
Encoding Mathematics

CSC 2508

Professor Sevcik

Tuesday, April 25, 2000.

David Tam

Abstract
This report describes a concise encoding of mathematical formulas

based on MathML. A significant reduction in file size can be achieved by
using a simple encoding scheme of identifying and reducing all content tags
to a length of 8 bits, along with the removal of obvious redundancies, and a
final pass through gzip. The encoder can be viewed as a front-end
preprocessor to gzip, enabling gzip to achieve higher compression ratios
than in its absence. This paradigm of transforming data to suit gzip can be
applied to many types of data files. The encoder itself is also fairly
extensible, allowing the support of additional markup tags.

1 Introduction
This report briefly examines current methods of encoding

mathematical formulas and attempts to develop a more concise encoding.
The project proposal and approval forms can be found in Appendix A.

A fundamental issue in representing mathematical equations is
determining whether to encode the presentation or content information.
Presentation encoding describes how to render an equation, such as
specifying the location of elements and their appearance. Content encoding
describes the underlying semantics of an equation. It is usually more
concise than presentation encoding. It offers the possibility of data reuse
and expression evaluation since the underlying semantics are preserved.
For example, the equation:

can be presentation encoded by specifying each symbol, its location, and
any attributes. Content encoding could specify the equation as:

x = numerator / denominator
denominator = 2 * a
numerator = plusminus(numerator2, numerator3)
numerator2 = -1 * b
numerator3 = sqrt(b * b - 4 * a * c)

Content encoding preserves the most critical elements of an equation.
It is not concerned with superficial details, which is an inherent problem of
presentation encoding. Therefore, content encoding is very concise because
it extracts only the essence of the equation. Rendering an equation for
viewing can be accomplished by using default presentation attributes. In
general, information becomes extremely valuable when computers able to

 - 1 -

x=−b±b2−4 ac
2

a

perform operations such as process, evaluate, compare, sort, search, and
analyze. Content encoded equations offer this important property whereas
presentation encoded equations do not.

1.1 Existing Encoding Methods

This section briefly describes a number of encoding schemes that are
currently used.

Image-based:

This method simply encodes the equation as a bitmap image. Popular
image formats include GIF and JPEG. This method is an example of
presentation encoding at the extreme, where every pixel in a rendering of
the equation is specified precisely. The underlying semantics are
completely lost under this encoding scheme.1 Currently, this method is
popular on the web since the GIF and JPEG image formats are widely
supported on web browsers.

ASCII Pictures:

This method uses the existing set of ASCII characters in a primitive
attempt to pictorially describe an equation. Such a method is typically used
in email messages when a sender needs to convey an equation to a
recipient. Perhaps due to limited resources or for its simplicity, this method
is chosen. Naturally, this scheme is an example of presentation encoding.

Macro Recording:

A possible method used by equation editors may be to record a user's
menu selections and locations of text input during the process of building
an equation. Such a scheme is an example of presentation encoding
because most editors simply assist a user in the selection and placement of
symbols. Rules concerning symbol usage are not enforced.

Unicode[26]:

In contrast to the ASCII standard of 8 bit characters, unicode typically
uses 16 bits. Unicode allows for the encoding of alphabets of various
languages. In the context of mathematical equations, having access to the
Greek alphabet is particularly important. As well, there is enough capacity
to encode various math symbols, such as integration, square root,
intersection, and union. This scheme is an example of presentation
encoding since restrictions on symbol usage are not enforced.

1 Optical character recognition may be applied in an attempt to partially recover the
underlying semantics. Even if all the symbols are successfully recovered, the
recognition of semantics still remains difficult.

 - 2 -

Recursive Functions:

As hinted in the first example, math equations can be described in a
recursive fashion. Such a schemed is an example of content encoding since
the meaning of a function and the order of the arguments are well-defined.

Tex[28]:

Tex is typesetting language developed by Donald Knuth [20]. This
method is popular among the academic and research community and is an
example of presentation encoding. The presentation of an equation is
described using Tex markup tags.

SGML ISO12083[3]:

Standard Generalized Markup Language is used mainly by the
publishing industry. It is a very large and complicated specification that
allows for precise control of all elements. It is also extensible, allowing
users to define custom SGML tags. Due to its large size, a subset
designated as the ISO12083 standard has been created to define a set of
common math tags. These tags support both presentation and content
encoding.

OpenMath[2][24]:

OpenMath is an example of content encoding. This standard was
conceived in Europe by the Open Math Society. The standard rigorously
defines the semantics of various tags and is based on XML [14][29][33][35].

MathML[36]:

MathML is also based on the XML standard and is rapidly gaining
wide support among the internet community [11][17]. It will likely become
the standard method of representing equations on the world wide web. The
standard is currently under review by the World Wide Web Consortium.
MathML allows for both presentation and content encoding, as well as a
mixture of both types within one document. MathML support in web
browsers and equation editors will be available soon [18][32][34].
Mathematical software companies such as Mathematica and Maple are also
strongly supporting this standard [9][22][31]. MathML may become the
universal standard for electronically describing mathematics.

2 Proposed Encoding Scheme
Since MathML is a promising standard that is widely supported, this

report describes an encoding scheme based upon the MathML standard.
Since content encoding offers many advantages over presentation encoding,

 - 3 -

only the former will be considered. That is, only equations encoded using
the content encoding tags of MathML will be considered. Examples of
equations encoded using MathML content tags are given below.

1. y = ax + b

<apply>
<eq/>
<ci> y </ci>
<apply/>

<plus/>
<apply>

<time/>
<ci> a </ci>
<ci> x </ci>

</apply>
<ci> b </ci>

</apply>
</apply>

2. ∫
a

b

cos x dx

<apply>
<int/>
<bvar>

<ci> x </ci>
</bvar>
<interval>

<ci> a </ci>
<ci> b </ci>

</interval>
<apply>

<cos/>
<ci> x </ci>

</apply>
</apply>

As evident in the examples above, MathML contains many redundancies. It appears that
tags occupy the majority of the encoding. These redundancies are required to satisfy the
grammar specifications of MathML. There are approximately 135 possible content tags,
covering all math concepts ranging from kindergarten to the end of second
year university. Areas covered include arithmetic, algebra, logic, relations,
calculus, vector calculus, set theory, sequences, series, trigonometry,
statistics, and linear algebra. As well, MathML is extensible to allow user-
defined tags. This mechanism should allow for other areas mathematics to
be supported.

3 Discrete Information Theory Analysis
This section will attempt to define a guideline for estimating the entropy of math

 - 4 -

equations. That is, how to determine H(equation).

Math equations can be represented in an expression tree structure. Each node is further
defined by its two children. This tree structure organization leads to a fairly recursive pattern of
function calls. Leaves of the expression tree represent variables, such as x, y, , and 42. Inner
nodes represent functions, such as integral, exponent, square root, addition, and subtraction. The
basic unit of evaluation appears in the form of operation(arg1, arg2). This basic unit can be built
upon to represent any equation. The rules of the construction are fairly simple: arg1 and arg2
may be replaced with another basic unit of evaluation. The following two examples illustrate
these concepts.

1. y = ax + b ==> equals (y, add (multiply (a , x) , b))

equals

y add

multiply b

a x

2. z = a + b + c ==> equals (z , add (add (a , b) , c))

equals

z add

add c

a b

With some minor re-organization, an equation can be viewed as a sequence of messages
in the form: operation(arg1, arg2). Determining the entropy of a math equation can be reduced to
determining the entropy of a message: H(message), which is independent of the length of the
equation. This provides a common unit of evaluation since the number of messages in an
equation can vary due to varying equation lengths.

H(message) = H(operation, arg1, arg2)
H(operation, arg1, arg2) = H(operation) + H(arg1) + H(arg2)

 - 5 -

IFF operation, arg1, arg2 are independent

Since only a rough guideline is desired, the random variables `operation', `arg1', and
`arg2' may be assumed to be independent. If they are not independent, the resulting value will be
larger than the true value. Under these simplifying assumptions, all that is needed are the
frequencies of `operation' and `arg' values. Due to the recursive nature of the messages, it is also
important to determine the frequency that an `arg' is an `operation'.

3.1 Estimating Entropy in MathML Encoding

The entropy of content-based MathML encoding is determined by the frequency of
content tags and the frequency of identifiers, numbers, and symbols. In this report, the latter
three will be grouped together as one and referred to as identifiers. These frequencies were
gathered from a testbed assembled by aggregating all content encoding examples from the World
Wide Web Consortium MathML 2.0 Working Draft web site [36]. These examples totalled to
1,762 lines of MathML code (24,827 bytes). See Appendix B for the example code. This testbed
was chosen because existing example of MathML code were scarce. Ideally, entire math
textbooks encoded in MathML would offer more representative samples. However, these sources
do not exist and encoding even a few chapters would have been quite time consuming. The
examples of the testbed file cover the entire spectrum of possible content tags. The following
approximate distributions of the testbed file are shown below.

Approximate Distributions:
Identifier Frequency Tag Frequency
x 140 <ci> 434
a 58 </ci> 434
b 43 <apply> 307
f 30 </apply> 307
y 25 <cn> 116
2 23 </cn> 116
A 22 <bvar> 60
0 21 </bar> 60
1 17 <plus/> 32
3 18 <fn> 30
B 16 </fn> 30
etc... etc... etc... etc...

=== ===
556 total + 2459 total ==> 3015 messages

Based on these distributions, the entropy of the tags was
approximately 3.5 bits and the entropy of the identifiers was approximately
2.6 bits. A message is defined as one tag or identifier. For a rough approximation, if
independence between tags and identifiers is assumed, then the entropy of
a message is approximately 6.1 bits. Except for a few special cases2, tags
and identifiers should be mostly independent since knowing the outcome of

2 Some special cases of high correlation include: (1) the "log" tag and the identifiers "10"
and "e"; (2) the "sqrt" tag and the identifier "2".

 - 6 -

a tag should provide little knowledge about the up coming identifier and
vice versa. As indicated in the above distributions, the testbed file consists
of 3015 messages. With an entropy of 6.1 bits per message, this leads to a
theoretical minimum file size of approximately 18,392 bits (2,299 bytes).
Since independence was assumed in a number of situations, this value is most likely higher than
the true minimum file size. A number of short C programs were written to aid in these
calculations. The source code for these programs can be found in Appendix C. The
"cicncsymbol.c" code was used to obtain identifier frequencies. Obtaining tag frequencies was
accomplished in the "simpleencode.c" code found in Appendix G.

4 Details of Encoding
A number of attempts were made to encode content-based MathML in

a more concise manner. The task of encoding equations can be viewed as an
exercise in encoding specialized text. Rather than re-invent the wheel, in all
trials gzip was applied on top of the encoding to further compress the
testbed file, since gzip is known to be a very good compressor.

4.1 Trial #1

Since there are approximately 135 content tags, each of these tag can
be encoded in an 8-bit character. This scheme requires a fixed dictionary
(927 bytes) of known tags and their 8-bit encodings. The dictionary can be
found in Appendix D. If a tag is unknown, it is left alone and encoded in
plain ASCII characters. Unknown tags seldom occurred in the testbed file
but in general, they are a likely possibility since other XML tags may be
embedded in the MathML data. A number of obvious redundancies were
removed, such as carriage returns, and unnecessary tabs and spaces. The
source code is incorporated into the source code for trial 3, which can be
found in Appendix G.

This encoding produces a mixed stream of regular 8 bit ASCII
characters and 8 bit content tag encodings. Since the tag encodings overlap
with regular ASCII encodings, the "<" character of the tags were preserved
to indicate that the next 8-bit character should be interpreted as a content
tag encoding. As an example, the following MathML code and its new
encoding are shown below.

Original MathML code:
<apply>

<plus/>
<ci> x </ci>
<ci> y </ci>

</apply>

New MathML encoding:
<a<p<cx</c<cy</c</a

 - 7 -

With a total of 2,459 tags and an average tag length of 7.2 bytes, an
average savings of 5.2 bytes per tag can be achieved. This meant an estimated
savings of 12,787 bytes. A simple program was written to aid in this
calculation. The source code can be found in Appendix E.

4.2 Trial #2

Huffman encoding of the content tags was attempted in trial 2. The objective was to
achieve a new average tag length of less than 8 bits in order to perform better than trial 1. Using
the frequencies of the tags in the testbed file, a Huffman encoding was manually generated and
fed into the encoding program. Due to the variable length nature of Huffman codes, the mixed
stream of tag encodings and regular ASCII character encodings were bit-packed. This packing
resulted in ASCII characters that were no longer aligned on 8 bit boundaries. The source code for
this program and the Huffman encoding dictionary can be found in Appendix F.

4.3 Trial #3

Further optimizations on the first trial were attempted. The source
code can be found in Appendix G. The encoding of end tags such as
</apply>, </ci>, </cn> could be encoded as a generic end tag. This
simplification is possible due to the regular grammar structure of MathML.
If a end tag is encountered, it must match the last encountered start tag. An
additional optimization reduced the number of "<" characters by placing
delimiting characters such as "<" and ">" in strategic locations. Since a
large number of the tags occur in sequence before a regular ASCII
character is encountered, delimiting characters were placed around the
regular ASCII characters instead. For example:

<apply>
<plus/>
<ci> x </ci>
<ci> y </ci>

</apply>

would normally be encoded as:

<a<p<cx</c<cy</c</a

Under the new optimization, it is encoded as:

<apc>x</c>y<ca

The "<" and ">" characters can be viewed as delimiter symbols that
mark the beginning and end of tag encodings.

 - 8 -

5 Results of Encoding
The new encodings were successful in reducing the redundancies of

MathML. Compression using only gzip and unix compress were also
compared against the new encodings. Gzip was used with the "--best" flag
to indicate the use of the best possible compression at the expense of
speed. The table below presents the resulting file sizes. It also presents
results from a larger file size that was generated by simply replicating the
contents of the testbed file 100 times.

Original Testbed File: (file sizes are in bytes)
plain text 24,827
compress 6,611
gzip 3,639

trial#1 8,747 trial#2 6,179 trial #3 6,271
#1+compress 3,500 #2+compress 4,888 #3+compress 2,939
#1+gzip 2,263 #2+gzip 3,820 #3+gzip 1,990

Testbed File X 100: (file sizes are in bytes)
plain text 2,482,700
compress 288,791
gzip 21,923

trial #1 874,700 trial #2 619,775 trial #3 627,100
#1+compress 125,089 #2+compress 193,013 #3+compress 99,781
#1+gzip 8,419 #2+gzip 16,210 #3+gzip 6,160

With the original testbed file, trials 1, 2, and 3 were able to achieve a size reduction of
65%, 75%, and 75%, respectively. Gzip by itself is also a very effective compressor, obtaining a
reduction of 85%. However, by applying the new encoding as an initial step followed by gzip,
the gzip algorithm was able to reduce the original gzip file by 38% to 45%. Trial 2 on the
original testbed file was an exception to the rule, where the final file size was slightly larger than
the gzip version. The encoder can be viewed as a front-end preprocessor to gzip that transforms
the input file to a more suitable format for gzip's compression algorithms. Compared to the
original file, an encoder preprocessed gzip file reduced the original testbed file by 91%, 85%,
and 92%, respectively. For the larger testbed file, this preprocessor enabled the
original gzip file to be reduced by 62%, 26%, and 72%, respectively. Results
using unix compress produced results that show similar general trends.

6 Discussion of Results
The theoretical minimum file size approximated in the analysis section

was fairly accurate. It predicted a minimum file size of approximately 2,299
bytes. However, trial 3 reduced the file to a size of 1,990 bytes. As
mentioned previously, since only rough approximations were desired and

 - 9 -

independence was assumed for the sake of simplicity, the predicted
minimum file size should be slightly higher than the true minimum value.
Trial 3 combined with gzip should be considered very compact due to the
drastic reduction in file size (92%) and therefore, should be fairly close to
the theoretical minimum file file.

The estimation of savings in trial 1 were also fairly accurate. Savings of 12,787 bytes
were estimated while the results indicated a value of 16,080 bytes instead.

Verification of correctness for trials 1 and 3 was accomplished by
simply inspecting the encoded output file. Although writing a decoder
would offer a stronger verification process, trials 1 and 3 were fairly simple
to just visually inspect. Trial 2 proved to be difficult for visual inspection
due to the unalignment phenomenon. To determine correctness, the
estimated savings was calculated. Based on the frequency distribution of
tags and the Huffman encoding (both shown in Appendix F), the following
table was generated.

Huffman
Tag Count Length Savings
known end tags 1074 1 bit 7 bits
ci 434 3 bits 5 bits
apply 307 3 bits 5 bits
cn 116 5 bits 3 bits
known w/attr 75 5 bits 3 bits
bvar 60 6 bits 2 bits

approximate savings = 11,916 bits

 = 1,490 bytes

The approximate savings compared against trial 1 is 1,490 bytes. An
actual savings of 1,476 bytes was realized, which is quite close to the
estimated value. From these results, the algorithm developed in trial 2 is
most likely correct.

Surprisingly, the simple encoding scheme developed in trial 1 and
further refined in trial 3 proved to be very effective. When combined with
gzip, file size reductions were quite substantial. In contrast, the more
sophisticated Huffman encoding in trial 2 combined with gzip did not
produce the best results. This result is likely due to the unaligned bit
boundaries that resulted. Character frequencies were disturbed and gzip
was unable to apply its algorithms effectively. The encoding of trial 2
resembled a binary file since true sequences of ASCII characters were
unaligned to the character bit boundaries. In contrast, trials 1 and 3
preserved the 8 bit character boundaries and allowed the encoding to
appear more like a text file.

Gzip is a byte-oriented compression algorithm [4][5][6][10][16]. First,
it applies Lempel-Ziv 77 adaptive encoding, replacing duplicate strings with
a (distance, length) pair. It has a maximum distance of 32k bytes, and a

 - 10 -

maximum length of 258 bytes. Next, it uses Huffman encoding. Two
Huffman trees are created. One is used to encode literals and match
lengths, while another is used to store distances. The effectiveness of the
first stage depends on the distribution of characters from the preprocessor.
The correlation of characters is also important since the existence of
common sequences of characters is vital to the effectiveness of the LZ77
algorithm. In trial 2, most of the correlation was not detected due to the
unpredictable unalignments that occurred. The example below illustrates a
sequence of characters (ABC) that are aligned differently on each instance.
LZ77 would detect the sequence in the first instance, while in the second
instance, it would appear as a sequence of totally different characters.

[][][].......[][][].....

 A B C A B C

The simple encoding schemes in trials 1 and 3 assisted gzip in a
number of ways. Since gzip has a maximum history of 32k bytes, the simple
encoding can be viewed as helping to increase this history size. Tags are
shortened from an average of 7.2 characters to approximately 1 character,
helping to fit more characters into the 32k window. In trial 3, known end
tags were aggregated into a single generic end tag since the matching start
tag could be easily determined. This optimization increases the possibility
of finding common character sequences. The example below shows how
different sequences of end tags may become common sequences.

Original:
...</ci></apply>...</csymbol></apply>...

Trial 1:
...</c</a...</s</a...

Trial 3:
...</</...</</...

A grammar-based encoding scheme was not attempted due to the
large grammar of MathML. As well, some grammars might not undergo
effective grammar encoding. Flat grammars, which contain a large number
of fan-ins and fan-outs for each state, may exhibit poor compression. In
contrast, a highly hierarchical grammar reduces the number of possible
next states. It reduces the fan-in of a state as well. MathML is considered a
flat grammar language because it has fairly little restriction on which state
may be entered from any other state. For instance, once the <apply> state
is reached, there is little restriction on the next possible tag. Due to this
situation, grammar encoding becomes similar to traditional Huffman
encoding. The benefit of grammar encoding is that at any particular state,
the number of next possible states is small and can be encoded in less bits.
As well, local probabilities in the form of P(next state∣current state) are

 - 11 -

used rather than global probabilities required in the traditional Huffman
model. In grammar encoding, incremental costs are paid to transition from
the current state to the next state. However, in flat grammars the benefit of
incremental costs are not present. The example below illustrates flat and
hierarchical grammars.

Flat Grammar Hierarchical Grammar

The simple encoding developed in trial 1 and 3 can be applied to
other applications of XML. It can be easily extended to support the
presentation tags of MathML. The concepts can be applied to SGML in
general, HTML, OpenMath, and other markup languages.

The encoding concepts described in this report may be extendible to
equation derivations and mathematical proofs. Due to the usually high
amount of redundancy between one line in a proof and the subsequent line,
only minor changes in the expression tree are required. If an equation is
viewed as an expression tree, substitutions of one part of the tree (subtree)
can be specified.

An issue that was not addressed in the experiments was the mixture
of MathML with regular text descriptions and possibly HTML tags.
Normally, mathematical content does not exist by itself. It usually requires
textual descriptions and annotations to clarify the mathematics. This
mixture will be common on web pages in the near future since MathML is
rapidly being accepted among the internet community. Since the encoding
scheme is fairly flexible and extensible, this mixture should not be a major
issue and can be accomodated. Regular text would be well-compressed
under the LZ77 algorithm in the gzip stage.

7 Related Work
A good survey on the state of mathematics and computer technology

can be found in [27]. Compression of other forms of data has been
attempted. These include Java class files [19][25], various forms of semi-
structured text [23][37], and fat binary executables [8][12][13]. These

 - 12 -

......

0 1

0 10
11

0 11
10

0 10
110 1110

11110
11111

works have focused mainly on grammar-based or tree syntax-based
encoding methods. This report dealt only with MathML content tags while
ignoring presentation tags. Reconciling between MathML content and
presentation tags is discussed in [7]. Mathematical computation protocols
are presented in [15] and [30] to handle distributed computation. The
Emath component is described in [1]. It is an embeddable component based
on Lisp that supports highly customizable display and editing of math
formulas. The integration of MathML, OpenMath, and XML in general, is
discussed in [21]. Information on the XML standard, its possible
applications, and XML grammar specifications can be found in [14][29][33]
[35].

8 Conclusions
The simple encoding scheme developed for MathML proves to be very

efficient, achieving very high compression rates when used in conjunction
with gzip. The encoding scheme can be easily applied to other markup
languages. The encoder enabled gzip to realize further compression. The
encoding scheme can be viewed as a special front-end preprocessor to gzip
that transforms MathML input into a more compressible and suitable
format for gzip. This preprocessor idea can be applied to other areas of
specialized content.

References
[1] O. Arsac, S. Dalmas, M. Gaetano, "The Design of Customizable

Component to Display and Edit Formulas," ACM Proceedings of the
1999 International Symposium on Symbolic and Algebraic Computation,
July 28 - 31, 1999, Vancouver, Canada, pp. 283-290.

[2] O. Caprotti and D. Carlisle, "OpenMath and MathML: Semantic Mark
Up for Mathematics," ACM Crossroads, January 2000,
http://www.acm.org/crossroads/xrds6-2/openmath.html.

[3] R. Cover, "General SGML/XML Applications," The XML Cover Pages,
Organization for the Advancement of Structured Information
Standards, February 17, 2000, http://www.oasis-open.org/cover/gen-
apps.html.

[4] P. Deutsch, "DEFLATE Compressed Data Format Specification Version
1.3," Network Working Group, RFC 1951, May 1996.

[5] P. Deutsch, "GZIP File Format Specification Version 4.3," Network
Working Group, RFC 1952, May 1996.

 - 13 -

[6] P. Deutsch and J-L. Gailly, "ZLIB Compressed Data Format Specification
Version 3.3," Network Working Group, RFC 1950, May 1996.

[7] S.S. Dooley, "Coordinating Mathematical Content and Presentation
Markup in Interactive Mathematical Documents," ACM Proceedings of
the 1998 International Symposium on Symbolic and Algebraic
Computation, August 13-15, 1998, Rostock, Germany, pp. 54-61.

[8] J. Ernst, W. Evans, C.W. Fraser, S. Lucco, T.A. Proebsting, "Code
Compression," ACM SIGPLAN Conference on Programming Language
Design and Implementation, June 16-18, 1997, Las Vegas, NV, pp. 358-
365.

[9] K. Esplin, "W3C Issues MathML as a Recommendation - Testimonials,"
http://lists.w3.org/Archives/Public/w3c-news/1998AprJun/0002.html.

[10]A. Feldspar, "An Explanation of the Deflate Algorithm" August 23, 1997,
http://www.cdrom.com/pub/infozip/zlib/feldspar.html.

[11]K.R. Foster, "Math on the Internet," IEEE Spectrum, Vol. 34, No. 4,
April 1999, pp. 36-40.

[12]M. Franz and T. Kistler, "Slim Binaries," Communications of the ACM,
December, 1997, Vol. 40, No. 12, pp. 87-94.

[13]M. Franz and T. Kistler, "Slim Binaries," Technical Report , University
of California at Irvine, Department of Information and Computer
Science, 96-24.

[14]L.M. Garshol, "BNF and EBNF: What are they and how do they work?"
http://www.stud.ifi.uio.no/~lmariusg/download/artikler/bnf.html.

[15]S. Gray, N. Kajler, P. Wang, "MP: A Protocol for Efficient Exchange of
Mathematical Expressions," ACM Proceedings of the International
Symposium on Symbolic and Algebraic Computation, July 20-22, 1994,
Oxford, England, pp. 330-335.

[16]"The gzip home page," http://www.gzip.org/.

[17]M. Hagler, "Mathematics and Equations on the WWW," 28th Annual
Frontiers in Education Conference, November 4-7, 1998, pp. 583-586.

[18]ICE Soft AS, "e-Lite - The 100% Pure Java Web Browser,"
http://www.icesoft.no/ELite/.

[19]T. Kistler, M. Franz, "A Tree-Based Alternative to Java Byte-Codes,"
February 1999,
http://www.ics.uci.edu/~franz/publications/TreeBasedAlternativePrepub
.pdf.

[20]D. Knuth, "Don Knuth's Home Page,"
http://Sunburn.Stanford.EDU/~knuth/.

[21]X. Li, "XML and the Communication of Mathematical Objects," M.Sc.

 - 14 -

Thesis, The University of Western Ontario, April 1999.

[22]Mathematica Home Page, http://www.wolfram.com/.

[23]C.G. Nevill-Manning, I.H. Witten, D.R. Olsen Jr., "Compressing Semi-
Structured Text Using Hierarchical Phrase Identifications," IEEE
Proceedings of the Data Compression Conference, March 31 - April 3,
1996, pp. 63-72.

[24]The OpenMath Society, http://www.openmath.org/omsoc/index.html.

[25]W. Pugh, "Compressing Java Class Files," Proceedings of the ACM
SIGPLAN'99 conference on Programming language design and
implementation, April 1 - 4, 1999, Atlanta, Georgia, pp. 247 - 258.

[26]M. Sargent III, "Unicode Plain-Text Encoding of Mathematics,"
Microsoft Corporation, Redmond, WA, August 23, 1994.

[27]R.M. Timoney, "Style Sheet Languages and Mathematical Material,"
http://www.botik.ru/PSI/EmNet_NIS/transactions/timoney/timoney.html.

[28]TeX Users Group, "TeX Users Group Home Page," http://www.tug.org/.

[29]T. Usdin and T. Graham, "XML: Not a Silver Bullet, But a Great Pipe
Wrench," ACM StandardView, Vol. 6, Issue 3, 1998, pp. 125-132.

[30]P.S. Wang, "Design and Protocol for Internet Accessible Mathematical
Computation," ACM Proceedings of the 2nd International Symposium on
Parallel Symbolic Computation, July 20 - 22, 1997, pp. 188-195.

[31]Waterloo Maple Home Page,
http://www.maplesoft.com/corporate/press/press_010.html.

[32]WebEQ Home Page, http://www.webeq.com/index.html.

[33]A. Wess, "XML Gets Down to Business," ACM netWorker: The Craft of
Network Computing, Vol. 3, Issue 3, 1999, pp. 36-43.

[34]World Wide Web Consortium, "Amaya - W3C's Editor/Browser," W3C
User Interface Domain, http://www.w3.org/Amaya/.

[35]World Wide Web Consortium, "Extensible Markup Language (XML),"
W3C Architecture Domain, http://www.w3.org/XML/.

[36]World Wide Web Consortium, "Mathematical Markup Language
(MathML) Version 2.0," W3C Working Draft, March 28, 2000.
http://www.w3.org/TR/MathML2/.

[37]E.-H. Yang and J.C. Kieffer, "Universal Source Coding Theory Based on
Grammar Transformations, " IEEE Proceedings of the Information
Theory and Communications Workshop, June 20-25, 1999, Kruger
National Park, South Africa, pp. 75-77.

 - 15 -

Appendix A

-- Project Proposal and Approval Forms --

 - 16 -

Appendix B

-- MathML Testbed File --

 - 17 -

Appendix C

-- Entropy Calculation Programs --

 - 18 -

Appendix D

-- Fixed Dictionary of Trial #1 --

 - 19 -

Appendix E

-- Average Tag Length Calculation Program --

 - 20 -

Appendix F

 -- Trial #2, Huffman Encoding Source Code,
Huffman Encoding Dictionary,
Tag Frequency Distribution --

 - 21 -

Appendix G

-- Trial #3, Source Code --

 - 22 -

