
Thread Clustering

Thread Clustering:
Sharing-Aware Thread Scheduling

on SMP-CMP-SMT Multiprocessors

David Tam, Reza Azimi, Michael Stumm

University of Toronto
{tamda, azimi, stumm}@eecg.toronto.edu



Thread Clustering

Multiprocessors Today
Example: IBM Power 5 system

1



Thread Clustering

Multiprocessors Today

SMP
CMP

SMT

SHARED
CACHE

Example: IBM Power 5 system

1



Thread Clustering

Multiprocessors Today
Example: IBM Power 5 system

12014

Disparity in L2 latencies

1



Thread Clustering

Operating Systems Today
CPU Schedulers:

● Ignore disparity in L2 latencies
● Ignore data sharing among threads

● Distribute threads poorly
● Cross-chip traffic

● Remote L2 cache accesses

● Causes performance problem
2



Thread Clustering

Our Goal: Sharing-Aware Scheduling
● Detect sharing patterns
● Cluster threads

Benefits:
● Decrease cross-chip traffic
● Increase on-chip cache locality
● Exploit shared L2 caches 

3



Thread Clustering

Our Online Technique

REPEAT

STEPS:
1) Monitor remote cache access rate
2) Detect thread sharing patterns
3) Determine thread clusters
4) Migrate thread clusters

4



Thread Clustering

Sharing Detection
● To observe remote cache accesses:

● Exploit HPCs (hardware performance counters)
● Sample remote cache miss addresses

● Local cache misses satisfied by remote cache
● IBM Power 5 continuous data sampling

X
1

5



Thread Clustering

Sharing Detection
● To observe remote cache accesses:

● Exploit HPCs (hardware performance counters)
● Sample remote cache miss addresses

● Local cache misses satisfied by remote cache
● IBM Power 5 continuous data sampling

X

2

5



Thread Clustering

Sharing Detection
● To observe remote cache accesses:

● Exploit HPCs (hardware performance counters)
● Sample remote cache miss addresses

● Local cache misses satisfied by remote cache
● IBM Power 5 continuous data sampling

3

5



Thread Clustering

Sharing Signatures
● Construct for each thread

● Counts remote cache accesses

8-bit counter

virtual address
264

block

virtual address
0

Conceptually

6



Thread Clustering

Sharing Signatures
● Construct for each thread

● Counts remote cache accesses

ctri++

virtual address
264

virtual address
0

Conceptually

6

8-bit counter
block



Thread Clustering

Optimizations
● CPU: Temporal Sampling

● Sample every Nth remote cache access
● Memory: Spatial Sampling

● 256-entry vector
● Hash function
● Block ID filter

● Vectors still effective at indicating sharing

7



Thread Clustering

Spatial Sampling
● Hash collision & alias removal

Empty
Reserved

Filter Legend

0 255

0 255

Block ID

8



Thread Clustering

Spatial Sampling
● Hash collision & alias removal

EMPTY

0 255

Empty
Reserved

Filter Legend

0 255

hash

Block ID

8



Thread Clustering

Spatial Sampling
● Hash collision & alias removal

hash

(First-Come-First-Reserved)

Empty
Reserved

Filter Legend

0 255

0 255

Block ID

8



Thread Clustering

Spatial Sampling
● Hash collision & alias removal

MATCH Block ID

hash

Empty
Reserved

Filter Legend

0 255

0 255

Block ID

8



Thread Clustering

Spatial Sampling
● Hash collision & alias removal

MISMATCH Block ID

hash

ALIASING PREVENTED

Empty
Reserved

Filter Legend

0 255

0 255

Block ID

8



Thread Clustering

Automated Clustering
Clustering Heuristic:

● Simple, one-pass algorithm
● Compare vector against existing clusters
● If not similar, create a new cluster

Similarity Metric:

● Shared blocks amplified
● Non-shared blocks nullified

∑ V
1
[i] * V

2
[i]

i = 0

N

9



Thread Clustering

Experimental Platform
● 8-way Power 5, 1.5GHz
● Linux 2.6
● IBM J2SE 5.0 JVM

1.9MB L2
36MB

4 GB4 GB

36MB
1.9MB L2

10



Thread Clustering

Workloads
Microbenchmark

● expect 4 clusters
● 4 threads per cluster

SPECjbb2000 (modified)
● expect 2 clusters

● 2 warehouses, 8 threads per warehouse
RUBiS + MySQL

● expect 2 clusters
● 2 databases, 16 threads per database

VolanoMark chat server
● expect 2 clusters

● 2 rooms, 8 threads per room

11



Thread Clustering

Visualizing Clusters
● An example

Cluster B,
4 vectors

Cluster A,
4 vectors

12

Counter Values

255
128
64
0

{

{



Thread Clustering

Visualizing Clusters
● An example

12

Counter Values

255
128
64
0

{

{Cluster B,
4 vectors

Cluster A,
4 vectors



Thread Clustering

Visualizing Clusters
● An example

12

Counter Values

255
128
64
0

{
{Cluster B,

4 vectors

Cluster A,
4 vectors



Thread Clustering

Visualizing Clusters
● Microbenchmark

{4
vectors

13



Thread Clustering

Visualizing Clusters
● Modified SPECjbb2000 (4 warehouses)

{16
vectors

14



Thread Clustering

Visualizing Clusters
● RUBiS + MySQL (2 databases)

{24
vectors

15



Thread Clustering

Visualizing Clusters
● VolanoMark (4 rooms)

16



Thread Clustering

Remote Cache Impact
● Normalized to default Linux

32

90

43

22

7270

9
2-17

17



Thread Clustering

Performance Impact
● IPC: instructions per cycle
● Normalized to default Linux

7.4

6.16.1

7.1

5.1

7.4

5.0

3.7

-0.8

18



Thread Clustering

Summary

BEFORE:
Current Operating Systems

AFTER:
Operating System With

Thread Clustering

19



Thread Clustering

Conclusions
● HPCs can detect sharing
● Sharing signatures are effective
● Automated thread clustering:

● Reduces remote cache access up to 70%
● Improves performance up to 7%

● All with low overhead

Future Work:
● More workloads
● Improve clustering algorithm
● Integration with load-balancing aspects

20



Thread Clustering



Thread Clustering

Sampling Overhead
● Modified SPECjbb2000


