NetTM: Faster and Easier Synchronization for Soft
Multicores via Transactional Memory

Martin Labrecque and J. Gregory Steffan
University of Toronto, Canada
{martinl,steffan}@eecg.utoronto.ca

ABSTRACT

We propose NetTM: support for hardware transactional
memory (HTM) in an FPGA-based soft multithreaded mul-
ticore that matches the strengths of FPGAs. We evalu-
ate our system using the NetFPGA [6] platform and four
network packet processing applications that are threaded
and share memory. Relative to NetThreads [5], an existing
two-processor four-way-multithreaded system with conven-
tional lock-based synchronization, we find that adding HTM
support (i) maintains a reasonable operating frequency of
125MHz with an area overhead of 20%, (ii) can transac-
tionally execute lock-based critical sections with no software
modification, and (iii) achieves 6%, 55% and 57% increases
in packet throughput for three of four packet processing
applications studied, due to reduced false synchronization.

Categories and Subject Descriptors

C.1.4 [Processor architectures]: Parallel Architectures;
C.3 [Special-purpose and application-based systems|:
Real-time and embedded systems

General Terms

Design, Performance

1. INTRODUCTION

FPGA-based systems are increasingly used to implement
larger and more complex systems-on-chip composed of mul-
tiple processor and acceleration cores that must synchronize
and share data. While systems based on shared memory
can ease communication between cores, they require correct
synchronization (i.e. lock and unlock operations). Conse-
quently, threads executing in parallel wanting to enter the
same critical section (i.e. a portion of code that accesses
shared data delimited by synchronization) at the same time
will be serialized, thus losing the parallel advantage of such a
system. Therefore designers face two important challenges:
(i) writing parallel programs with manually inserted lock-
based synchronization is error-prone and difficult to debug,
and (ii) multiple processors need to share memory, commu-
nicate, and synchronize without serializing the execution.

Transactional memory (TM, see references in [4]) offers
a potential solution to both challenges as it (i) offers an

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguees prior specific
permission and/or a fee.

FPGA'11, February 27—March 1, 2011, Monterey, California, USA.
Copyright 2011 ACM 978-1-4503-0554-9/11/02 ...$10.00.

synch. unif mutexes| signatures |
[[
SC00S O0O0S
4-thread W seee | 4-thread [|g
processor processor
[\ instr.
3 data
(9] .
@ input mem.
“ output mem.
.| input data Lind output
packet | buffer cache/('°9) | buffer | packet
input output

1

load/store queue
to DDR2 SDRAM

Figure 1: The NetTM architecture, which supports
TM by extending NetThreads with signatures and
an undo-log.

easier programming model for synchronization, and (ii) can
reduce the contention on critical sections. With transac-
tional execution, a programmer is free to employ coarser
critical sections, spend less effort minimizing them, and not
worry about deadlocks since a properly implemented TM
system does not suffer from them. A TM system optimisti-
cally allows multiple threads inside a critical section—hence
TM can improve performance when the parallel critical
sections access independent data locations. To guarantee
correctness, the underlying system dynamically monitors the
memory accesses of each transaction (the read set and write
set) and detects conflicts between them. While TM can be
implemented purely or partly in software (STM), an FPGA-
based system can be extended to support TM in hardware
(HTM) with much lower performance overhead than an
STM. Our goal is to use HT'M to improve synchronization for
FPGA-based multicores, by which we mean interconnected
processor or accelerator cores that synchronize and share
memory. There are many known methods for implementing
HTM for an ASIC multicore processor, although they do
not necessarily map well to FPGA-based processors. In this
paper we introduce NetTM, which adds support for HT'M to
the NetThreads [5] system, an FPGA-based multithreaded
multicore for high-throughput packet processing.

2. BASEARCHITECTURE: NETTHREADS

In this work our starting point architecture for comparison
is the NetThreads [5] multithreaded multicore architecture
that supports only lock-based critical sections, shown in Fig-
ure 1. Each NetThreads processor is a single-issue, in-order,
5-stage pipelined processor. In a single core, instructions
from four hardware threads are issued in a round-robin fash-

ion to hide pipeline hazards and cache miss latency [5]. The
SDRAM controller services a merged load/store queue of up
to 64 entries in-order; since this queue and the data cache
are shared by all processors, they serve as a single point of
serialization and memory consistency, hence threads need
only block on pending loads but not stores. Each processor
has a 16KB instruction cache. Packets are received into the
10-slot input buffer memory, and written out via the output
buffer. There is also a shared data cache capable of 32-bit
line-sized data transfers with the DDR2 SDRAM controller.
All three of these memories are 16KB. To implement lock-
based synchronization, NetThreads provides a synchroniza-
tion unit containing 16 hardware mutexes (sufficient for our
applications). In the NetThreads ISA, each lock/unlock
operation specifies a unique identifier, indicating one of these
16 mutexes.

Benchmark Applications For 2009, both Altera and
Xilinx reported that communications comprised 44% of their
net revenues. NetThreads targets network packet process-
ing applications, in particular those that require deeper
packet inspection. We focus on stateful applications—i.e.,
applications in which shared, persistent data structures are
modified during the processing of most packets. To take full
advantage of the software programmability of our proces-
sors, our focus is on the control-flow intensive applications
described in detail in earlier work [5]. Note that each of these
is a full application, with significant numbers of loads and
stores, designed for the NetFPGA platform and integrated
with a host.

3. PROGRAMMING NETTM

Specifying Transactions TM semantics imply that any
transaction will appear to have executed atomically with
respect to any other transaction. To denote the start and
end of a transactional critical section, NetTM wuses the
same instruction API as the lock-based synchronization for
NetThreads—i.e., lock(ID) can mean “start transaction”
and unlock (ID) can mean “end transaction”. Hence existing
programs need not be modified, since NetTM can use exist-
ing synchronization in the code and simply interpret critical
sections as transactional. We next describe how the lock
identifier, ID, is interpreted by NetTM.

Locks vs Transactions NetTM supports both lock-based
and TM-based synchronization, since a code region’s ac-
cess patterns can favor one approach over the other. For
example, lock-based critical sections are necessary for 1/0
operations since they cannot be undone in the event of an
aborted transaction: specifically, for processor initialization,
to protect the sequence of memory-mapped commands lead-
ing to sending a packet, and to protect the allocation of
output memory (Figure 1). We use the software identifier as-
sociated with lock/unlock operations to distinguish whether
a given critical section should be executed via a transaction
or via traditional lock-based synchronization: this mapping
of the identifiers is provided by the designer as a parameter
to the hardware synchronization unit (Figure 1). When
using locks, a programmer would typically need to worry
about which identifier encloses accesses to which shared
variables. NetTM simplifies the programmer’s task when
using transactions: NetTM enforces the atomicity of all
transactions regardless of the lock identifier value. Therefore

only one identifier can be designated to be of the transaction
type, and doing so frees the remaining identifiers/mutexes
to be used as traditional locks. However, to support legacy
software, a designer is also free to designate multiple identi-
fiers to be of the transaction type.

4. IMPLEMENTING NETTM

Version Management Version management refers to
the method of segregating transactional modifications from
other transactions and regular memory. For a simple HTM,
the two main options for version management are lazy [2]
versus eager [9]. In an eager approach, writes modify
main memory directly and are not buffered—therefore any
conflicts must be detected before a write is performed. To
support rollback for aborts, a backup copy of each modified
memory location must be saved in an wundo-log. Hence
when a transaction aborts, the undo-log is flushed to regular
memory, and when a transaction commits, the undo-log is
discarded. A major benefit of an eager approach is that
reads proceed unhindered and can directly access main mem-
ory, and hence an undo-log is much simpler than a write-
buffer since the undo-log need only be read when flushing
to regular memory on abort. Because eager schemes modify
regular memory directly: (i) they cannot support multiple
transactions writing to the same location (this results in a
conflict), (ii) conflict detection must be performed on every
memory access, (iii) aborts are slow because the undo-log
must be flushed to regular memory, and (iv) commits are
fast because the undo-log is simply discarded.

After serious consideration of the lazy and eager ap-
proaches, we concluded that eager version management was
the best match to FPGA-based systems such as NetTM for
several reasons. First, while requiring a similar minimum
amount of storage, a write buffer is necessarily significantly
more complex than an undo-log since it must support fast
reads via indexing and a cache-like organization. Our
preliminary efforts found that it was extremely difficult to
create a write-buffer with single-cycle read and write access.
To avoid replacement from a cache-organized write-buffer
(which in turn must result in transaction stall or abort), it
must be large or associative or both, and these are both
challenging for FPGAs. Second, an eager approach allows
spilling transactional modifications from the shared data
cache to the next level of memory (in this case off-chip),
and our benchmarks exhibit large write sets. Third, via
simulation, we observed that disallowing multiple writers
to the same memory location(s) (a limitation of an eager
approach) resulted in only a 1% increase in aborts for our
applications in the worst case. Fourth, we found that trans-
actions commit in the common case for our applications, and
an eager approach is fastest for commit.

Conflict Detection A key consequence of our decision to
implement eager version management is that we must be
able to detect conflicts with every memory access; hence
to avoid undue added sources of stalling in the system, we
must be able to do so in a single cycle. This requirement
led us to consider implementing conflict detection via signa-
tures, which are bit-vectors that track the memory locations
accessed by a transaction via hash indexing, with each trans-
action owning two signatures to track its read and write sets.
Signatures can represent an unbounded set of addresses,

() N Undo-Log
o "RdWrVersion
2 bit bit bits Addr Data
<
2
©
c
2
2 ¥
) a P
Hash function Q' .) Update
= X signature|
%jj} / undo-log
; lict?
Memory |
address | Validate

' access

\ ‘ Cache Looku#%—»‘ Hit/Miss | Perform

processing| load/stor
. (Data -
Cache
Time: Cycle 0 Cycle 1 Cycle 2

Figure 2: Integration of conflict detection hardware
with the processor pipeline for a memory access.

they decouple conflict detection from version management,
and provide an opportunity to capitalize on the bit-level
parallelism of FPGAs. Previous work [4] explored the design
space of signature implementations for an FPGA-based two-
processor system (i.e., for two total threads), and proposed
a method for creating application-specific hash functions
to reduce signature size without impacting their accuracy.
We extended this prior scheme to support a multithreaded
multicore for eight total threads.

Signature Table In contrast with prior work [4], in
NetTM we store signatures in BRAMs. As shown in
Figure 2, the hash function indexes a row of the BRAM,
and we map the corresponding read and write bits for
every transaction/thread-context on the same memory row.
Therefore with one BRAM access, we can read all of the
read and write signature bits for a given address for all
transactions in parallel. Note in Figure 2 that memory
instructions undergo an extra pipeline stage (cycle 1) to allot
for the hashing and conflict detection. A challenge is that we
must clear the signature bits for a given transaction when
it commits or aborts, and it would be too costly to visit
all of the rows of the BRAM to do so. Instead we add a
version number per transaction (incremented on commit or
rollback), that we can compare to a register holding the true
version number of the current transaction for that thread
context. Comparing version numbers produces a Valid sig-
nal (Figure 2) that is used to ignore the result of comparing
signature bits when appropriate. We clear signature bits
lazily: for every memory reference, a row of the signature
table is accessed, and we clear the corresponding signature
bits for any transaction with mismatching version numbers.
This lazy-clear works well in practice, although it is possible
that the version number may completely wrap-around before
there is an intervening memory reference to cause a clear,
resulting in a false conflict (which hurts performance but
not correctness). We are hence motivated to support version
numbers that are as large as possible.

Our target device has 36-bit-wide BRAMs, and we de-
termined experimentally that a signature table composed of

Table 1: NetFPGA Implementation of NetTM.

[Aspect [Description
Compilation Modified gcc 4.0.2 for 32-bit MIPS-T ISA
Platform NetFPGA 2.1 [6] with 4 x 1GigE links
FPGA Virtex II Pro 50 speed grade 7ns
Synthesis Xilinx ISE 10.1.03, high effort for speed

Off-chip memory | 64 Mbytes 200MHz DDR2 SDRAM

Processor clock 125MHz, same as Ethernet MACs

Packet stimulus Packet traces sent by modified Tcpreplay
3.4.0 via a Broadcom NetXtreme II GigE
NIC to a NetFPGA port. A different

NetFPGA port is used for output.

at most two block RAMs could be integrated in the NetTM
CPU pipeline while preserving the 125MHz target frequency.
We could combine the BRAMs horizontally to allow larger
version numbers, or vertically to allow more signature bits;
we determined experimentally that the vertical option pro-
duced the fewest false conflicts. Hence in NetTM, each
BRAM row contains a read bit, a write bit, and two version
bits (four bits total) for each of eight transactions/thread-
contexts, for a total of 32 bits (slightly under-utilizing the
available 36 bit width). For our applications, we implement
signatures of maximum length ranging from 618 to 904 bits
(limited by the speed of the hash function).

Undo-Log The undo-log is implemented as a single phys-
ical structure logically divided equally for each thread con-
text. On a transaction commit, a per-thread undo-log is
cleared in one cycle by resetting a write-pointer. On a
transaction abort, the undo-log requests exclusive access to
the shared data cache, and flushes its contents to the cache
in reverse order. This flush is performed atomically with
respect to any other memory access, although processors
can continue to execute non-memory-reference instructions
during an undo-log flush. We buffer data in the undo-log at a
word granularity because that matches our conflict detection
resolution. In NetTM, the undo-log must be provisioned to
be large enough to accommodate the longest transactions.
We save undo-log capacity via a filtering mechanism that
ignores the uninitialized portion of the stack.

5. EVALUATING NETTM

In this section, we report the maximum sustainable packet
rate for a given application with the configuration in Table 1
as the packet rate with 90% confidence of not dropping any
packet over a five-second run—thus our results are conser-
vative given that network appliances are typically allowed
to drop a small fraction of packets.

Resource Utilization In total, with two four-threaded
processors, NetTM consumes 32 more BRAMs than Net-
Threads, so its BRAM utilization is 71% (161/232) com-
pared to 57% (129/232) for NetThreads. The additional
BRAMs are used as follows: 2 for the signature bit vectors, 4
for the log filters (to save last and checkpoint stack pointers)
and 26 for the undo-log (1024 words and addresses for 8
threads). NetThreads consumes 18980 LUTs (out of 47232,
i.e. 40% of the total LUT capacity) when optimized with
high-effort for speed; NetTM design variations range from
3816 to 4097 additional LUTs, an overhead of roughly 21%
over NetThreads.

NetTM Throughput NetTM improves packet through-
put by 57%, 6% and 55% for Classifier, NAT, and UDHCP re-

O other

B awaiting_packet
B awaiting_restart
O aborted

M locked

W useful

Percentage of cycles

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

\Lock TM j\Lock TM j\Lock TM j\Lock TM)

Classifier Intruder2 UDHCP

Figure 3: Breakdown (from simulation) of cycles
spent: on pipeline hazards, and data and instruction
misses (other); de-scheduled or busy-waiting for a
packet (awaiting_packet); waiting to re-start a trans-
action (awaiting_restart); on instructions canceled due
to transaction aborts (aborted); de-scheduled waiting
for a lock (locked); or executing useful instructions

(useful).

spectively, by exploiting the optimistic parallelism available
in critical sections. The TM speedup is the result of reduced
time spent awaiting locks, but moderated by the number
of conflicts between transactions and the time to recover
from them. Classifier has occasional long transactions
that do not always conflict, providing an opportunity for
reclaiming the corresponding large wait times incurred with
locks. Similarly, UDHCP has a significant fraction of read-only
transactions that do not conflict. NAT has a less pronounced
speedup because of shorter transactions and higher abort
rates. For Intruder2, despite having a high average commit
rate, TM results in an 8% lower throughput due to bursty
periods of repeated transaction aborts, leading to a reduced
parallelism and packet rate.

Processor utilization To provide a detailed view of
processor activity, we profile the execution of our appli-
cations using our cycle-accurate simulator. While it is
unable to faithfully model the timing of DRAM refreshes
and packet arrivals, our simulator gives predicted speedups
of 1.6 for Classifier, 1.1 for NAT, 1.6 for UDHCP and 1.0
for Intruder2—i.e., a maximum error of 8% and a mean
error of 4%. Figure 3 gives the breakdown of how time (in
cycles) is spent for each application for both NetThreads
and NetTM. NAT and Classifier experience a significant
fraction of cycles waiting for locks in NetThreads, e.g. 22%
for NAT. In our 4-way multithreaded cores, this is indicative
of high lock contention because the thread scheduler could
hide locked cycles, instruction hazards (included in the
other category) and wait times for packets and transaction
restarts, if there was any other thread context to schedule
on those cycles. Compared to Classifier, NAT has a smaller
speedup due to a considerable fraction of aborted work.
Also, we can see that UDHCP spends most of the time waiting
for packets despite functioning at its fixed maximum packet
rate, indicating the highest variability in critical section
size across our benchmarks. Comparatively, Intruder2 has
the highest CPU utilization, meaning that wait times for
synchronization are smaller and data dependences across

transactions will be harmful because of transaction aborts.
This case demonstrates that TM isn’t necessarily the best
option for every region of code or application.

6. RELATED WORK

The goal of most previous FPGA implementations of
HTM [1,7,8] was to prototype ASIC attempts at TM—
as opposed to targeting the strengths of an FPGA as a
final product. To provide a low-overhead implementation,
our work distinguishes itself in the type of TM that we
implement and in the way that we perform conflict detec-
tion. To track transactional speculative state, prior FPGA
implementations [1,3,8] use (i) extra bits per line in a private
cache per thread or in a shared cache, and (ii) lazy version
management (i.e., regular memory is modified only upon
commit), and (iii) lazy conflict detection (i.e., validation
is only performed at commit time). These approaches
are not a good match for product-oriented FPGA-based
systems because of the significant cache storage overhead
required. Rather than using off-the-shelf soft cores requiring
the programmer to explicitly mark each transactional access
in the code as in other work [1,7,8], in NetTM we integrate
TM with each soft processor pipeline and automatically and
seamlessly handle loads and stores within transactions or
lock-based critical sections appropriately.

7. CONCLUSIONS

We have shown that NetTM, an eager TM with application-
specific signatures and contention management, matches the
strengths and limitations of an FPGA, and can be inte-
grated into a multithreaded processor pipeline without im-
pacting clock frequency by adding a pipeline stage. NetTM
makes synchronization (i) easier, by allowing more coarse-
grained critical sections and eliminating deadlock errors, and
(ii) faster, by exploiting the optimistic parallelism avail-
able in many concurrent critical sections, especially for soft-
ware packet processing. For multithreaded applications that
share and synchronize, we demonstrated that NetTM can
improve throughput by 6%, 55%, and 57% over a locks-only
system, but that TM is inappropriate for some applications
where the cost of occasional aborts negates the wait times
reclaimed.

8 REFERENCES

S. Grinberg and S. Weiss. Investigation of transactional memory
using FPGAs. In EEEI, Nov. 2006.

[2] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and
K. Olukotun. Transactional memory coherence and consistency.
SIGARCH Comput. Archit. News, 32(2):102, 2004.

[3] C. Kachris and C. Kulkarni. Configurable transactional memory.
In FCCM, 2007.

[4] M. Labrecque, M. Jeffrey, and J. G. Steffan. Application-specific
signatures for transactional memory in soft processors. In ARC,
2010.

[5] M. Labrecque and J. G. Steffan. The case for hardware
transactional memory in software packet processing. In ANCS,
2010.

[6] J. W. Lockwood, N. McKeown, G. Watson, et al. NetFPGA - an
open platform for gigabit-rate network switching and routing. In
MSE, 2007.

[7] R. Teodorescu and J. Torrellas. Prototyping architectural
support for program rollback using FPGAs. FCCM, 2005.

[8] S. Wee, J. Casper, N. Njoroge, et al. A practical FPGA-based
framework for novel CMP research. In FPGA, 2007.

[9] L. Yen, J. Bobba, M. R. Marty, et al. LogTM-SE: Decoupling
hardware transactional memory from caches. In HPCA, 2007.

