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Multiprocessors Today
Example: IBM Power 5 system
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Operating Systems Today
CPU Schedulers:

● Ignore disparity in L2 latencies
● Ignore data sharing among threads

● Distribute threads poorly
● Cross-chip traffic

● Remote L2 cache accesses

● Causes performance problem
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Our Goal: Sharing-Aware Scheduling
● Detect sharing patterns
● Cluster threads

Benefits:
● Decrease cross-chip traffic
● Increase on-chip cache locality
● Exploit shared L2 caches 
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Our Online Technique

REPEAT

STEPS:
1) Monitor remote cache access rate
2) Detect thread sharing patterns
3) Determine thread clusters
4) Migrate thread clusters
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Sharing Detection
● To observe remote cache accesses:

● Exploit HPCs (hardware performance counters)
● Sample remote cache miss addresses

● Local cache misses satisfied by remote cache
● IBM Power 5 continuous data sampling

X
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Sharing Signatures
● Construct for each thread

● Counts remote cache accesses

8-bit counter

virtual address
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virtual address
0

Conceptually
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Optimizations
● CPU: Temporal Sampling

● Sample every Nth remote cache access
● Memory: Spatial Sampling

● 256-entry vector
● Hash function
● Block ID filter

● Vectors still effective at indicating sharing
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Spatial Sampling
● Hash collision & alias removal
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Spatial Sampling
● Hash collision & alias removal
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Spatial Sampling
● Hash collision & alias removal
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Automated Clustering
Clustering Heuristic:

● Simple, one-pass algorithm
● Compare vector against existing clusters
● If not similar, create a new cluster

Similarity Metric:

● Shared blocks amplified
● Non-shared blocks nullified

∑ V
1
[i] * V

2
[i]

i = 0

N
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Experimental Platform
● 8-way Power 5, 1.5GHz
● Linux 2.6
● IBM J2SE 5.0 JVM

1.9MB L2
36MB

4 GB4 GB

36MB
1.9MB L2
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Workloads
Microbenchmark

● expect 4 clusters
● 4 threads per cluster

SPECjbb2000 (modified)
● expect 2 clusters

● 2 warehouses, 8 threads per warehouse
RUBiS + MySQL

● expect 2 clusters
● 2 databases, 16 threads per database

VolanoMark chat server
● expect 2 clusters

● 2 rooms, 8 threads per room
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Visualizing Clusters
● An example

Cluster B,
4 vectors

Cluster A,
4 vectors
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Visualizing Clusters
● Microbenchmark

{4
vectors
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Visualizing Clusters
● Modified SPECjbb2000 (4 warehouses)

{16
vectors
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Visualizing Clusters
● RUBiS + MySQL (2 databases)

{24
vectors
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Visualizing Clusters
● VolanoMark (4 rooms)
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Remote Cache Impact
● Normalized to default Linux
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Performance Impact
● IPC: instructions per cycle
● Normalized to default Linux
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6.16.1

7.1
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Summary

BEFORE:
Current Operating Systems

AFTER:
Operating System With

Thread Clustering
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Conclusions
● HPCs can detect sharing
● Sharing signatures are effective
● Automated thread clustering:

● Reduces remote cache access up to 70%
● Improves performance up to 7%

● All with low overhead

Future Work:
● More workloads
● Improve clustering algorithm
● Integration with load-balancing aspects
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Sampling Overhead
● Modified SPECjbb2000


