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Abstract
This report  describes  a concise encoding of  mathematical  formulas

based on MathML. A significant reduction in file size can be achieved by
using a simple encoding scheme of identifying and reducing all content tags
to a length of 8 bits, along with the removal of obvious redundancies, and a
final  pass  through  gzip.  The  encoder  can  be  viewed  as  a  front-end
preprocessor to gzip, enabling gzip to achieve higher compression ratios
than in its absence. This paradigm of transforming data to suit gzip can be
applied  to  many  types  of  data  files.  The  encoder  itself  is  also  fairly
extensible, allowing the support of additional markup tags.

1 Introduction
This  report  briefly  examines  current  methods  of  encoding

mathematical formulas and attempts to develop a more concise encoding.
The project proposal and approval forms can be found in Appendix A.

A  fundamental  issue  in  representing  mathematical  equations  is
determining whether  to  encode  the  presentation or content  information.
Presentation  encoding  describes  how  to  render  an  equation,  such  as
specifying the location of elements and their appearance. Content encoding
describes  the  underlying  semantics  of  an  equation.  It  is  usually  more
concise than presentation encoding. It offers the possibility of data reuse
and expression evaluation since the underlying semantics  are  preserved.
For example, the equation:

can be presentation encoded by specifying each symbol, its location, and
any attributes. Content encoding could specify the equation as:

x = numerator / denominator
denominator = 2 * a
numerator = plusminus(numerator2, numerator3)
numerator2 = -1 * b
numerator3 = sqrt(b * b  -  4 * a * c)

Content encoding preserves the most critical elements of an equation.
It is not concerned  with superficial details, which is an inherent problem of
presentation encoding. Therefore, content encoding is very concise because
it  extracts  only  the  essence  of  the  equation.  Rendering an equation for
viewing can be accomplished by using default presentation attributes. In
general, information becomes extremely valuable when computers able to
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perform operations such as process, evaluate, compare, sort, search, and
analyze. Content encoded equations offer this important property whereas
presentation encoded equations do not.

1.1 Existing Encoding Methods

This section briefly describes a number of encoding schemes that are
currently used. 

Image-based:

This method simply encodes the equation as a bitmap image. Popular
image  formats  include  GIF  and  JPEG.  This  method  is  an  example  of
presentation encoding at the extreme, where every pixel in a rendering of
the  equation  is  specified  precisely.  The  underlying  semantics  are
completely  lost  under  this  encoding  scheme.1 Currently,  this  method  is
popular  on  the  web  since  the  GIF  and  JPEG  image  formats  are  widely
supported on web browsers.

ASCII Pictures:

This method uses the existing set of ASCII characters in a primitive
attempt to pictorially describe an equation. Such a method is typically used
in  email  messages  when  a  sender  needs  to  convey  an  equation  to  a
recipient. Perhaps due to limited resources or for its simplicity, this method
is chosen. Naturally, this scheme is an example of presentation encoding.

Macro Recording:

A possible method used by equation editors may be to record a user's
menu selections and locations of text input during the process of building
an  equation.   Such  a  scheme  is  an  example  of  presentation  encoding
because most editors simply assist a user in the selection and placement of
symbols. Rules concerning symbol usage are not enforced.

Unicode[26]:

In contrast to the ASCII standard of 8 bit characters, unicode typically
uses  16  bits.  Unicode  allows  for  the  encoding  of  alphabets  of  various
languages. In the context of mathematical equations, having access to the
Greek alphabet is particularly important. As well, there is enough capacity
to  encode  various  math  symbols,  such  as  integration,  square  root,
intersection,  and  union.  This  scheme  is  an  example  of  presentation
encoding since restrictions on symbol usage are not enforced.

1 Optical  character  recognition  may  be  applied in  an attempt  to  partially  recover  the
underlying  semantics.  Even  if  all  the  symbols  are  successfully  recovered,  the
recognition of semantics still remains difficult.
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Recursive Functions:

As hinted in the first example, math equations can be described in a
recursive fashion. Such a schemed is an example of content encoding since
the meaning of a function and the order of the arguments are well-defined.

Tex[28]:

Tex  is  typesetting  language  developed  by  Donald  Knuth [20].  This
method is popular among the academic and research community and is an
example  of  presentation  encoding.  The  presentation  of  an  equation  is
described using Tex markup tags.

SGML ISO12083[3]:

Standard  Generalized  Markup  Language  is  used  mainly  by  the
publishing industry. It  is  a  very large and complicated specification that
allows  for  precise  control  of  all  elements.  It  is  also  extensible,  allowing
users  to  define  custom  SGML  tags.  Due  to  its  large  size,  a  subset
designated as the ISO12083 standard has been created to define a set of
common  math  tags.  These  tags  support  both  presentation  and  content
encoding.

OpenMath[2][24]:

OpenMath  is  an  example  of  content  encoding.  This  standard  was
conceived in Europe by the Open Math Society. The standard rigorously
defines the semantics of various tags and is based on XML [14][29][33][35].

MathML[36]:

MathML is also based on the XML standard and is  rapidly gaining
wide support among the internet community [11][17]. It will likely become
the standard method of representing equations on the world wide web. The
standard is  currently under  review by the World Wide Web Consortium.
MathML allows for both presentation and content encoding, as well  as a
mixture  of  both  types  within  one  document.  MathML  support  in  web
browsers  and  equation  editors  will  be  available  soon  [18][32][34].
Mathematical software companies such as Mathematica and Maple are also
strongly  supporting  this  standard  [9][22][31]. MathML may  become  the
universal standard for electronically describing mathematics.

2 Proposed Encoding Scheme
Since MathML is a promising standard that is widely supported, this

report  describes  an encoding scheme based upon the MathML standard.
Since content encoding offers many advantages over presentation encoding,
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only the former will be considered. That is, only equations encoded using
the  content  encoding  tags  of  MathML  will  be  considered.  Examples  of
equations encoded using MathML content tags are given below.

1. y = ax + b

<apply>
<eq/>
<ci> y </ci>
<apply/>

<plus/>
<apply>

<time/>
<ci> a </ci>
<ci> x </ci>

</apply>
<ci> b </ci>

</apply>
</apply>

2. ∫
a

b

cos x dx

<apply>
<int/>
<bvar>

<ci> x </ci>
</bvar>
<interval>

<ci> a </ci>
<ci> b </ci>

</interval>
<apply>

<cos/>
<ci> x </ci>

</apply>
</apply>

As evident in the examples above, MathML contains many redundancies. It appears that
tags  occupy  the  majority  of  the  encoding.  These  redundancies  are  required  to  satisfy  the
grammar  specifications  of  MathML.  There  are  approximately  135  possible  content tags,
covering all math concepts ranging from kindergarten to the end of second
year university. Areas covered include arithmetic, algebra, logic, relations,
calculus,  vector  calculus,  set  theory,  sequences,  series,  trigonometry,
statistics, and linear algebra. As well, MathML is extensible to allow user-
defined tags. This mechanism should allow for other areas mathematics to
be supported.

3 Discrete Information Theory Analysis
This  section  will  attempt  to  define  a  guideline  for  estimating  the  entropy  of  math
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equations. That is, how to determine H(equation).

Math equations can be represented in an expression tree structure. Each node is further
defined by its two children. This tree structure organization leads to a fairly recursive pattern of
function calls. Leaves of the expression tree represent variables, such as x, y,  , and 42. Inner
nodes represent functions, such as integral, exponent, square root, addition, and subtraction. The
basic unit of evaluation appears in the form of operation(arg1, arg2). This basic unit can be built
upon to represent any equation. The rules of the construction are fairly simple: arg1 and arg2
may be replaced with another basic unit of evaluation. The following two examples illustrate
these  concepts.

1. y = ax + b      ==>  equals ( y, add ( multiply ( a , x ) , b ) )

equals

y add

multiply b

a x

2. z = a + b + c  ==>  equals ( z , add ( add ( a , b ) , c ) )

equals

z add

add c

a b

With some minor re-organization, an equation can be viewed as a sequence of messages
in the form: operation(arg1, arg2). Determining the entropy of a math equation can be reduced to
determining the entropy of a message: H(message), which is independent of the length of the
equation.  This  provides  a  common  unit  of  evaluation  since  the  number  of  messages  in  an
equation can vary due to varying equation lengths.

H(message) = H(operation, arg1, arg2)
H(operation, arg1, arg2) = H(operation) + H(arg1) + H(arg2)
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IFF operation, arg1, arg2 are independent

Since only a  rough guideline is  desired,  the random variables `operation',  `arg1',  and
`arg2' may be assumed to be independent. If they are not independent, the resulting value will be
larger  than  the  true  value.  Under  these  simplifying  assumptions,  all  that  is  needed  are  the
frequencies of `operation' and `arg' values. Due to the recursive nature of the messages, it is also
important to determine the frequency that an `arg' is an `operation'.

3.1 Estimating Entropy in MathML Encoding

The  entropy  of  content-based  MathML encoding  is  determined  by  the  frequency  of
content tags and the frequency of identifiers, numbers, and symbols. In this report,  the latter
three will  be grouped together as one and referred to  as  identifiers.  These frequencies  were
gathered from a testbed assembled by aggregating all content encoding examples from the World
Wide Web Consortium MathML 2.0 Working Draft web site [36]. These examples totalled to
1,762 lines of MathML code (24,827 bytes). See Appendix B for the example code. This testbed
was  chosen  because  existing  example  of  MathML  code  were  scarce.  Ideally,  entire  math
textbooks encoded in MathML would offer more representative samples. However, these sources
do not exist  and encoding even a few chapters would have been quite time consuming.  The
examples of the testbed file cover the entire spectrum of possible content tags. The following
approximate distributions of the testbed file are shown below.

Approximate Distributions:
Identifier Frequency Tag Frequency
x 140 <ci> 434
a 58 </ci> 434
b 43 <apply> 307
f 30 </apply>  307
y 25 <cn> 116
2 23 </cn> 116
A 22 <bvar> 60
0 21 </bar> 60
1 17 <plus/> 32
3 18 <fn> 30
B 16 </fn> 30
etc...    etc... etc... etc...

=== ===
556 total  + 2459 total ==> 3015 messages

Based  on  these  distributions,  the  entropy  of  the  tags  was
approximately 3.5 bits and the entropy of the identifiers was approximately
2.6 bits. A message is defined as one tag or identifier.  For a rough approximation, if
independence between tags and identifiers is assumed, then the entropy of
a message is approximately 6.1 bits. Except for a few special cases2, tags
and identifiers should be mostly independent since knowing the outcome of

2 Some special cases of high correlation include: (1) the "log" tag and the identifiers "10"
and "e"; (2)  the "sqrt" tag and the identifier "2".
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a tag should provide little knowledge about the up coming identifier and
vice versa. As indicated in the above distributions, the testbed file consists
of 3015 messages. With an entropy of 6.1 bits per message, this leads to a
theoretical  minimum file size of approximately 18,392 bits (2,299 bytes).
Since independence was assumed in a number of situations, this value is most likely higher than
the  true  minimum  file  size.  A  number  of  short  C  programs  were  written  to  aid  in  these
calculations.  The  source  code  for  these  programs  can  be  found  in  Appendix  C.  The
"cicncsymbol.c" code was used to obtain identifier frequencies. Obtaining tag frequencies was
accomplished in the "simpleencode.c" code found in Appendix G.

4 Details of Encoding
A number of attempts were made to encode content-based MathML in

a more concise manner. The task of encoding equations can be viewed as an
exercise in encoding specialized text. Rather than re-invent the wheel, in all
trials  gzip  was  applied  on  top  of  the  encoding  to  further  compress  the
testbed file, since gzip is known to be a very good compressor.

4.1 Trial #1

Since there are approximately 135 content tags, each of these tag can
be encoded in an 8-bit character. This scheme requires a fixed dictionary
(927 bytes) of known tags and their 8-bit encodings. The dictionary can be
found in Appendix  D. If a tag is unknown, it is left alone and encoded in
plain ASCII characters. Unknown tags seldom occurred in the testbed file
but in general,  they are a likely possibility since other XML tags may be
embedded in the MathML data. A number of obvious redundancies were
removed, such as carriage returns, and unnecessary tabs and spaces. The
source code is incorporated into the source code for trial 3, which can be
found in Appendix G.

This  encoding  produces  a  mixed  stream  of  regular  8  bit  ASCII
characters and 8 bit content tag encodings. Since the tag encodings overlap
with regular ASCII encodings, the "<" character of the tags were preserved
to indicate that the next 8-bit character should be interpreted as a content
tag  encoding.  As  an  example,  the  following  MathML code  and  its  new
encoding are shown below.

Original MathML code:
<apply>

<plus/>
<ci> x </ci>
<ci> y </ci>

</apply>

New MathML encoding:
<a<p<cx</c<cy</c</a
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With a total of 2,459 tags and an average tag length of 7.2 bytes, an
average savings of 5.2 bytes per tag can be achieved.  This meant an estimated
savings  of 12,787  bytes.  A  simple  program  was  written  to  aid  in  this
calculation. The source code can be found in Appendix E.

4.2 Trial #2

Huffman encoding of the content tags was attempted in trial 2. The objective was to
achieve a new average tag length of less than 8 bits in order to perform better than trial 1. Using
the frequencies of the tags in the testbed file, a Huffman encoding was manually generated and
fed into the encoding program. Due to the variable length nature of Huffman codes, the mixed
stream of tag encodings and regular ASCII character encodings were bit-packed. This packing
resulted in ASCII characters that were no longer aligned on 8 bit boundaries. The source code for
this program and the Huffman encoding dictionary can be found in Appendix F.

4.3 Trial #3

Further optimizations on the first  trial were attempted.  The source
code  can  be  found  in  Appendix  G.  The  encoding  of  end  tags  such  as
</apply>,  </ci>,  </cn>  could  be  encoded  as  a  generic  end  tag.  This
simplification is possible due to the regular grammar structure of MathML.
If a end tag is encountered, it must match the last encountered start tag. An
additional optimization reduced the number of  "<" characters by placing
delimiting characters such as "<" and ">" in strategic locations. Since a
large  number  of  the  tags  occur  in  sequence  before  a  regular  ASCII
character  is  encountered,  delimiting  characters  were  placed  around the
regular ASCII characters instead. For example:

<apply>
<plus/>
<ci> x </ci>
<ci> y </ci>

</apply>

would normally be encoded as:

<a<p<cx</c<cy</c</a

Under the new optimization, it is encoded as:

<apc>x</c>y<ca

The "<" and ">" characters can be viewed as delimiter symbols that
mark the beginning and end of tag encodings.  
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5 Results of Encoding
The new encodings were successful in reducing the redundancies of

MathML.  Compression  using  only  gzip  and  unix  compress  were  also
compared against the new encodings. Gzip was used with the "--best" flag
to  indicate  the  use  of  the  best  possible  compression  at  the  expense  of
speed.  The table below presents the resulting file  sizes.  It  also presents
results from a larger file size that was generated by simply replicating the
contents of the testbed file 100 times.

Original Testbed File: (file sizes are in bytes)
plain text 24,827
compress  6,611
gzip  3,639

trial#1  8,747 trial#2 6,179 trial #3 6,271
#1+compress  3,500 #2+compress 4,888 #3+compress 2,939
#1+gzip  2,263 #2+gzip 3,820 #3+gzip 1,990

Testbed File X 100: (file sizes are in bytes)
plain text 2,482,700
compress   288,791
gzip    21,923

trial #1   874,700 trial #2 619,775 trial #3 627,100
#1+compress   125,089 #2+compress 193,013 #3+compress  99,781
#1+gzip     8,419 #2+gzip  16,210 #3+gzip   6,160

With the original testbed file, trials 1, 2, and 3 were able to achieve a size reduction of
65%, 75%, and 75%, respectively. Gzip by itself is also a very effective compressor, obtaining a
reduction of 85%. However, by applying the new encoding as an initial step followed by gzip,
the gzip algorithm was able to reduce the original gzip file by 38% to 45%. Trial  2 on the
original testbed file was an exception to the rule, where the final file size was slightly larger than
the gzip version. The encoder can be viewed as a front-end preprocessor to gzip that transforms
the input file to a  more suitable format for gzip's  compression algorithms.  Compared to the
original file, an encoder preprocessed gzip file reduced the original testbed file by 91%, 85%,
and 92%, respectively. For the larger testbed file, this preprocessor enabled the
original gzip file to be reduced by 62%, 26%, and 72%, respectively. Results
using unix compress produced results that show similar general trends.

6 Discussion of Results
The theoretical minimum file size approximated in the analysis section

was fairly accurate. It predicted a minimum file size of approximately 2,299
bytes.  However,  trial  3  reduced  the  file  to  a  size  of  1,990  bytes.  As
mentioned previously, since only rough approximations were desired and
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independence  was  assumed  for  the  sake  of  simplicity,  the  predicted
minimum file size should be slightly higher than the true minimum value.
Trial 3 combined with gzip should be considered very compact due to the
drastic reduction in file size (92%) and therefore, should be fairly close to
the theoretical minimum file file.

The estimation of savings in trial 1 were also fairly accurate. Savings of 12,787 bytes
were estimated while the results indicated a value of 16,080 bytes instead.

Verification of  correctness  for  trials  1  and 3  was  accomplished by
simply  inspecting  the  encoded  output  file.  Although  writing  a  decoder
would offer a stronger verification process, trials 1 and 3 were fairly simple
to just visually inspect. Trial 2 proved to be difficult for visual inspection
due  to  the  unalignment  phenomenon.  To  determine  correctness,  the
estimated savings was calculated. Based on the frequency distribution of
tags and the Huffman encoding  (both shown in Appendix F), the following
table was generated.

Huffman
Tag Count Length Savings
known end tags 1074 1 bit 7 bits
ci  434 3 bits 5 bits
apply  307 3 bits 5 bits
cn  116 5 bits 3 bits
known w/attr   75 5 bits 3 bits
bvar   60 6 bits 2 bits

------
approximate savings = 11,916 bits 

  =  1,490 bytes

The approximate savings compared against trial 1 is 1,490 bytes. An
actual  savings  of  1,476  bytes  was  realized,  which  is  quite  close  to  the
estimated value. From these results, the algorithm developed in trial 2 is
most likely correct.

Surprisingly,  the  simple  encoding scheme  developed in  trial  1  and
further refined in trial 3 proved to be very effective. When combined with
gzip,  file  size  reductions  were  quite  substantial.  In  contrast,  the  more
sophisticated  Huffman  encoding  in  trial  2  combined  with  gzip  did  not
produce  the  best  results.  This  result  is  likely  due  to  the  unaligned  bit
boundaries  that resulted.  Character  frequencies  were disturbed and gzip
was  unable  to  apply  its  algorithms  effectively.  The  encoding  of  trial  2
resembled  a  binary  file  since  true  sequences  of  ASCII  characters  were
unaligned  to  the  character  bit  boundaries.  In  contrast,  trials  1  and  3
preserved  the  8  bit  character  boundaries  and  allowed  the  encoding  to
appear more like a text file.

Gzip is a byte-oriented compression algorithm [4][5][6][10][16]. First,
it applies Lempel-Ziv 77 adaptive encoding, replacing duplicate strings with
a (distance, length) pair. It has a maximum distance of 32k bytes, and a
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maximum  length  of  258  bytes.  Next,  it  uses   Huffman  encoding.  Two
Huffman  trees  are  created.  One  is  used  to  encode  literals  and  match
lengths, while another is used to store distances.  The effectiveness of the
first stage depends on the distribution of characters from the preprocessor.
The  correlation  of  characters  is  also  important  since  the  existence  of
common sequences of characters is vital to the effectiveness of the LZ77
algorithm. In trial 2, most of the correlation was not detected due to the
unpredictable unalignments that occurred. The example below illustrates a
sequence of characters (ABC) that are aligned differently on each instance.
LZ77 would detect the sequence in the first instance, while in the second
instance, it would appear as a sequence of totally different characters.

[   ][   ][   ].......[   ][   ][   ].....

  A    B    C           A    B    C

The simple  encoding schemes  in  trials  1  and  3  assisted  gzip  in  a
number of ways. Since gzip has a maximum history of 32k bytes, the simple
encoding can be viewed as helping to increase this history size. Tags are
shortened from an average of 7.2 characters to approximately 1 character,
helping to fit more characters into the 32k window. In trial 3, known end
tags were aggregated into a single generic end tag since the matching start
tag could be easily determined. This optimization increases the possibility
of  finding common character  sequences.  The example  below shows how
different sequences of end tags may become common sequences.

Original:
...</ci></apply>...</csymbol></apply>...

Trial 1:
...</c</a...</s</a...

Trial 3:
...</</...</</...

A grammar-based  encoding  scheme  was  not  attempted  due  to  the
large  grammar of  MathML.  As well,  some grammars  might  not  undergo
effective grammar encoding. Flat grammars, which contain a large number
of  fan-ins  and fan-outs  for  each state,  may exhibit  poor compression.  In
contrast,  a  highly  hierarchical  grammar  reduces  the  number  of  possible
next states. It reduces the fan-in of a state as well. MathML is considered a
flat grammar language because it has fairly little restriction on which state
may be entered from any other state. For instance, once the <apply> state
is reached, there is little restriction on the next possible tag. Due to this
situation,  grammar  encoding  becomes  similar  to  traditional  Huffman
encoding. The benefit of grammar encoding is that at any particular state,
the number of next possible states is small and can be encoded in less bits.
As well,  local probabilities  in the form of  P(next state∣current state)  are
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used rather than global probabilities required in the traditional Huffman
model. In grammar encoding, incremental costs are paid to transition from
the current state to the next state. However, in flat grammars the benefit of
incremental costs are not present. The example below illustrates flat and
hierarchical grammars.
 

Flat Grammar Hierarchical Grammar

The simple  encoding developed  in  trial  1  and 3  can be  applied  to
other  applications  of  XML.  It  can  be  easily  extended  to  support  the
presentation  tags  of  MathML.  The concepts  can be  applied  to  SGML in
general, HTML, OpenMath, and other markup languages.

The encoding concepts described in this report may be extendible to
equation  derivations  and  mathematical  proofs.  Due  to  the  usually  high
amount of redundancy between one line in a proof and the subsequent line,
only minor changes in the expression tree are required. If an equation is
viewed as an expression tree, substitutions of one part of the tree (subtree)
can be specified.

An issue that was not addressed in the experiments was the mixture
of  MathML  with  regular  text  descriptions  and  possibly  HTML  tags.
Normally, mathematical content does not exist by itself. It  usually requires
textual  descriptions  and  annotations  to  clarify  the  mathematics.  This
mixture will be common on web pages in the near future since MathML is
rapidly being accepted among the internet community. Since the encoding
scheme is fairly flexible and extensible, this mixture should not be a major
issue  and  can  be  accomodated.  Regular  text  would  be  well-compressed
under the LZ77 algorithm in the gzip stage.

7 Related Work
A good survey on the state of mathematics and computer technology

can  be  found  in  [27].  Compression  of  other  forms  of  data  has  been
attempted. These include Java class files  [19][25],  various forms of semi-
structured  text  [23][37],  and  fat  binary  executables  [8][12][13].  These
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works  have  focused  mainly  on  grammar-based  or  tree  syntax-based
encoding methods. This report dealt only with MathML content tags while
ignoring  presentation  tags.  Reconciling  between  MathML  content  and
presentation tags is discussed in  [7]. Mathematical computation protocols
are  presented  in  [15]  and  [30]  to  handle  distributed  computation.  The
Emath component is described in [1]. It is an embeddable component based
on  Lisp  that  supports  highly  customizable  display  and  editing  of  math
formulas. The integration of MathML, OpenMath, and XML in general,  is
discussed  in  [21].  Information  on  the  XML  standard,  its  possible
applications, and XML grammar specifications can be found in [14][29][33]
[35].

8 Conclusions
The simple encoding scheme developed for MathML proves to be very

efficient, achieving very high compression rates when used in conjunction
with  gzip.  The  encoding  scheme  can  be  easily  applied  to  other  markup
languages.  The encoder enabled gzip to realize further compression. The
encoding scheme can be viewed as a special front-end preprocessor to gzip
that  transforms  MathML  input  into  a  more  compressible  and  suitable
format for gzip. This preprocessor idea can be applied to other areas of
specialized content. 
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