.rrb src1.gbg src2

mad (r8 c0 c0) r8 src0.b src1.b src0

I019: MAD (r2 r5 r8) r8 src0.rrb src1.gbg src2

mad (r8 c0 c0) r8 src0.b src1.b src0

I020: MAD (r2 r5 r8) r8 src0.aag src1.ara src2

mad (r2 r5 r8) r8 src0.g src1.r src2

I021: MAD (r0 r3 c0) r9 src0.aag src1.ara src0.000

mad (r0 r3 c0) r0 src0.g src1.r src0.0

I022: MAD (r0 r3 r9) r0 src0.rrb src1.gbg src2

mad (r0 c0 c0) r0 src0.b src1.b src0

I023: MAD (r2 r7 r0) r0 src0.rrb src1.gbg src2

mad (r0 c0 c0) r0 src0.b src1.b src0

I024: MAD (r2 r7 r0) r0 src0.aag src1.ara src2

mad (r2 r7 r0) r0 src0.g src1.r src2

I025: MAD (r1 r4 c0) r2 src0.ara src1.aag src0.000

mad (r1 r4 c0) r1 src0.r src1.g src0.0

I026: MAD (r1 r4 r2) r1 src0.gbg src1.rrb src2

mad (r1 c0 c0) r1 src0.b src1.b src0

I027: MAD (r5 r6 r1) r1 src0.gbg src1.rrb src2

mad (r1 c0 c0) r1 src0.b src1.b src0

I028: MAD (r5 r6 r1) r1 src0.ara src1.aag src2

mad (r5 r6 r1) r1 src0.r src1.g src2

I029: MAD (r3 r4 c0) r2 src0.ara src1.aag src0.000

mad (r3 r4 c0) r2 src0.r src1.g src0.0

I030: MAD (r3 r4 r2) r2 src0.gbg src1.rrb src2

mad (r2 c0 c0) r2 src0.b src1.b src0

I031: MAD (r6 r7 r2) r2 src0.rrb src1.gbg src2

mad (r2 c0 c0) r2 src0.b src1.b src0

I032: MAD (r6 r7 r2) r2 src0.aag src1.ara src2

mad (r6 r7 r2) r2 src0.g src1.r src2

I033: MAD (c0 c0 c0) r18.xox src0.rar src0.111 src0.0g0

mad (r15 r12 r8) r8 src1 src2.1 src2

I034: /w/u/i TEX r3 r18.gbgg s0

I035: /u/i TEX r4 r18.agaa s1

I036: /u/i TEX r5 r18.gbgg s2
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I037: /u/i TEX r6 r18.agaa s3

I038: /u/i TEX r7 r18.gbgg s4

I039: /u/i TEX r9 r18.agaa s5

I040: /u/i TEX r10 r18.gbgg s6

I041: /p/u/i/v TEX r11 r18.agaa s7

I042: /p MAD (r3 r4 c0) r12 src0.aag src1.ara src0.000

mad (r3 r4 c0) r12 src0.g src1.r src0.0

I043: MAD (r3 r4 r12) r12 src0.rrb src1.gbg src2

mad (r12 c0 c0) r12 src0.b src1.b src0

I044: MAD (r5 r9 r12) r12 src0.rrb src1.gbg src2

mad (r12 c0 c0) r12 src0.b src1.b src0

I045: MAD (r5 r9 r12) r12 src0.aag src1.ara src2

mad (r5 r9 r12) r12 src0.g src1.r src2

I046: MAD (add r8 r16 r12) r8 srcp src2.111 src2

mad (bias r8 r12 c0) r8 src0 src1.1 src1

I047: MAD (r3 r6 c0) r12 src0.aag src1.ara src0.000

mad (r3 r6 c0) r3 src0.g src1.r src0.0

I048: MAD (r3 r6 r12) r3 src0.rrb src1.gbg src2

mad (r3 c0 c0) r3 src0.b src1.b src0

I049: MAD (r5 r11 r3) r3 src0.rrb src1.gbg src2

mad (r3 c0 c0) r3 src0.b src1.b src0

I050: MAD (r5 r11 r3) r3 src0.aag src1.ara src2

mad (r5 r11 r3) r3 src0.g src1.r src2

I051: MAD (add r0 r20 r3) r0 srcp src2.111 src2

mad (add r0 r16 r3) r0 srcp src2.1 src2

I052: MAD (r4 r7 c0) r3 src0.ara src1.aag src0.000

mad (r4 r7 c0) r3 src0.r src1.g src0.0

I053: MAD (r4 r7 r3) r3 src0.gbg src1.rrb src2

mad (r3 c0 c0) r3 src0.b src1.b src0

I054: MAD (r9 r10 r3) r3 src0.gbg src1.rrb src2

mad (r3 c0 c0) r3 src0.b src1.b src0

I055: MAD (r9 r10 r3) r3 src0.ara src1.aag src2

mad (r9 r10 r3) r3 src0.r src1.g src2

I056: MAD (add r1 r13 r3) r1 srcp src2.111 src2

mad (add r1 r13 r3) r1 srcp src2.1 src2

I057: MAD (r6 r7 c0) r3 src0.ara src1.aag src0.000

mad (r6 r7 c0) r3 src0.r src1.g src0.0

I058: MAD (r6 r7 r3) r3 src0.gbg src1.rrb src2

mad (r3 c0 c0) r3 src0.b src1.b src0

I059: MAD (r10 r11 r3) r3 src0.rrb src1.gbg src2

mad (r3 c0 c0) r3 src0.b src1.b src0

I060: MAD (r10 r11 r3) r3 src0.aag src1.ara src2

mad (r10 r11 r3) r3 src0.g src1.r src2

I061: MAD (add r2 r14 r3) r2 srcp src2.111 src2

mad (add r2 r14 r3) r2 srcp src2.1 src2

I062: MAD (r18 c0 c0) r18.oox src0.g10 src0.1ar src1.gg0

mad (r15 c0 c0) r0.x src0.0 src0.0 src0.0

I063: /w/u/i TEX r3 r18.rbrr s0

I064: /u/i TEX r4 r18.araa s1

I065: /u/i TEX r5 r18.rbrr s2

I066: /u/i TEX r6 r18.araa s3

I067: /u/i TEX r7 r18.rbrr s4

I068: /u/i TEX r9 r18.araa s5

I069: /u/i TEX r10 r18.rbrr s6

I070: /p/u/i/v TEX r11 r18.araa s7
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I071: /p MAD (r3 r4 c0) r12 src0.aag src1.ara src0.000

mad (r3 r4 c0) r12 src0.g src1.r src0.0

I072: MAD (r3 r4 r12) r12 src0.rrb src1.gbg src2

mad (r12 c0 c0) r12 src0.b src1.b src0

I073: MAD (r5 r9 r12) r12 src0.rrb src1.gbg src2

mad (r12 c0 c0) r12 src0.b src1.b src0

I074: MAD (r5 r9 r12) r12 src0.aag src1.ara src2

mad (r5 r9 r12) r12 src0.g src1.r src2

I075: MAD (r3 r6 c0) r13 src0.aag src1.ara src0.000

mad (r3 r6 c0) r3 src0.g src1.r src0.0

I076: MAD (r3 r6 r13) r3 src0.rrb src1.gbg src2

mad (r3 c0 c0) r3 src0.b src1.b src0

I077: MAD (r5 r11 r3) r3 src0.rrb src1.gbg src2

mad (r3 c0 c0) r3 src0.b src1.b src0

I078: MAD (r5 r11 r3) r3 src0.aag src1.ara src2

mad (r5 r11 r3) r3 src0.g src1.r src2

I079: MAD (r4 r7 c0) r5 src0.ara src1.aag src0.000

mad (r4 r7 c0) r4 src0.r src1.g src0.0

I080: MAD (r4 r7 r5) r4 src0.gbg src1.rrb src2

mad (r4 c0 c0) r4 src0.b src1.b src0

I081: MAD (r9 r10 r4) r4 src0.gbg src1.rrb src2

mad (r4 c0 c0) r4 src0.b src1.b src0

I082: MAD (r9 r10 r4) r4 src0.ara src1.aag src2

mad (r9 r10 r4) r4 src0.r src1.g src2

I083: MAD (r6 r7 c0) r5 src0.ara src1.aag src0.000

mad (r6 r7 c0) r5 src0.r src1.g src0.0

I084: MAD (r6 r7 r5) r5 src0.gbg src1.rrb src2

mad (r5 c0 c0) r5 src0.b src1.b src0

I085: MAD (r10 r11 r5) r5 src0.rrb src1.gbg src2

mad (r5 c0 c0) r5 src0.b src1.b src0

I086: MAD (r10 r11 r5) r5 src0.aag src1.ara src2

mad (r10 r11 r5) r5 src0.g src1.r src2

I087: MAD (r18 c0 c0) r19.oxx src0.r00 src1.111 src1.g00

mad (r8 r12 c0) r8 src0 src1.1 src1

I088: /w/u/i TEX r6 r19.rgrr s0

I089: /u/i TEX r7 r19.brbb s1

I090: /u/i TEX r9 r19.rgrr s2

I091: /u/i TEX r10 r19.brbb s3

I092: /u/i TEX r11 r19.rgrr s4

I093: /u/i TEX r13 r19.brbb s5

I094: /u/i TEX r14 r19.rgrr s6

I095: /p/u/i/v TEX r15 r19.brbb s7

I096: /p MAD (r6 r7 c0) r16 src0.aag src1.ara src0.000

mad (r6 r7 c0) r12 src0.g src1.r src0.0

I097: MAD (r6 r7 r16) r16 src0.rrb src1.gbg src2

mad (r12 c0 c0) r12 src0.b src1.b src0

I098: MAD (r9 r13 r16) r16 src0.rrb src1.gbg src2

mad (r12 c0 c0) r12 src0.b src1.b src0

I099: MAD (r9 r13 r16) r16 src0.aag src1.ara src2

mad (r9 r13 r12) r12 src0.g src1.r src2

I100: MAD (add r12 r8 r16) r16 srcp src2.111 src2

mad (bias r8 r12 c0) r12 src0 src1.1 src1

I101: MAD (r6 r10 c0) r8 src0.aag src1.ara src0.000

mad (r6 r10 c0) r6 src0.g src1.r src0.0

I102: MAD (r6 r10 r8) r6 src0.rrb src1.gbg src2
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mad (r6 c0 c0) r6 src0.b src1.b src0

I103: MAD (r9 r15 r6) r6 src0.rrb src1.gbg src2

mad (r6 c0 c0) r6 src0.b src1.b src0

I104: MAD (r9 r15 r6) r6 src0.aag src1.ara src2

mad (r9 r15 r6) r6 src0.g src1.r src2

I105: MAD (add r3 r0 r6) r20 srcp src2.111 src2

mad (add r3 r0 r6) r16 srcp src2.1 src2

I106: MAD (r7 r11 c0) r0 src0.ara src1.aag src0.000

mad (r7 r11 c0) r0 src0.r src1.g src0.0

I107: MAD (r7 r11 r0) r0 src0.gbg src1.rrb src2

mad (r0 c0 c0) r0 src0.b src1.b src0

I108: MAD (r13 r14 r0) r0 src0.gbg src1.rrb src2

mad (r0 c0 c0) r0 src0.b src1.b src0

I109: MAD (r13 r14 r0) r0 src0.ara src1.aag src2

mad (r13 r14 r0) r0 src0.r src1.g src2

I110: MAD (add r4 r1 r0) r13 srcp src2.111 src2

mad (add r4 r1 r0) r13 srcp src2.1 src2

I111: MAD (r10 r11 c0) r0 src0.ara src1.aag src0.000

mad (r10 r11 c0) r0 src0.r src1.g src0.0

I112: MAD (r10 r11 r0) r0 src0.gbg src1.rrb src2

mad (r0 c0 c0) r0 src0.b src1.b src0

I113: MAD (r14 r15 r0) r0 src0.rrb src1.gbg src2

mad (r0 c0 c0) r0 src0.b src1.b src0

I114: MAD (r14 r15 r0) r0 src0.aag src1.ara src2

mad (r14 r15 r0) r0 src0.g src1.r src2

I115: MAD (add r5 r2 r0) r14 srcp src2.111 src2

mad (add r5 r2 r0) r14 srcp src2.1 src2

I116: MAD (r19 c0 c0) r0.xxx src0.000 src0.000 src0.000

mad (c0 c0 c0) r15 src0.r src1.1 src1.g

I117: ERP I008 b0 i0 jumpGo jumpIfAny

I118: /p MAD r0.xxx o3 r14 c0.111 c0.000

mad r0.x o3 r14 c0.1 c0.0

I119: MAD r0.xxx o2 r13 c0.111 c0.000

mad r0.x o2 r13 c0.1 c0.0

I120: MAD r0.xxx o1 r20 c0.111 c0.000

mad r0.x o1 r16 c0.1 c0.0

I121: MAD r0.xxx o0 r16 c0.111 c0.000

mad r0.x o0 r12 c0.1 c0.0

END

HALT
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