
Fortran D
- Final Report -

Compilation Techniques for Parallel Processors
ECE 1754

Professor Abdelrahman

Friday May 12, 2000.

David Tam



1  INTRODUCTION

Fortran D is an extension of Fortran 77 to allow for efficient data-

parallel programming. It has language extensions to allow the programmer

to specify how data should be divided among nodes of a distributed-memory

machine  (DMM).  This  task  is  known as  user  specified  data  partitioning.

Once the data partitioning is specified, the Fortran D compiler automates

the  rest  of  the  process  to  create  efficient  parallel  executable  code.  It

handles the partitioning of the computation based on the data partitioning

that was specified by the programmer. Explicit communication, in the form

of message passing, is generated by the compiler. The compiler handles the

tasks of optimizing this communication and exploiting available parallelism

by efficiently dividing computation among the nodes.  Finally,  the data is

distributed according to the specified data partitioning and a single SPMD

(single program multiple data) executable is distributed to all nodes of the

DMM.

Although the Fortran D compiler system is nearly a decade old, it has

contributed important research on compiler optimizations for  distributed-

memory  machines  (DMMs).  The  optimization  techniques  developed  are

applicable in general to parallel machines and languages. For instance, the

work done on the Fortran D compiler has been used in conjunction with

automatic data partitioning schemes [15]. The automatic data partitioning
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algorithms can be added to the front-end of the Fortran D compiler system,

while the back-end remains essentially  unchanged.  This capability shows

the  modularity  and  applicability  of  the  compiler  system.  As  well,  the

compiler  system  has  been  influential  in  the  development  of  the  High

Performance  Fortran  (HPF)  specification  [8]  [19].  HPF  also  leaves  data

partitioning to the programmer and performs many of the same back-end

tasks and optimizations as Fortran D.

Fortran D has a heavy emphasis  on compile-time optimizations,  as

opposed to slower run-time optimizations. As well, optimizations are based

around loops rather than procedure calls.

1.1 Relation to Other Areas

    Fortran D relies  heavily on analysis  techniques such as dependence,

control flow, and symbolic analysis. Loop transformations are relied upon to

maximize the exposure of parallelism to the compiler. The general ideas of

loop  scheduling  are  incorporated  into  the  automatic  computation

partitioning phase of the compiler. It performs a static scheduling based on

the  "owner  computes"  rule.  Fortran  D  uses  the  "owner  computes"

convention  in  dealing  with  data  locality.  However,  loop  scheduling,  as

studied in the lectures, was targeted for shared-memory systems.
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1.2 Main Problems

The main problems that the Fortran D compiler system deals with are

the  creation  of  a  machine-independent  programming  language,  data

partitioning,  computation  partitioning,  static  and  dynamic  partitionings

depending  on  the  nature  of  the  code,  communication  optimization,  and

exploiting parallelism.

In  designing  a  language  that  is  machine-independent,  the

programming model is as follows. The programmer writes code under the

traditional  sequential  programming  model.  Next,  the  programmer

determines  how the data  should  be  divided in  general  based  on insight

gained  from  first-hand  experience  in  designing  the  algorithm  and

implementing  code.  Partitioning  the  data  is  specified  by  using  the

DECOMPOSITION, ALIGN, and DISTRIBUTE operatives. The programmer does not

need to worry about the number of nodes on the DMM or the details of the

DMM architecture.

1.3 Report Outline

Section 2 of the report explores a number of issues in the design of

Fortran D. The collection of issues presented is fairly eclectic and loosely-

coupled. After gathering a large stack of related papers and attempting to

read (and understand) all of them (a nearly impossible task), these were the
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issues that came to mind: critical design decisions, review of optimization

results,  scalability  of  optimizations,  analysis  of  optimizations,  additional

optimizations,  training  sets,  dynamic  partitioning,  storage  management,

pipelining,  owner-computes,  distribution  flexibility,  load  balancing,

operating system interaction, programming model, compile-time emphasis,

classes of scientific problems, new technologies, and comparison to HPF.

2  MAIN

2.1 Critical Design Decisions

A critical decision made by the designers was that data partitioning

be specified first.  Computation partitioning is  automatically derived from

the  first  step.  Another  critical  decision  was  that  the  owner  computes

convention be the basis for computation partitioning. The designers decided

to  compromise  on  flexibility  rather  than  performance  by  heavily

emphasizing compile-time optimizations rather than relying more on run-

time support.  This design decision was made in [11] after  observing the

drawbacks of the first generation of data parallel programming languages,

such as the Superb system [2]. 
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2.2 Review of Optimization Results

Various  communication  optimizations  have  been  developed  to  hide

startup,  copy,  and  transit  times  in  the  message-passing  system  [12].

Reducing  startup  times  relies  upon  the  techniques  of  message

vectorization, message coalescing, and message aggregation. Hiding copy

times relies upon nonblocking message mechanisms. Hiding transit times

relies  upon message  pipelining,  vector  message  pipelining,  and iteration

reordering. Pipelined computations are handled effectively using fine-grain

or coarse-grain pipelining. Collective communication, reductions, and scans

are  applied  as  well.  The  benefits  of  reductions  and  scans  increase  with

increased problem and system size.

The applicability of each optimization depends upon various factors.

However, message vectorization has been shown to be the most important

optimization [12].  In effect,  this  technique gathers  a series  of  individual

messages destined for a particular distributed array and a particular node,

and makes  a single  request  instead.  This drastically reduces the startup

overhead.  When  pipelined  computations  are  present,  coarse-grain

pipelining optimizations work best compared to fine-grain pipelining. Again,

this result is mainly due to communication overhead factors. 

As a general guideline as to which optimizations should be applied,

the  following  observations  have  been  made  [12].  When  communication
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startup  costs  are  high,  message  vectorization  is  more  effective  than

message  pipelining.  Since  message  pipelining  attempts  to  communicate

results  as  soon  as  they  are  produced,  it  will  naturally  ignore  buffering

attempts that  are  inherent in message vectorization. Buffering amortizes

the startup cost of sending one message among several messages.

Message  vectorization  can  sometimes  lead  to  unnecessary

communications. Similar to the problem experienced in loop-invariant code

motion, loops or certain iterations of a loop may not be executed. Due to

message vectorization, the remote data has already been retrieved but is no

longer needed.

Message  aggregation  is  more  effective  than  vectorization  when

messages come from a series of different arrays but are destined for the

same  node.  Naturally,  choosing  to  use  aggregation  will  exploit  the

phenomenon and result in better optimizations. Using vectorization would

require  buffering  for  each  of  the  different  arrays  and  may  prove  to  be

slower.

In  the  process  of  transmitting  a  message  to  another  node,  the

message must be copied from the application space to the operating system

kernel  space  before  sent  out  onto  the  network.  Traditional  messaging

causes the application to block until the copying from application space to
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kernel space is complete. On the other hand, nonblocking messages return

to the application as soon as the copying begins, performing the message

copying concurrently  with  application execution.  The use  of  nonblocking

messages is effective only when the increase in startup time is less than the

copy time. As well, there must be sufficient local computation to hide the

copy time. If  the increase in startup time is equal to or greater than the

copy cost, the program might as well use the traditional blocked message

mechanism and eliminate the overly expensive startup time.

Iteration  reordering  requires  the  difficult  task  of  predicting  the

amount  of  increased  computation  due  to  reordering.  Under  blocked

message implementations, this optimization can hide any remaining transit

time that is not hidden by the vector message pipelining technique. Under

nonblocking message implementations, it can hide copy times as well.

In general, reductions and scans should always be applied. Pipelining

is an effective and scalable optimization. Pipelining requires the running of

training sets to obtain parameter values that are used in calculating optimal

block  size  in  coarse-grain  pipelining.  Dynamic  decomposition  is  suitable

only  for  problems  that  contain  small  amounts  of  distributed  data,  since

redistribution of  this  data  can be  very  expensive.  Message  vectorization

remains effective even when the amount of communication increases.
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2.3 Scalability of Optimizations

Results  from Fortran D papers  [12]  [13]  indicate  that,  for  a  fixed

number  of  nodes,  as  the  amount  of  communication  increases,  message

vectorization scales better than message pipelining.  There is relatively less

local computation available  to hide the increase  in communication under

the  message  pipelining  scheme.  Message  vectorization  eliminates  entire

messages  in  an  effective  manner.  However,  as  the  number  of  nodes

increases, collective communication such as broadcasting scale well while

others such as message vectorization do not. With broadcasting, the startup

and copy costs of communicating a segment of data are amortized over a

larger and larger number of nodes.

In terms of reducing execution times in comparison against sequential

execution, the effectiveness of fine-grain pipelining, coarse-grain pipelining,

and regular send/receive mechanisms increase as problem size increases.

However, communication optimizations become less effective.

The general rule is that the computation to communication ratio will

indicate  whether  communication  or  parallelization  optimizations  are  the

most  effective.  The  ratio  of  problem  size  (in  terms  of  the  number  of

elements)  to number of  nodes will  determine whether  communication or

computation dominates. For a fixed problem size, as the number of nodes

increases,  communication will  eventually dominate.  This is  because  each
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node has less and less local computation to perform since computation is

divided among more nodes. For a fixed number of nodes, as the problem

size increases, computation will dominate. Each node must perform more

and more local computations since computation is divided among less and

less nodes.

2.4 Analysis of Optimizations

Most communication optimizations attempt to simply move time that

must be spent on an operation from one location to another. Communication

operations  require  a  certain  minimal  amount  of  time  that  cannot  be

reduced. These optimizations attempt to overlap these segments of time.

The underlying time segments are from computations performed locally on

each node. However, when these time segments are shorter than other time

segments  which  are  trying  to  overlap  them,  the  communication

optimizations become less  effective.  The length of  these underlying time

segments depend upon the nature of the code. Since the Fortran D compiler

system was initially targeted for a certain class of scientific computations,

these communication optimizations have proven to be effective. This class

of programs usually have an alternating pattern of local computation phase

followed by a global synchronization and communication phase. Programs

that do not fit this class of behaviour may not be optimized effectively.

The whole process of deriving optimizations must be done carefully.
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Some optimizations may only be patch solutions and not widely applicable.

Since the optimizations are based on studying well-known benchmarks [12]

[23], and these benchmarks are a representative sample of the behaviour of

a  wide  class  of  programs,  these  optimizations  should  have  wide

applicability.  However,  a  number  of  papers  have  been  written  that

introduce new optimizations for additional classes of problems that were

not initially considered [9] [13] [18].

2.5 Additional Optimizations

Additional analysis such as interprocedural and interloop analysis can

expose  further  opportunities  to  apply  the  various  communication

optimizations  [7].  Array  kill  analysis  can  eliminate  unnecessary

communication and computations. For instance, code in the form of:

A[1] = ...
...
..
.
A[1] = ...

can be optimized if, for a particular node, the reference A[1] is remote and

there are no reads of A[1] in between by any nodes, then the first line can

be eliminated. This also eliminates the communication of rhs references to

the owner of A[1] due to the owner computes rule.

Statement grouping can aid in the partitioning of computation [13]. It

basically groups statements that have common conditions and reduces the
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number of explicit guards inserted to perform run-time checking. 

Interloop analysis can allow for message coalescing and aggregation

to be applied across loop nests, reducing communication overhead.

For multi-dimensional arrays which reduction is applicable, there are

opportunities  to  improve  efficiency  by  applying  the  technique  of  multi-

reductions [13]. This technique imposes a direction upon the reduction of

multi-dimensional arrays. This leads to data transfers in a predetermined

direction across  a predetermined dimension.  This  allows  the compiler  to

determine  when communication  is  necessary  and  apply  optimizations.  It

also  allows  a  problem to  be  partitioned  in  other  dimensions  so  that  no

communication is required in some cases.

2.6 Training Sets

Training sets are typically run on a system to determine values for

various parameters such as message startup, transit,  and copy times [1].

These training sets may not be an accurate reflection of parameters during

the execution of  the  target  code.  The training sets  may not  account for

multiprogramming  workload  interference,  program self-interference,  and

various operating system factors. As well, since averages are used, variance

may need to be examined as well. Ideally, the parameters should be random

variables with distributions that reflect those obtained by the training sets. 
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Using training sets  provides a way of  obtaining static performance

parameters  that  are  important  in  deciding  which  optimizations  to

implement.  In  general  there  are  issues  in  using  static  versus  dynamic

performance estimates. The use of static methods means that there is no

feedback  mechanism  in  the  system  to  compensate  for  bad  optimization

decisions,  or  unanticipated  situations.  The  use  of  run-time  checks  may

account for some of the changes but cannot do very much to correct the

problems. The heavy emphasis on compile-time analysis and optimizations

naturally  leads  to  the  use  of  static  performance  estimation.  Dynamic

estimates may have a lot of overhead, deteriorating performance.

Dynamic  information  could  be  useful  in  coarse-grain  pipelining  to

adjust block sizes dynamically. However, this would require a number of

run-time checks to be inserted in various locations to trigger the new block

size implementation.

New  developments  in  technology  show  that  a  number  of  built-in

performance  monitoring  facilities  are  becoming  available.  For  instance,

many processors now include high-resolution counters that can be used for

a  variety  of  purposes.  The overhead of  dynamic  performance  estimation

may be less than previously thought.
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2.7 Dynamic Partitioning

The applicability of the optimizations to dynamic partitioning schemes

is fairly good. As long as the nature of the dynamic partition is known at

compile-time, the Fortran D system will handle it fairly well. However, this

feature  usually  means  the compiler  will  be  inserting  run-time  checks  to

determine  which  data  partitioning  scheme  is  in  effect.  These  run-time

checks have an detrimental effect on performance.

The support of dynamic partitioning causes a number of complications

and problems.  Reaching  decomposition  analysis  must  be  performed  and

run-time  checks  may  need  to  be  added  if  the  partitioning  remains

ambiguous after compile-time analysis. These checks add overhead to the

executable and decrease the performance of the DMM system. An alternate

approach to run-time checks is node splitting, which restores compile-time

analysis. The original basic block containing the accessed array is split into

two. This causes changes to the control flow and data flow graphs which

are used in various analysis stages.

 

Avoiding  dynamic  partitioning  is  a  wise  decision  for  all  but  the

smallest programs [12]. This is because the cost of redistribution of data

among the nodes is very high. In some very rare cases, it may be possible to

apply  the  ideas  of  the  message  pipelining  technique  to  overlap  data

redistribution  with  other  activities  well  ahead  of  the  actual  switch-over
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point in a dynamic partitioning scenario. In most cases,  this optimization

can prove to be difficult,  as data can be altered up until the switch-over

point. In another possibility, which may be quite rare, immediately before

the cross-over point, all variables on the right hand side (rhs) may exist on a

particular  node A.  The left  hand side  (lhs)  belongs to a remote node B.

Immediately after the cross-over point, the lhs variable is redistributed to

node  A.  This  scenario  presents  an  obvious  opportunity  for  optimization,

however, it is a severely contrived example.

2.8 Storage Management

There are three schemes of storage management [11] [10]. They are

overlaps, buffers, and hash tables. Overlaps expand the local array sections

to hold additional elements. The advantage of this technique is the clean

code it generates. The disadvantage is that it is specific for each array and

may require more storage than available.

For  instance,  the  local  section  of  a  distributed  array  A[]  holds

elements in indices 10 to 20. If the local node requires elements in indices 9

and 21 to perform computation, then overlaps are added. The local array is

expanded on the left and the right so that it will range from indices to 9 to

21.

Buffers  avoid contiguous and permanent storage.  It  is  useful  when
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storage space must be reused (such as due to memory constraints),  and

when  the  remote  array  section  is  not  near  the  local  array  section.  For

instance,  array A requires elements from remote indices 100 and 200 in

order to perform computation instead of 9 and 21. 

Hash tables are used when the set of remote elements accessed is

quite sparse, such as in irregular computations. The main advantage of this

method is its quick look-up mechanism.

2.9 Pipelining

In  previous  papers,  pipelining  was  shown  to  be  very  effective  in

parallelizing computational wavefront programs [12] [23].  These types of

programs  cause  a  dependence-based  sequential  access  of  a  distributed

array. This linear sweeping motion of dependencies can be transformed into

a collection of parallel sweeps along a number of segments, with a single

initial dependency at the beginning of each segment. Strip mining and loop

interchange are used to transform the code.

In general,  course-grain pipelining was considered most applicable,

compared against fine-grain pipelining. Choosing the optimal block size is

based on the formula sqrt(block communication cost / element computation

cost). For NUMA systems, determining block communication costs can be

fairly difficult. It may also lead to variable block sizes since communication
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costs  from  one  node  to  another  will  vary,  which  causes  further

complications.  For  heterogeneous  nodes,  determining  computation  costs

will be difficult since each node may have a different computation cost.

2.10 Owner-Computes

A  fundamental  characteristic  that  affected  the  applicability  of  the

optimizations  was  the  use  of  the  owner  computes  convention.  This

convention determined  how the  computation was  to be  partitioned.  This

convention allowed some important  assumptions to be made.  The owner

computes rule solved the problem of the owner having the most up to date

copy  of  a  variable.  However,  it  was  seen  that  this  convention  was

sometimes too restrictive and prevented some optimizations. Relaxation of

this convention was applied in a number of situations, such as on private

variables.

An alternative convention to the owner-computes rule is the almost-

owner-computes  rule  [21].  In  this  alternative,  all  right--hand  side  (rhs)

variables are examined. The node that owns the most variables performs

the computation. This convention could relieve some of the redistribution

tendencies experienced by the compiler. A programmer who is aware of this

convention  would  know to  leave  the  distributed  data  alone  under  some

situations rather than specify a redistribution of data.
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Fortran  D  provides  the  "ON"  clause  to  optionally  specify  which

processor should perform the computation [21]. However, this seems to be

a very primitive and tedious way of optimizing code. The programmer may

need to specify  ON clauses in a number of locations in the code and must

also  determine  which  node  is  best  to  perform  the  computation,

contradicting the goal of machine-independent code. These issues should be

abstracted away from the programmer and automatically handled.

2.11 Distribution Flexibility

The  three  basic  distribution  concepts  of  BLOCK,  CYCLIC,  and

BLOCK_CYCLIC are  supported  along  with  a  number  of  variations.  These

variations are specified in the form such as BLOCK(4), where the parameter

4 in  a  block  distribution  specifies  the  number  of  nodes  involved.  For

instance, if this distribution is specified on an 8 node DMM, only the first 4

nodes  will  be  utilized.  For  cyclic  distributions  such  as  CYCLIC(5),  the

parameter  5 specifies  how many times to cycle through all  nodes during

distribution. On a 4 node DMM, for an array that has 40 elements with a

CYCLIC(5) distribution, each node is given 2 elements at a time. For block

cyclic distributions such as BLOCK_CYCLIC(3), the parameter 3 specifies that

3 elements are to be grouped for each block. Various possible distributions,

as described in [6] are shown in Figure 1.
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2.12 Load Balancing

From  the  phases  of  compilation  system  as  presented  in  various

Fortran D papers [11] [12]  23],  there appears to be no handling of load

balancing.  Data  partitioning  will  lead  to  the  initial  distribution  of  load.

However,  there  are  no  feedback  mechanisms  to  handle  imbalances  that

could occur. The owner computes convention is a fundamental inhibitor of

load balancing since computation cannot simply migrate to an idle node.

At first glance, data-parallel problems may appear to exhibit a natural

load  balancing  tendency.  It  appears  that  the  same  general  operation  is

applied  uniformly  on  all  data  elements.  However,  when  this  is  actually

implemented,  some  locations  of  the  distributed  data  may  require  more

resources to obtain a result [20]. Fortran D does not appear to handle such

cases.

2.13 Operating System Interaction

The role  of  the operating system (OS)  has been largely  ignored in

developing  the   optimizations.  It  is  only  partially  accounted  for  by  the

estimation  of  startup  and  copy  times  in  message  transmission.  Useful

hardware  facilities  have  also  been  ignored.  Perhaps  certain  facilities

provide  a  drastic  improvement  in  performance,  or  make  certain

optimizations  extremely  effective.  Ideally,  the  role  of  the  compiler,
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operating  system,  and  hardware  should  all  be  considered  in  order  to

achieve optimal performance. Most compiler systems seem to ignore these

other aspects and believe all problems can be solved by the compiler rather

than from the cooperation of  hardware,  operating system, and compiler.

They exhibit the behaviour best described by the saying, "given a hammer,

all problems appear to be nails". Accounting for useful facilities, as well as

identifying interference situations could be helpful.  Additional barriers to

performance may be identified during this process.

In general, the Fortran D compiler does not address operating system

issues such as the effect of context switches and pollution of the cache by

the OS or other processes. It appears to assume a batch processing OS. It

ignores multiprogramming environments. It ignores the effects of I/O and

paging. For instance, if secondary storage or retrieval is required, locality

of disks should be accounted for as well.

2.14 Programming Model

The applicability of the programming model adopted by Fortran D is

debatable. It is based on the assumption that the programmer knows best.

The programmer knows how to partition the data most efficiently. However,

there have been a number of attempts to automate this data partitioning

process. As well, data partitioning assistant tools have been developed and

integrated  in  the  Parascope  Editor  and  D  Editor  [4]  [14].  These
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programming  environments  allow  the  programmer  to  obtain  rough

performance estimates based on the partitioning scheme chosen.

The need for such tools indicates some kind of underlying weakness in

the programming model. Determining the best data partitioning is perhaps

more  difficult  than  expected.  Development  of  these  partially  automated

tools  seems  to  foreshadow  the  usefulness  of  completely  automatic  data

partitioning. It also contributes fundamental research into the automation

of data partitioning. Automatic data partition is beyond the scope of this

report.

The expressiveness of this model is also a debatable issue [6].  The

high  level  abstractions  presented  by  Fortran  D  could  potentially  be  an

inhibitor  of  performance.  Certain  problems  and  operations  may  not  be

efficiently  expressed  leading  to  systemic  bottlenecks.  Fortran  D  does

provide  irregular  data  partitioning  through  alignment  maps.  This  fine-

grained data partitioning mechanism provides  a lot of  flexibility and can

handle more problems that have irregular data access patterns.

Parallel sections of code cannot be explicitly specified in the Fortran

D language. This may be a disadvantage for code implemented directly in

Fortran  D  from the  start.  A  programmer  who  knows  for  certain  that  a

section code can be executed concurrently cannot directly specify it. There
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is  an  implied  parallelism  based  on  the  user-specified  data  partitioning.

However, this lack of an explicit parallel  directive is advantageous when

porting an existing sequential program to the Fortran D language and DMM

parallel system since only a few additions need to be made to efficiently

parallelize the code.  Actual alteration of existing lines in the code is not

needed.

2.15 Compile-Time Emphasis

A  scenario  where  the  emphasis  of  compile-time  analysis  and

optimization can be problematic is as follows. A large DMM system requires

users  to  reserve  time-slots  in  order  to  run  their  computations  and

simulations and are charged for this usage. However, the number of nodes

that are available at any particular time is unpredictable. Rather than spend

time during the allotted time slot to compile code, users would prefer to

perform the compilation ahead of time on their own computers and simply

transfer the executable to the DMM. Users of such a system would prefer

the number of nodes to be a run-time specification rather than compile-time

specification. 

This issue has been addressed in [9]. However, the solution in general

limits  the  effectiveness  of  compile-analysis  and  introduces  run-time

overhead. There are drawbacks to such run-time support. Run-time guards

must  be  inserted  at  many  locations  of  code,  and  certain  optimizations
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cannot  be  performed.  These  problems  will  cause  a  decrease  in

performance. Naturally, the increase in time must be compared against the

compilation time to determine which choice to select.

The trade-off between compile-time and run-time optimizations is the

issue  of  speed  versus  flexibility.  Compile-time  optimizations  give  less

flexibility  but  performs  much  deeper  analysis  and  lead  to  better

optimizations. Fortran D has very few language extensions and thereby has

fewer  opportunities  to  insert  ambiguous  code  that  requires  run-time

support.

A  disadvantage  of  compile-time  analysis  is  that  there  is  typically

difficulty  in  determining  indirect  variable  references.  However,  run-time

support  can  easily  determine  these  references.  Perhaps  more  run-time

optimizations should be added. However, these optimizations will increase

overhead so they must be weighted carefully against the benefits. 

Additional  run-time  support  can  be  provided  in  areas  that  are

important  to  added  program  flexibility.  These  sections  of  code  should

encounter infrequent execution and should not be on the critical path of the

program. Again,  there  is  a trade-off  between performance and flexibility

that must be balanced.
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2.16 Classes of Scientific Problems

In general, there are roughly three classes of scientific problems. One

class  exhibits  the behaviour of  alternating local  computation with  global

synchronization  and  communication.  These  cycles  of  compute,

communicate,  compute  are  ideal  problems  to  be  handled  by  compiler

systems.  Another  class  is  loop-carried  cross-processor  data  dependent

computations. These usually traverse a distributed array in a serial fashion

and exhibit dependency characteristics that make it appear impossible to

parallelize. However, various loop transformation techniques can eliminate

these dependencies and expose parallelization opportunities. Fine-grain or

coarse-grain pipelining techniques can be applied to achieve parallelization.

A final class of computations are those that are irregular in nature. They

access data in irregular patterns. These are more difficult to optimize. A

number of papers have dealt with these types of problems [2] [21] [22].

A potential solution relies on the ability to specify data partition at a

fine-grain level.  If  the programmer understands the access irregularities,

these could be accounted for during data partitioning.

The optimizations do not take into account that for some classes of

problems,  the  amount  of  data  may start  off  small,  but  slowly grow.  For

instance, dynamic programming problems exhibit this behaviour. As well,

programs that retain and alter historic values may exhibit this behaviour.
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Optimizations may not take these factors into account. Since most of the

optimizations  are  compile-time  based,  they  have  a  tendency  to  fix  a

particular optimization to a particular region of code. In some cases, run-

time guards could be used to trigger a different optimization at a particular

point  in  the  program.  For  instance,  when  the  amount  of  data  in  a

distributed array is small, message aggregation may be chosen. When the

amount of data in a distributed array grows larger, message vectorization

or message coalescing may be chosen instead.

2.17 New Technologies

It has been close to a decade since the Fortran D compiler system

was developed.  Since  that  time,  new technologies  have been  developed.

New hardware and operating system technologies have been developed and

are  in  use.  The  Fortran  D system may be  less  applicable  to  these  new

systems.  For instance,  shared-memory systems are not addressed by the

Fortran D system even though they existed before the compiler system was

conceived.  NUMA  systems  have  not  been  accounted  for  in  the

optimizations.  This characteristic may make it very difficult to determine

which communication optimizations  to  apply.  The  transit  times  will  vary

greatly depending on which node is local and which is remote. Transit time

is no longer uniform. Case by case optimizations for each partition and each

node may be required. An explosion in dimensionality is evident. A partial

solution relies on the fine-grain specifications in data distribution provide
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by Fortran D. A programmer would first need to account for the underlying

system architecture before carefully specifying the data partition. This is

only a partial solution since the programmer does not have full control over

exactly which node data will be placed. As well, optimizations performed by

the  compiler  will  still  not  be  aware  of  the  NUMAness  of  the  system.

Unfortunately,  this  solution  leads  to  architecture  dependent  code  and

defeats one of the main goals of Fortran D.

Another  new trend  is  the  use  of  heterogeneous  nodes,  such as  in

clusters,  or  the  internet  in  general.  This  makes  the  calculation  of

computation costs fairly difficult, similar to NUMA systems.

The use of nodes that are symmetric multiprocessors (SMPs) is not

addressed by the Fortran D compiler system. A simple approach would be

to treat  the entire  SMP node as a single  processor  node.  However,  this

approach would under-utilize the SMP node and would not achieve the full

potential of the system. Another possibility is to account for the SMPs as a

more powerful node. Effectively, this would could be seen as the treatment

of  a  heterogeneous  system  as  mentioned  previously.  An  even  better

approach would be to treat the system as a NUMA system. Some nodes are

closer together than others. For instance, each processor on the SMP node

is treated as a separate node. When analyzing for optimization, the transit

times between nodes on the same SMP are relatively small.
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2.18 Comparison to HPF

HPF uses the align and distribute statements that are common with

Fortran D. However, the extensions also provide a way to specify that data

be stored in multiple  locations to improve read access  [8]  [19].  Updates

become  more  difficult  under  this  scheme.  HPF  also  supports  explicit

parallel directives unlike Fortran D.

3  CONCLUSIONS

The  back-end  optimization  techniques  developed  in  the  Fortran  D

compiler  system  have  been  valuable  to  parallelizing  compiler  research.

Fortran  D  was  designed  mainly  for  problems  that  have  inherent  data

parallelism. There is a heavy emphasis on compile-time rather and run-time

optimizations. Such an emphasis allows deeper analysis and highly effective

optimizations  to  be  performed.  However,  it  also  means  there  is  less

flexibility in the execution environment.

Fortran  D,  like  most  other  compiler  systems,  fails  to  seriously

consider  the  effects  of  the  operating  system  and  additional  hardware

support. Accounting for all three areas may lead to further optimizations. 

Fortran D was developed for a DMM hardware nearly a decade ago
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and therefore does not accommodate heterogeneous DMMs, NUMAness of

nodes,  and  SMP  nodes.  Support  could  be  provided,  however  focus  has

shifted to the HPF specification, which incorporates much of Fortran D. Any

future research will be implemented on HPF compiler systems instead.
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