
Using Hardware Counters to Improve Dynamic Compilation

ECE1724 Project Final Report
December 18, 2003.

David Tam
tamda@eecg.toronto.edu

John Wu
johncwu@ca.ibm.com

ABSTRACT
In this paper, we describe our project to explore the use of
hardware counters to improve triggering techniques for run-
time dynamic code recompilation. The Intel Open Runtime
Platform (ORP) was chosen as the target Just In Time (JIT)
compilation-capable Java Virtual Machine (JVM). The per-
formance counter library (PCL) implemented by Rudolf Berren-
dorf et al. was used to retrieve real-time micro-architectural
level performance values. Only one of these values, the cycle
count, was used in this project. Although, the benchmark
performance results were not as good as originally antici-
pated, the work completed for this project has created an
infrastructure that can be easily reused and adopted to use
other hardware counter values to create improved compila-
tion triggering mechanisms. We introduce a different and
potentially better way of performing runtime profiling in
comparison to software-only technique used in the original
ORP.

1. INTRODUCTION
Modern software heavily utilizes shared libraries, dynamic
class loading, and run-time binding. This makes it more
of a challenge to perform optimization at static compilation
time. Moreover, for cross platform compatibility reasons,
programs written in languages such as Java are compiled
into some form of intermediate representation, such as some
machine-neutral byte-code. The byte-code is then compiled
into native machine code by a dynamic compiler at runtime.

Because byte-code to native code conversion happens at ap-
plication execution time, it offers new opportunities to the
dynamic compiler to perform sophisticated, profile-guided
and architecture-specific compilation. However, these so-
phisticated optimizations often come with heavy overheads,
which is factored into the overhead of the application’s ex-
ecution. Unless the performance increase exceeds the op-
timization overhead, such optimization may not be worth
performing. Runtime environments that provide Just In
Time (JIT) optimized compilation are designed to identify
hot traces, or places where the application spends most of the
time, using run-time profiling techniques, and target these
hot traces for optimized compilation. The Intel Open Run-
time Platform (ORP) is one example of such Just In Time
capable environments. [8]

The ORP JVM is the open source version of the Intel Micro-
processor Research Lab (MRL) Virtual Machine, as studied
in class in [7]. In this paper they describe two fairly prim-

itive and approximate techniques in determining when to
trigger the optimizing compiler. However, it should be pos-
sible to provide a more accurate triggering threshold with
the help of microprocessor hardware counters.

Hardware counters offer a low overhead mechanism of ob-
taining valuable and precise run-time performance informa-
tion that can improve the task of run-time/dynamic com-
pilation/optimization. Hardware counters can provide im-
portant micro-architectural performance information that
is otherwise unobtainable from software techniques alone.
Many of these parameters can potentially offer accurate real-
time performance information for the purpose of run-time
instrumentation.

The complete list data acquirable through the hardware
counters that are available using the PCL package used for
this project is shown in Table 1

L1 Cache Read, Write, ReadWrite
L1 Cache Hit, Miss
L1 Data/Instr Cache Read, Write, ReadWrite, Hit, Miss
L2 Cache Read, Write, ReadWrite, Hit, Miss
L2 Data/Instr Cache Read, Write, ReadWrite, Hit, Miss
Translation Look-aside Buffer (TLB) Hit, Miss
Instruction TLB (ITLB) Hit, Miss
Data TLB (DTLB) Hit, Miss
Cycles, Elapsed Cycles, Instructions
Integer/Floating-Point Instructions
Loads, Stores, Load/Store Instructions
Jumps, Successful, Unsuccessful
Atomic Operations, Successful, Unsuccessful
Stalls, Integer/Floating-Point/Jump/Load/Store Stalls
MFLOPS, IPC
L1/L2 Data Cache Miss Rate
MEM FP RATIO

Table 1: Micro-architectural statistics obtainable

with PCL

Not all of these values are implemented or acquirable on all
platforms, but it presents a long list of potential parameters
that could be used to help in run-time code instrumenta-
tion. In this paper the use of hardware counters in one very
specific scenario, the cycle count, is exploited to improve the
timeliness of dynamic compilation.



2. RELATED WORK
Based on the most recent publication from the Intel ORP
project [8], the triggering techniques have not been improved
yet. Further literature search did not reveal any signifi-
cant work with the same goal as what was proposed in our
project. This situation provided an opportunity to conduct
some original work.

The most recent and closest work that could be found was
by Chen et al. [6]. They have done some initial investiga-
tion into hardware counters for use in dynamic optimization.
However, they have not integrated it with a real system yet
(such as Jalapeno/Jikes [1], JUDO [7]). The paper does only
initial investigation into the idea of using hardware coun-
ters to improve dynamic compilation accuracy. In actual
fact, the paper was mainly about using hardware counters
to more accurately build traces. It was basically trying to
re-create the HP Dynamo [4] trace-based model but with
the use of hardware counters. So, they only discuss issues
such as trace coverage (the number of execution cycles that
was consumed within the traces) and trace building over-
head. None of these issues are a concern to us compared
with what was proposed and done in their paper.

Krintz and Calder [10] presented a framework (under ORP)
to reduce the time spent performing optimizations. Annota-
tions were added to guide the optimization process so that
time consumed by the optimizer could be spent wisely. How-
ever, hardware counters were not used. Instead, they used
an offline technique to determine where compiler optimiza-
tion time was spent. Hardware counters could potentially be
used to extend this annotation framework. However it was
determined that this was beyond the scope of this project.

The Jalapeno JVM [1] offers a multiple optimization level
scheme. Hardware counters can be used to improve the ac-
curacy of their cost/benefit model for determining when to
trigger a dynamic recompilation/optimization as well as to
which optimization level to target. Unfortunately, for the
purposes defined by this project, the fact that Jalapeno is
written in Java would have complicated matters. So we de-
cided not to base the project on this JVM. Native method
invocations (to access hardware counters) may complicate
the ”low overhead” goal of hardware counters.

Arnold et al. [2] [3] have described a low-overhead software-
only approach to performing online instrumentation and
feedback-directed optimization but did not make use of hard-
ware counters.

Kistler and Franz [9] describe their runtime system (Oberon)
that performs continuous program optimization. A key com-
ponent in their system is the profiler. The authors men-
tion the benefits of using hardware counters in addition to
software-based techniques (instrumentation and sampling)
to aid in the continuous optimization task.

There are many potential uses of hardware counters since
they can be used with relatively low overhead and can offer
important micro-architectural performance information that
is otherwise unobtainable. Such information could be fruit-
fully used by dynamic optimization systems such as JVMs
and JITs. This project only explored one possible use of

hardware counters, which was to provide more accurate pro-
filing information for the purpose of triggering dynamic op-
timizing compilation.

3. DETAILS
3.1 Tools and Platform
A base set of tools and platform were selected for this project.
The list includes a performance counter API library, a target
JIT capable JVM that is profiling based, and the hardware
and operating system. The reasons for selecting this partic-
ular set of tools and platform are listed below.

3.1.1 PCL
It was determined that in order to achieve simplicity and
portability in the implementation, it was wise to choose a
mature performance counter application programming inter-
face library, instead of implementing it purely in assembly.
As well, time-constraints were a limiting factor and we did
not want to learn the intricacies of x86 assembly coding.

A number of performance counter library solutions were
evaluated. The first two were considered were the IBM AIX
Performance Monitor API Library, which is a collection of
function calls implemented in C, and another unsupported
set of assembly routines implemented by a group at IBM
T.J. Watson Research Center. Both libraries were created
to work with the IBM PowerPC platform. In order to use
this library, a PowerPC compatible JIT JVM was required.
Jalapeno or Jikes would have been the only choices. How-
ever, both Jalapeno and Jikes were implemented in pure
Java. As mentioned in the Section 2, this meant making
native method invocations, where may have high overheads,
or implementing a Java port of the IBM AIX Performance
Monitor APIs Library or a Java port of the unsupported
assembly routines need to be implemented, which would in-
crease the risk factor of this project.

The Performance Counter Library (PCL) developed by Rudolf
Berrendorf et al. [5] was the next on the list. The library
was also implemented as C like functions, and targets a
number of hardware and software systems including Linux
on Intel Pentium, Pentium MMX, Pentium Pro, Pentium
II, Pentium III, Pentium 4, AMD Athlon, Duron, AIX on
IBM Power PC, Tru64 and CRAY Unicos on DEC Alpha,
SGI IRIX on SGI R10000, R12000, Solaris on UltraSPARC
I/II/III. Even though it is still implemented in C, it targets
many more hardware software systems, which in turn makes
the list of potential JIT JVMs longer. Most importantly, the
PCL is open source and can be freely redistributed.

After careful consideration, the PCL was chosen as the per-
formance counter instrument tool for this project.

3.1.2 ORP
Because the PCL was chosen as the performance counter in-
strumenting tool for this project, it was necessary to choose
an open source JIT JVM that was implemented in C/C++.
ORP naturally became a potential candidate. ORP and
its associated JIT compilers were implemented on the IA32
platform for both Linux and Windows NT. Finally, the fact
that we know ORP reasonably well through the JUDO pa-
per made ORP our final choice as the target JIT JVM.



3.1.3 Linux and GCC
Although ORP runs on both Windows NT and Linux, the
PCL chosen does not run on Windows NT, but runs on
Linux. Linux became the only choice for our operating sys-
tem at this point. Redhat Linux with kernel version 2.4.18.x
was chosen. The particular kernel version was chosen be-
cause the PCL implementation for Linux required the appli-
cation of a special kernel patch, which was only compatible
with a selected number of kernel versions.

GCC 3.2.1 was chosen to compile the kernel patch and to
recompile the Linux kernel, as that was what was required.
GCC 2.96 was used as the main compiler for this project,
as it was required to compile ORP and the PCL library on
Linux.

3.1.4 Hardware
A computer with two AMD Athlon processors running at
1.5 GHz (1.8 GHz equivalent) was used. Each processor
had 256KB of L2 Cache, and the computer had 512MB of
memory. There was no particular reason for choosing this
computer other than this was the one that had root access
available so that the Linux kernel could be recompiled.

3.2 Method Profiling
Our task of instrumenting the O1 code was more involved
than simply instrumenting method entry points, as was done
in [7]. The increased complexity was due to the need to
find closure for every start cycle point. That is, there must
be corresponding stop cycle points so that cycle deltas can
be obtained and accumulated for the appropriate method.
This need to maintain extra state and account for all escape
points was not present in [7].

For single-threaded applications, the following scenarios must
be considered. (1) Start and end of methods. There can be
multiple end points due to multiple return; points. (2)
Method invocations. At method invocation sites, the cycle
counter of the caller must be stopped. At the subsequent
line after the method invocation site, the cycle counter of
the caller must resumed because this is the return point
from the callee.

Figure 1 illustrates a simple scenario involving two meth-
ods/functions. The cycle counter value is obtained from the
hardware counter at the beginning of function A and noted
in function A’s profile record. Upon invocation of function
B, the cycle value is again obtained and the delta is added to
function A’s accumulated cycles profile record. Upon return
from function B, the hardware cycle counter is read again.
Finally, upon exit of function A, the cycle value is again ob-
tained and the delta is added to function A’s accumulated
cycles profile record.

The above implementation accounts for single-threaded ap-
plications. Multi-threaded application support has not been
implemented due to project time constraints. In addition,
the impact of parallel/threaded garbage collection has not
been accounted for. Conceptually, accounting for these two
environments is simple. For multi-threaded support, upon
thread switching, the start/stop functions indicated in Fig-
ure 1 can be called by the thread scheduler to start and

stop the cycle counter for the appropriate threads. Stati-
cally inserting these lines into the thread scheduler can be
considered much easier than dynamically inserting x86 as-
sembly instructions into O1 code. The ORP thread sched-
uler is written in C/C++ and we would be statically adding
C code. To handle threaded garbage collection, the first
thing the garbage collector would do is to stop the cycle
counter of the current application thread. Upon exit of the
garbage collector, it would resume the cycle counter of the
interrupted thread. In fact, adding multi-threaded support
could potentially automatically handle the garbage collec-
tor since it may appear as a regular thread to the thread
scheduler.

Figure 1: Profiling scenario

These start and stop instructions were inserted into the O1
code as the ORP JVM lazily translates Java byte-code to
O1-level x86 assembly code. Since our inserted pieces of
code must be in assembly, we decided to insert a simple x86
call instruction to jump to our start/stop counter functions,
which we wrote in C/C++. In that way, we could write sim-
ple, high-level C code and make use of the PCL library API
rather than figuring out how write all of this in assembly.
We recognize that there could be a performance trade-off
because of the need to branch to our start/stop functions
before executing the invoked method, however, our results
in Section 4.2.2 show that the overhead is negligible.

3.2.1 Profiling O1 Code
The start and stop functions required the address of a profile
record to the passed to it as a parameter. This information
is required so that the start or stop cycle information can be
billed to the correct method. This parameter passing was
accomplished by inserting x86 assembly code to push the
appropriate address onto the stack before the O1 code calls
the start/stop function. When the start/stop function is
called, it automatically pops the stack to obtain the passed
parameter.

Instructions to perform code insertion were added to the
emit prolog() and emit epilog() functions of the O1 JIT
compiler. These two functions covered the start and stop
annotations that are necessary in the entrance and exit of
methods. To handle the scenario where a method invokes
another method (and returns from the invoked method), we
had two possible implementations in mind.



1. We could insert x86 code to the current method be-
fore it invoked target method and in the subsequent
line after the method invocation site. This would in-
volve adding code to the following functions of the
lazy code generator so that they insert the desired
x86 code into the O1 code: gen invokevirtual(),
gen invokestatic(), gen invokespecial(),
gen invokeinterface(), and gen get method return().

2. We could add C code to our existing start/stop func-
tions to pause and resume the caller’s cycle counter.

We shall refer to (1) as design decision A and (2) as design
decision B.

We attempted to implement the functionality using both ap-
proaches and found design decision B to be successful. We
did not have adequate time to continue attempting design
decision A so we used design decision B. In terms of im-
plementation complexity, design decision B required a spe-
cial profile record stack to be implemented to keep track of
callers. Perhaps the most significant implementation disad-
vantage was that this had to be implemented for both the
O1 JIT and O3 JIT. This was necessary because and O1
method may invoke an O3 method. The O3 method must
access the profile record stack and pause the O1 caller’s cycle
counter.

In terms of performance trade-offs, we believe that design
decision A would perform better since it would make use of
local data before invoking the target method. Consequently,
it may improve temporal cache locality slightly compared
design decision B. As well, through our experimental results,
we believe that design decision B is detrimental to O3 code.
Since O3 code is highly optimized and does not keep track
of cycle counts for its methods, the O3 code must perform
extra work that will slow down its execution. The extra work
is quite a lot for the O3 code. It must call the start/stop
function of the caller method, subsequently make a call to
the PCL library.

3.2.2 Profiling O3 Code
We did not plan to instrument the O3 code because there
were no higher optimization levels to ascend to. However,
due to the use of design decision B, it was necessary to insert
start/stop function calls into O3 code.

The O3 JIT compiler had a completely different way of in-
serting code than the O1 compiler. This required learning
a completely new method, which as fairly time-consuming.
It basically involved adding code to the insert prolog()

and insert epilog() functions of the O3 code emitter so
that it would insert calls to our start/stop functions. The
start/stop functions were slightly different from the O1 start/stop
functions. We shall refer to them as the O3 start/stop func-
tions. In the O3 versions, cycle counter information for the
O3 method is not tracked. however, pausing of the caller’s
cycle counter is done. As well, a dummy profile record is
pushed onto the profile record stack because the O3 method
may call an O1 method, which assumes normal operation of
the profile record stack.

The O3 start/stop functions did not require a parameter

to be passed to it, since the O3 method profile records are
not used. As a consolation prize for using design decision
B the elimination of parameter pushing and popping may
have reduced overhead for O3 code.

We found it necessary to implement the profile record stack
using a statically allocated array for performance reasons.
Implementing the stack using dynamic memory allocation
(malloc() and free()) was too time-consuming for O3 code
on some of our workload applications. For our benchmarks,
we empirically found that a stack size of 1,000,000 entries
was sufficient.

3.3 Trigger Mechanism
The original recompilation triggering mechanism in the ORP
JVM involved decrementing the method entry field in the
target profile record from a value of 1000. Upon reaching
0, a recompilation was triggered and the O1 code of the
method would be converted to O3 code. In our design, we
re-used this mechanism by setting the method entry field to
a value of 1 when a recompilation was desired.

Our cycle counter-based compilation triggering decision was
made at various locations. Upon detecting that the accu-
mulated cycles for the target method was above a threshold
and that a method had been entered at least 2 times, the
method entry field was set to a value of 1, forcing a recompi-
lation upon the next invocation of the target method. This
decision was evaluated in (1) the O1 start cycle function
concerning the caller, (2) the O1 stop cycle function con-
cerning the callee, (3) the O3 stop cycle function concerning
the caller, and (4) in the trigger recompilation() func-
tion concerning the caller who requested the recompilation
of the callee method.

In our design, we decided that the recompilation time to
convert an O1 method to O3 should be charged to no one.
It did not appear appropriate to charge these cycles to the
caller nor the target method. It’s not the caller’s fault that
the target method required a recompilation. Nor should
the target method be penalized for being recompiled to a
higher optimization level. To implement this exemption, the
trigger recompilation() function pauses the caller and
accumulates its delta cycles. It then sets the m last cycle count
field (which represents the start cycle value) to a value of
0 to signify to the callee to exempt charges to the caller
method.

3.4 Further Details
Further implementation details can obtained from our source
code. The source code to our modified version of the ORP
JVM can be obtained from http://www.eecg.toronto.edu/

~tamda/ece1724/hwctr_orp.tar.gz.

4. MEASUREMENTS AND RESULTS
4.1 Benchmarks
SPECjvm 98 was chosen as the benchmark package for this
project. This specific benchmark package was chosen be-
cause the original ORP implementation used it.

It is necessary to point out that not all test cases in the
SPECjvm 98 package were run, because a subset of them



use Java Native Invocations (JNI), which the ORP JVM
does not support. Only those test cases listed in the JUDO
paper [7] were attempted.

Compress, Jess, DB, Javac, Mpegaudio ran successfully with-
out any problems. When the modified ORP was tested us-
ing Jack, the test case ran mostly problem-free, except the
check-sum failed in the end. The modified ORP failed to
run Mtrt.

4.2 Results
4.2.1 Baselines

Figure 2: Execution time - baselines

In Figure 2, we compare the Sun JVM against the original
ORP JVM to show some baseline numbers. The ORP JVM
is run in 3 different modes. (1) Regular operation, which
is byte-code to O1 to O3, (2) byte-code to O1 only, and
(3) byte-code to O3 only. The first observation is that the
standard ORP JVM configuration performs better than or
equivalent to the Sun JVM on all workloads. The O1-only
results verify that running just at O1 is suboptimal and that
if you dynamically recompiled to O3 when appropriate, per-
formance can be improved as shown in the Original ORP
results. Surprisingly, the O3-only results indicate that com-
piling directly to O3 code is better than compiling to O1
code first, under all workloads. This result means that the
O1 compiler is useless and that the O3 compiler should be
used exclusively. What is also surprising is that the O3-only
results indicate that it is very competitive with the Original
ORP results, signifying that dynamic compilation was not
very useful for these workloads on our particular hardware
configuration. From these baseline results, our goal would
be to attain execution times that are lower than the Original
ORP and O3-only results.

4.2.2 Overheads
In Figure 3 we investigate overhead of our mechanisms. The
O1 call overhead results indicate the overhead to O1 code
of executing the extra inserted call function that calls the
O1 start/stop functions. The O1 start/stop functions were
nullified and contained only a return; statement. The O3
code did not contain our inserted code. The results show
minimal overhead to O1 code. The O1 no-trig results indi-
cate the overhead to O1 code of executing most of the O1
start/stop functions. The only action missing was the trig-
gering mechanism. Therefore, the default triggering mecha-
nism of 1000 method entries is in effect. Again, these results

Figure 3: Execution time - overheads

show minimal overhead. The O1 O3 call overhead results
indicate the overhead to both O1 and O3 code of execut-
ing the extra inserted call function that calls the O1 or O3
start/stop functions. The O1 and O3 start/stop functions
were nullified and contained only a return; statement. The
results indicate that for some applications there is noticeable
overhead. O3 code is highly optimized and diverting it to
perform housekeeping work for our enhancements is detri-
mental. For completeness, we show the O1 no-trig, O3 call
overhead results. In this configuration, the O1 start/stop
functions perform all of their duties except for the trigger-
ing mechanism, while the O3 start/stop functions are empty.
The results verify again that the O1 enhancements add min-
imal overhead.

4.2.3 O3 Overheads

Figure 4: Execution time - O3 overheads

In Figure 4 we continue our investigation of the impact of
our enhancements to O3 code. In these set of results, the
O1 start/stop functions contain all except for the trigger
mechanism. In the O1 no-trig, O3 PCL-only results, we take
the empty O3 start/stop functions and add a call to the PCL
library to read the current cycle count. This configuration
measures the impact of the PCL library on O3 code. The
results clearly indicate that there is an unacceptable amount
of overhead. In the O1 no-trig, O3 cond PCL-only results,
we call the PCL library only if the caller method is O1 code.
This more accurately reflects the frequency of calling the
PCL library since this work is not necessary if the caller is O3



code. Unfortunately, the results clearly show that overhead
is extremely high. These results indicate that the use of
design decision B was a bad choice. In contrast, design
design A would not interfere with O3 code at all and by-pass
the problem completely. As mentioned, due to the time-
constraints, design decision A could not be implemented. To
investigate the impact of accessing the profile record stack
in O3 code (as required by design decision B, results are
shown by the O1 no-trig, O3 stack-only bars. These results
indicate that accessing the profile record stack is acceptable
in O3 code.

To investigate the impact to O3 code with 99 % of our en-
hancements, we enabled all of the O3 start/stop function
code except for the PCL library calls and the triggering
mechanism, since the PCL calls appeared to have unaccept-
able overhead. The results, shown by the O1 O3 no-trig,
O3 no-PCL bars, indicate acceptable overhead. Finally, the
O1 O3 no-trig results show the impact of enabling all O3
start/stop function code except for the trigger mechanism.
PCL library calls were made when necessary. To our confu-
sion, the results show very acceptable overhead, contradict-
ing the results from the O1 no-trig, O3 cond PCL-only bars.
We re-ran the experiments several times in disbelief and ob-
tained the same results. We have yet to determine the root
cause of these inconsistencies. Fortunately, these results in-
dicate that our mechanism, when mostly enabled (except for
the trigger mechanism), has acceptable overhead.

4.2.4 Results Without Backup Triggers
In Figures 5 and 6, we measure the execution time of the
SPECjvm 98 applications with our enhancements completely
enabled. That is, the trigger mechanism is enabled, in con-
trast to the previous overhead investigation experiments. In
Figure 5, we show the execution times in comparison to the
original ORP JVM, while in Figure 6 we show the number of
recompilations from O1 to O3 code. In this configuration,
the original triggering mechanism of 1000 method entries
and 10,000 taken loops was disabled. The JVM recompi-
lation decision rested solely on our mechanism. We varied
the recompilation threshold from 1,000 cycles to 10 billion
cycles. We include an extra result, where we examine the
results with the 10,000 taken loops trigger mechanism en-
abled.

Unfortunately, the results show that we could not perform
better than the default ORP JVM. It is interesting to note
that in all except for the compress workload, the recompila-
tion threshold should be set below 100 million cycles. This
result makes sense as follows. For long-running workloads, if
a method spends more than 0.1 seconds in a method, then
that method should be compiled. On our approximately
1.5 GHz processor, this would translate to roughly 150 mil-
lion cycles. Unfortunately, the results indicate that the re-
sults are fairly insensitive once the threshold is set below
100 million cycles.

Despite this small aspect making sense, there is still a very
large contradiction to the O1-only results shown in Figure 2.
As the cycle count threshold is increased to infinity, the sys-
tem should behave similar to the O1-only results. In those
results, performance is not extremely bad. However, in the
results in Figure 5, we see extremely large execution times

when the compilation threshold is greater than 1 billion cy-
cles. Due to time constraints, we have yet to explore the
root cause of these inconsistencies.

For the compress workload, the 10k-loop, 1M-cycles config-
uration performed significantly better than other configura-
tions. The use of the taken-loops trigger mechanism was
necessary for this workload.

Figure 6 illustrates the number of method recompilations
from O1 code to O3 code. As the recompilation threshold
is decreased, we see an expected increase in the number of
methods recompiled. When trying to correlate this extra
work to the execution times in Figure 5, there is a discon-
nect. The extra recompilation work results in no execution
time improvements in the spectrum of 10 million cycles to
1,000 cycles.

4.2.5 Results With Backup Triggers
In Figures 7 and 8, we investigate execution time as in Sec-
tion 4.2.4 but with the default backup trigger mechanism
enabled. That is, if a method is entered more than 1000
times, or more than 10,000 taken-loops are seen, then the
method is recompiled from O1 to O3. In addition to these
default mechanisms, we add our cycle count trigger mecha-
nism to compliment the system. In this way, the system will
trigger recompilations no later than the default ORP JVM.
This is in contrast to our configuration in Section 4.2.4 where
recompilation may never occur.

Unfortunately, these results indicate that performance can-
not be improved beyond the original ORP JVM configu-
ration. The results seem insensitive to the cycle count re-
compilation threshold since there is relatively no change in
execution times when exploring the full range of cycles.

The number of recompilations appears to make sense. As
the cycle count threshold is decreased, the system performs
more recompilations than the default ORP JVM. When the
cycle count threshold is increased beyond a certain value,
this triggering mechanism is effectively disabled and so the
number of recompilations is equivalent to the original ORP
JVM.

5. CONCLUSION AND FUTURE WORK
This paper explored a way of exploiting performance data
stored in hardware counters on dynamic runtime systems.

Hardware counters offer a low overhead mechanism of ob-
taining valuable and precise runtime micro-architectural per-
formance information that is otherwise unobtainable from
software techniques alone. Many of these parameters can
potentially offer accurate real-time performance information
for the purpose of run-time instrumentation and improving
triggering techniques for run-time code recompilation.

Only one hardware counter metric, the CPU Cycle counts,
was tried in this project. Although the performance results
were not as good as originally anticipated, the work done
for this project has created an public infrastructure1 for ex-

1The source code is open and can be obtained from
http://www.eecg.toronto.edu/~tamda/ece1724/hwctr_



perimenting with the idea of using hardware counter data
in general. The infrastructure created can easily be re-used
to explore other hardware counter metrics available through
the PCL package to create improved triggering mechanisms
for dynamic run-time code recompilation.

Due to time constraints, a few originally planned features
had to be de-scoped. The modified ORP currently only sup-
ports single-threaded programs, as multi-threading support
was not implemented. This could be implemented in the
future. Also, accounting for the garbage collection mecha-
nism used in the original ORP was not included in the scope
of this project. However, profiling using hardware counters
that takes garbage collection into account can be easily im-
plemented by stopping the counter when the garbage col-
lection thread starts executing, and resuming the counter
when the garbage collection thread stops, as described in
Section 3.2.

Other than the de-scoped items listed above, some improve-
ments can be made. The PCL overhead was incorporated
into the cycle counts rather than being isolated. An initial
test run of a simple Hello World program indicated that
there was only around 10% overhead resulting from PCL.
For a large program, the overhead cycles consumed by the
PCL may be much smaller relative to the total number of
cycles consumed by the entire program. It would still be
possible to incorporate some tuning code to isolate and re-
move the PCL overhead when counting the number of cy-
cles consumed by a method. Also, in this project the cycle
count values obtained from hardware counters were used as
replacement of the primitive counters in the original ORP
implementation. It is possible to explore other options, as
indicated in the Table 1 to see if there are better metrics
obtainable from the hardware counters to trigger dynamic
run-time code recompilation.

6. REFERENCES
[1] M. Arnold, S. Fink, D. Grove, M. Hind, and P.F.

Sweeney. Adaptive optimization in the Jalapeno JVM.
In Object-Oriented Programming Systems, Languages
and Applications (OOPSLA’00), October 2000.

[2] Matthew Arnold. Online instrumentation and
feedback-directed optimization of Java. Technical
Report Technical Report DCS-TR-469, Department of
Computer Science, Rutgers University, 2002.

[3] Matthew Arnold and Barbara Ryder. A framework for
reducing the cost of instrumented code. In
Programming Language Design and Implementation,
June 2001.

[4] V. Bala, E. Duesterwald, and Sanjeev Banerjia.
Dynamo: A transparent dynamic optimization system.
In Programming Language Design and
Implementation, June 2000.

[5] Rudolf Berrendorf and Bernd Mohr. PCL - the
performance counter library: A common interface to
access hardware performance counters on
microprocesors. Technical Report Version 2.2,
University of Applied Sciences Bonn-Rhein-Sieg and

orp.tar.gz.

Research Centre Juelich GmbH Central Institute for
Applied Mathematics,
http://www.fz-juelich.de/zam/PCL/doc/pcl/pcl.pdf,
2002.

[6] Howard Chen, Wei-Chung Hsu, Jiwei Lu, Pen-Chung
Yew, and Dong-Yuan Chen. Dynamic trace selection
using performance monitoring hardware sampling. In
Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-Directed and
Runtime Optimization, 2003.

[7] M. Cierniak, G. Lueh, and J. Stichnoth. Practicing
JUDO: Java under dynamic optimizations. In
Programming Language Design and Implementation,
June 2000.

[8] Michal Cierniak, Marsha Eng, Neal Glew, Brian
Lewis, and James Stichnoth. The Open Runtime
Platform: A flexible high-performance managed
runtime environment. Intel Technology Journal,
7(1):5–18, February 2003.

[9] Thomas Kistler and Michael Franz. Continuous
program optimization: A case study. ACM
Transactions on Programming Languages and
Systems, 25(4):500–548, July 2003.

[10] Chandra Krintz and Brad Calder. Using annotations
to reduce dynamic optimization time. In Programming
Language Design and Implementation, June 2001.



Figure 5: Execution time - no backup trigger

Figure 6: Recompilations - no backup trigger



Figure 7: Execution time - with backup trigger

Figure 8: Recompilations - with backup trigger


