
Building Content-Based
Publish/Subscribe Systems
with Distributed Hash Tables

David Tam, Reza Azimi, Hans-Arno Jacobsen
University of Toronto, Canada

September 8, 2003

Introduction:
Publish/Subscribe Systems

Push model (a.k.a. event-notification)
subscribe publish match

Applications:
stock-market, auction, eBay, news

2 types
topic-based: ≈ Usenet newsgroup topics
content-based: attribute-value pairs

e.g. (attr1 = value1) ∧ (attr2 = value2) ∧ (attr3 > value3)

The Problem:
Content-Based Publish/Subscribe

Traditionally centralized
scalability?

More recently: distributed
e.g. SIENA

small set of brokers
not P2P

How about fully distributed?
exploit P2P
1000s of brokers

Proposed Solution:
Use Distributed Hash Tables

DHTs
hash buckets are mapped to P2P nodes

Why DHTs?
scalable, fault-tolerance, load-balancing

Challenges
distributed but co-ordinated and light-weight:

subscribing
publishing
matching is difficult

Basic Scheme

A matching publisher & subscriber must come up with
the same hash keys based on the content

Distributed Hash Table
buckets

distributed publish/subscribe system

Basic Scheme

A matching publisher & subscriber must come up with
the same hash keys based on the content

Distributed Hash Table

subscriber

subscription

buckets

home node

Basic Scheme

A matching publisher & subscriber must come up with
the same hash keys based on the content

Distributed Hash Table

publishersubscriber

publication

buckets

home node

subscription

Basic Scheme

A matching publisher & subscriber must come up with
the same hash keys based on the content

Distributed Hash Table

publishersubscriber

subscription publication

buckets

home node

Basic Scheme

A matching publisher & subscriber must come up with
the same hash keys based on the content

Distributed Hash Table

publishersubscriber

subscription

publication

buckets

home node

Naïve Approach

Publisher must produce keys for all possible attribute
combinations:

2N keys for each publication

Bottleneck at hash bucket node
subscribing, publishing, matching

Attr1: value1

Attr2: value2

Attr3: value3

Attr4: value4

Attr5: value5

Attr6: value6

Attr7: value7

Publication

Hash
Function

Key

Attr1: value1

Attr2:

Attr3:

Attr4: value4

Attr5:

Attr6: value6

Attr7:

Hash
Function

Key

Subscription

Domain Schema
eliminates 2N problem
similar to RDBMS schema
set of attribute names
set of value constraints
set of indices

create hash keys for indices only
choose group of attributes that are common
but combination of values rare

well-known

Our Approach

Hash Key Composition
Indices: {attr1}, {attr1, attr4}, {attr6, attr7}

Attr1: value1

Attr2: value2

Attr3: value3

Attr4: value4

Attr5: value5

Attr6: value6

Attr7: value7

Publication
Hash

Function

Key1

Hash
Function

Key2

Hash
Function

Key3

Attr1: value1

Attr2:

Attr3:

Attr4: value4

Attr5:

Attr6: value6

Attr7:

Subscription

Hash
Function

Key2

Hash
Function

Key1

Possible false-positives
because partial matching
filtered by system

Possible duplicate notifications
because multiple subscription keys

Our Approach (cont’d)
Multicast Trees

eliminates bottleneck at hash bucket nodes
distributed subscribing, publishing, matching

Home node
(hash bucket node)

Existing subscribers

New subscriber

Our Approach (cont’d)
Multicast Trees

eliminates bottleneck at hash bucket nodes
distributed subscribing, publishing, matching

Home node
(hash bucket node)

Existing subscribers

Non-subscribers

New subscriber

Our Approach (cont’d)
Multicast Trees

eliminates bottleneck at hash bucket nodes
distributed subscribing, publishing, matching

Home node
(hash bucket node)

New subscribers

Existing subscribers

Handling Range Queries
Hash function ruins locality

Divide range of values into intervals
hash on interval labels

e.g. RAM attribute

For RAM > 384, submit hash keys:
RAM = C
RAM = D

intervals can be sized according to probability distribution

∞0 128 256 512

ALabel: B C D

input

output

1 2 3 4

hash()

40 90 120 170

Implementation & Evaluation

Main Goal: scalability
Metric: message traffic
Built using:

Pastry DHT
Scribemulticast trees

Workload Generator: uniformly random distributions

Event Scalability: 1000 nodes

Need well-designed schema with low false-positives

Node Scalability: 40000 subs, pubs

Multicast tree benefits
e.g. 1 range vs 0 range, at 40000 subs, pubs

Expected 2.33 × msgs, but got 1.6
subscription costs decrease

Range Query Scalability: 1000 nodes

Range Query Scalability: 40000 subs, pubs

Conclusion
Method: DHT + domain schema
Scales to 1000s of nodes
Multicast trees are important
Interesting point in design space

some restrictions on expression of content
must adhere to domain schema

Future Work
range query techniques
examine multicast tree in detail
locality-sensitive workload distributions
real-world workloads
detailed modelling of P2P network
fault-tolerance

	Building Content-BasedPublish/Subscribe Systemswith Distributed Hash Tables
	Introduction:Publish/Subscribe Systems
	The Problem:Content-Based Publish/Subscribe
	Proposed Solution:Use Distributed Hash Tables
	Basic Scheme
	Basic Scheme
	Basic Scheme
	Basic Scheme
	Basic Scheme
	Naïve Approach
	Our Approach
	Hash Key Composition
	Our Approach (cont’d)
	Our Approach (cont’d)
	Our Approach (cont’d)
	Handling Range Queries
	Implementation & Evaluation
	Event Scalability: 1000 nodes
	Node Scalability: 40000 subs, pubs
	Range Query Scalability: 1000 nodes
	Range Query Scalability: 40000 subs, pubs
	Conclusion

