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Abstract—Most of today’s multi-core processors feature shared and have explored different hardware support for dynaryical
L2 caches. A major problem faced by such architectures is c&®  partitioning the L2 cache [1], [2], [3], [4], [5], [6], [7]. 8me
contention, where multiple cores compete for usage of thersle ot thage hardware solutions are effective and may evegtuall

shared L2 cache. Uncontrolled sharing leads to scenarios \ehe in fut Wi that It ti
one core evicts useful L2 cache content belonging to another appear In future processors. Ve argue that an alternative,

core. To address this problem, we have implemented a softwar Operating system-level solution is viable by exploiting th
mechanism in the operating system that allows for partitionng hardware performance monitoring features available inyman
of the shared L2 cache by guiding the allocation of physical existing microprocessors.

pages. This mechanism, which can also be applied to virtual | this paper, we present such a software solution based on

machine monitors, provides isolation capabilities that lad to low-overhead and flexible implementation of h it
reduced contention. We show that this mechanism is effecavin & 'OW-Overneada e e iImplementation ot cache pal

reducing cache contention in multiprogrammed SPECcpu2000 ing through physical page allocation on a real operatingesys
and SPECjbb2000 workloads. Performance improvements of up (Linux) running on a real multi-core system (IBM Power5).

to 17% were achieved without adversely affecting co-scheded  We show how to exploit the hardware performance monitoring
applications. features of the microprocessor to aid in determining the L2

In order to effectively size L2 cache partitions, a quantifidle o . . L
metric is needed to properly predict performance as a funcin of partition size that should be given to each application. élor

L2 cache size. For page management, Miss Rate Curves (MRCs)SPecifically, for each application, we generate L2 Miss Rate
have proven to be useful for this purpose. However, for L2 caee Curves (MRCs) and instruction retirement Stall Rate Curves

sizing, we have found L2 MRCs to be inadequate and have (SRCs), where the stalls are caused by memory latencies. We
found instruction retirement Stall Rate Curves (SRCs) to bemore  ;5e these curves to predict L2 contention to guide the CPU
effective, where the stalls are caused by memory latencies. scheduling algorithm in deciding which subsets of appiiret
should be co-scheduled.

In our experimental analysis, we first show the negative

On-chip shared L2 cache architectures are common ipact of uncontrolled sharing of the L2 cache and then
today’s multi-core processors, such the Sun Niagara, IBdhow how our software cache partitioning algorithm can
Power5, and Intel Core architecture. Shared caches halieninate this negative impact. We used SPECcpu2000 and
important advantages such as increased cache spacetiotilizaSPECjbb2000 as our workloads, running Linux 2.6.15 on an
fast inter-core communication (via the high-speed shar2d IBM Power5 CMP system. Our experimental results indicate
cache), and reduced aggregate cache footprint through thet by carefully partitioning the L2 cache and co-scheuyli
elimination of undesired replication of cache lines. compatible applications appropriately, improvements igh h

A major disadvantage of shared L2 caches, however, is tlaat 17% in total system IPC can be achieved without adversely
uncontrolled contention can occur by allowing CPU cores tffecting any of the co-scheduled applications.
freely access the entire L2. As a result, scenarios can occuDne of the insights we obtained by experimenting on a
where one core constantly evicts useful L2 cache contestal system was that L2 MRCs alone were inadequate in
belonging to another core without obtaining a significamgredicting co-scheduled performance impact on our system.
improvement itself. Such contention causes increased tl2ecaWe found that an application’s rate of instruction retireme
misses which in turn leads to decreased application perfstall due to memory latencies, as a function of L2 cache
mance. size, to be more effective. This instruction retirementl sta

Uncontrolled L2 sharing also reduces the ability to enforgate curve (SRC), incorporates factors such as (1) the L2
priorities and to provide Quality-of-Service (QoS). For- excache miss rate; (2) instruction retirement stall serigjtito
ample, a low priority application running on one core thdt2 cache misses; (3) non-uniform access latencies to lower
rapidly streams through the L2 cache can consume the entéreels of the memory hierarchy, such as the L3 victim cache,
L2 cache and remove most of the working set of higher prioritpcal main memory, and remote main memory; and (4) shared
applications co-scheduled on another core. L , L _ _

. . . We use missate, rather than missatio, sincerate incorporates time and

Many researchers in the architecture community have reCQges an indication of access intensity that can be easitpaoed among

nized the problem of uncontrolled contention in the L2 cach#plications.

|I. INTRODUCTION



memory bus contention [8]. On our system, we found that pitual Pages

the instruction retirement stall rate due to L1 data cache

Physical Pages
misses was sufficient to reasonably predict performance as a Color A /
function of L2 cache size, and was directly obtainable from
the hardware performance counters. Section VI providegmor  J2Cache
detai|S. Color Al } _

1. RELATED WORK
Color
Many researchers in the architecture community have rec- ;
ognized the cache contention problem in shared L2 caches and ¢ o Virtual Pages
oL rocess B

have proposed hardware support for partitioning the cathe [ Indexed ColorAy
[2], [3], [4], [B], [6], [7]. Some of these hardware soluti®are
effective, with reasonable complexity and resource comsum :

tion, and may be eventually implemented in real processors
in the future. Our work explores an alternative solutiont tha
is entirely based on software using hardware performance
monitoring features of today’s microprocessors. Our safexy Fig. 1. Page and cache line mapping.

based approach has the advantage of being implementable and

deployable today. Moreover, it is more flexible as it can be

built with standard hardware performance monitoring fezgu 15 11 6 0
and does not add to the design complexity of already complex Asseoiative lcaere Lima
microprocessors. While the hardware solution proposed b)l'-2 Set Number Offset
Qureshi and Patt [6] can achieve up to 23% performance : : :
improvement on a simulated platform, our software-based : : ;
solution running on a real system is able to achieve up to : : :

115 " ' 0
17% improvement. Phvsical r '
The work closest to our approach is by Cho and Jin, wrme‘;mry Physical Page Nurriber Page Pffset
propose a software-based mechanism for L2 cache partitjoni : : ;
based on physical page allocation [9], [10]. However, the : : 5
major focus of their work is on how to distribute data in — e
a Non-Uniform Cache Architecture (NUCA) to minimize 4Bits  5Bits

of OS Beyond

overall data access latencies. In contrast, we concessly Control OS Gontrol

on the problem of uncontrolled contention on a shared L2

cache. Fur_thermore' we have |mplemented_ our S_OIUtlon In Fig. 2. Bit-field perspective of partitioning on the Power5.
a real environment based on features available in today’s

processors. This enables us to examine the impact of the

cache partitioning on real processor performance using-har

ware performance counters. Similar to their philosophy, Wceontiguous L2 cache lines label&blor A. For the Power5

advocate low-overhead, flexible software solutions thdp he . . ;
rocessor used in our experiments, there are 32 physically

to simplify the _hardwa_re. Due to t_heir target platform, the{é)ontiguous cache lines to a page because the page size is
used a simulation environment (SimpleScalar) that does r}{)tKB and the cache line size is 128 bytes. The figure also

take the interference of the operating system into account.ShOWS that physical pages of the same color are given to the

I1l. DESIGN& | MPLEMENTATION same application. For example, physical pages @flor A
Pave been assigned solely to application prodesthe OS

apply the classic technique of OS page-coloring [9], [10L] i responsible for this mapping of virtual-to-physical mamn

. . ; ges and it is this capability that enables control of L2

[12]’. [13]' When a new physical page is required by a targ%‘f;llche usage and isolation. We implemented this mechanism

application, the OS allocates a page that maps onto a section . e . :

. . -~ “1In Linux 2.6.15 by modifying the physical page allocation

of the L2 cache assigned to the target application. By doing s Co

) .~ component of the OS. For non-targeted applications, the OS

for every new physical page request of the target applioatio .

; o allocates any free physical page when requested, thus these
we isolate L2 cache usage of the application.

. ; : ; . nPn—targeted applications would not adhere to any cache
Fig. 1 illustrates the page-mapping technique in general. ... .

. : ; artition restrictions.
In a physically indexed L2 cache, every physical page has
a fixed mapping to a physically contiguous group of cache Although we implemented this mechanism at the OS level
lines. The figure shows that there are several physical pagedhis paper, this solution could also be applied at thelleve

labeledColor A that all map to the same group of physicallyf a virtual machine monitor.

To provide software-based L2 cache partitioning, we simp



A. Partitioning on the Power5 When a large number of physical pages are requested at

Using the page-mapping technique, the Power5 proces%'l‘:e’ Linux allocates a group of physically contiguous sage

is able to support 16 distinct colors, which we will refer t§s Ion_g as th_e groups are powers of 2 n size. To support
this, Linux maintains lists of groups of contiguous free gag

as partitions. Fig. 2 illustrates a bit-field perspective of the ™ .
page-mapping technique. The upper 4 bits of the L2 cache gﬁtsue 1 to 1024 pages (i.e., level 0 to leve| 10). For page

number field overlap with the bottom 4 bits of the physicaﬁ ocation of levels higher than 0 we use the single free list

page number field. Since the operating system has dirg&the target '?Ve' (ie., for_ _Ievels higher than 0, we do_not
control of the physical page number field, it has 4 bits dise separate lists per partition). We traverse the list @ din

influence on the L2 cache set number. The lower 5 bits of tf itable page group that maps to the target L2 partitiorceSin

L2 cache set number, which are beyond the direct control %.ocatlong at h|tgher Ie¥els IS fa'”Y rglcre, V\tlle do not foese
the operating system, means that there are 32 sets pe'rqmrtitt 'Svﬁase impac '?]g perlorman_ceb&gnl |c;e|1n yi df i
Note that there are no bits in the physical address that are €n a new physica’ page IS being atlocated for an appii-

related to set-associativity because eviction within esathis C?t'ont and |tst aSS|gnetd gz_r:_ltlonl ffree list is efmpty,t;hef_ th
managed online, at run-time by the hardware using an L ocator must request additional Ire€ pages from the Linux

policy uddy allocator. A problem may arise in that none of the

The L2 cache on the Power5 is physically implemented 2ges returned by the buddy allocator have the color of the

T . . . arget partition. Even repeated attempts may be unsuetessf
3 symmetric slices, where the slice number is determined b)(/\% employ a configuration paramet&bxTr v, to limit the
hash function using bits 8 to 27 inclusively. Unfortunatdiypf ploy 9 X Y,

these bits are beyond the direct control of the operatingesys numper of Sl.JCh atte.mpts. It aftEImxTr.y attempts, the
. . : .partition free list remains empty, the physical page iscated
meaning that slice usage appears uniformly random. Havi

directly control of the L2 slice usage would have enabled ursgm another partlltlon free list chosen randomly. The difau
o value forMaxTry is set to 100.
to support 48 partitions.

Our L2 cache partitioning mechanism also causes the L3 IV. EXPERIMENTAL SETUP
victim cache of the Power5 to be divided into 16 partitions.
The derivation is similar to the L2 cache derivation and i
therefore not shown. Each partition in the L2 has a dire
mapping to a corresponding partition in the L3 victim cach

The multiprocessor used in our experiments is an IBM
penPower 720 computer, as specified in Table I. It is an
-way Power5 consisting of a 2x2x2 SMPXCMPXSMT con-
iguratiorf. Each chip has 1.875 MB of shared L2 cache that
is shared between the on-chip cores. There is an off-chip
36 MB L3 victim cache per chip. As mentioned previously,
Although partitioning physical memory is a fairly simple|jnux 2.6.15 was used and modified to allow for L2 cache
concept, its implementation in the Linux kernel must be dorgyrtitioning. With the given hardware, a total of 16 paotits
carefully to prevent any negative performance side effénts are possible on the Power5 processor, each of size 120 KB in
our first attempt, we simply used a single free list of phylsiCghe L2 cache and 2.25 MB in the L3 victim cache.
pages for each CPU core. Having a single free list, however;tg create a controlled execution environment for our exper-
incurred expensive linear search of the potentially lorgefriments, the Linux task scheduler was modified to completely
list frequently. disable the default reactive and pro-active task migration
Another problem with having a single free list is that upomechanisms and policies. Our partitioning mechanism has
application termination, a large number of pages are frepd compatibility issues with process migration across sore
and put at the head of the free list. Since these pages wsiifce physical-to-virtual page mappings remain unchanged
assigned to the recently terminated application, they n@y nn addition and for the same reasons, our mechanism is
be suitable for another application running on a differ@rec independent of the number of cores sharing the L2 cache.
As a result, a linear traversal of the free list scans throaigh The workloads used were SPECjbb2000 and SPECcpu2000.
potentially large number of unsuitable pages before it findhe IBM J2SE 5.0 JVM was used to run SPECjbb (1 ware-
the first suitable page. house configuration). For SPECcpu, 20 out of the 26 appli-
To address this issue, we converted the single free list indations were run using the standasfierence input set. (The
multiple free lists (still on a per CPU basis). Each list @n$ remaining 6 applications, which were mostly Fortran-based
free physical pages that map to a designated section of #ig@ not compile successfully.) To simulate a multiprogragam
L2 cache. Having multiple free lists, each corresponding a@rver environment, various combinations of these apjdics
L2 partition, dramatically accelerates the process of figdi  were run together.
suitable page, as it removes the need for linearly searching
the free list. A simple Round-Robin scheme is used when V. RESULTS

multiple free lists are eligible to select a free page fromc8  \wjth software-based partitioning, we have the ability to

the Power5 L2 cache can be divided by software to havesgydy the impact of L2 cache size on execution time. Fig. 3
maximum of 16 partitions, we had 16 free lists for each CPU

in the system. 22 chips x 2 cores per chip x 2 hardware threads per core.

B. OS Implementation



TABLE |
IBM OPENPOWER720SPECIFICATION

Item Specification
# of Chips 2
# of Cores 2 per chip
CPU Cores IBM Power5, 1.5 GHz, 2-way SMT
L1 ICache 64 KB, 128-byte lines, 2-way associative, per core
L1 DCache 32 KB, 128-byte lines, 4-way associative, per core
L2 Cache 1.875 MB, 128-byte lines, 10-way associative, 14 cycleniage per chip
L3 Victim Cache | 36 MB, 256-byte lines, 12-way associative, 90 cycle latepey chip, off-chip
RAM 8 GB (2 banks x 4 GB), 280/310 cycle latency local/remote
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Fig. 3. Single-programmed application performance as atiim of L2 cache size.

shows the impact of varying the L2 cache size using oby Qureshi and Patt because we use a 1.875MB L2 cache
partitioning mechanism. Each application was run alone dmat is partitioned at physical page granularity while Ghie

a single core. Applicationgap, wupwise, mesa, gcc, and and Patt used a 1MB L2 cache partitioned by hardware at
sixtrack are not shown because they had flat curves simileache line, set-associative way granularity. Furthermibrey

to mgrid in Fig. 3(p). The results of Fig. 3 are similar in spiritgenerated their results by simulating a fairly short fracti

to the initial graphs shown by Qureshi and Patt [6] but owf application execution (250 million instructions) whase
results come from a software implementation running onvee ran applications for much longer periods (several tens of
real system. We show application-reported run times for thdlions of cycles).

entire run of the application, which includes all overhe&isr

results here are difficult to compare against those obtained?Ur results indicate that for some applications, having a
small fraction of the cache is sufficient to achieve perfaroea



close to the performance achieved with the entire cachmproved by up to 11% (14 partitions) without noticeably
For example, SPECjbb requires 8 partitionsf requires 4 affectingart. In Fig. 4(c),vortex can be improved by 5% (10
partitions, andart requires 2 partitions. partitions) without affectingrt. If art is a lower priority task,

Most graphs show monotonically decreasing executidhen vortex can be improved by up to 8% while penalizing
times as the cache size is increased, as expected. Howesdrpy 3%. In Fig. 4(d),ammp can be improved by 5% (14
there are a few exceptions. For instans@m shows increas- partitions) while penalizingpplu by 2.5%. In Fig. 4(e)twolf
ing execution times as the cache size is increased from 1ct@n be improved by 8% (13 partitions) without penalizgap.

5 partitions, andwolf shows increasing execution times aghe drop in IPC fortwolf at 14 and 15 partitions is due
the cache size is increased from 12 to 16 partitions. We deethe interference frongzip upon exceeding thé/bxTry
currently investigating such anomalous cases using @etaillOO threshold. A similar situation occurred in Fig. 4(f) as
hardware performance monitoring tools. well, from 1 to 4 partitions invpr, which helpedvpr without

It is important to note that with the initial single-significantly affectingswvim. Finally, Fig. 4(g) also shows the
programmed results shown in Fig. 3, the impact of cgame phenomenon swim between 1 to 4 partitions.
scheduling two or more applications on a single chip without Although not shown in this paper, we observed no impact
software-based cache partitioning cannot be easily petlic on the L1 instruction cache in the SPECcpu applications.
One important characteristic that is missing from Fig. Jhis t However for SPECjbb, as the size of the L2 cache was
L2 cache usage demands of each application. For exampledggareased from 5 partitions to 1 partition, we observed a
application could exhibit streaming behavior consistingigh noticeable increase in the instruction retirement staé due
L2 cache access frequency and no reuse frequency, leadingptb 1 instruction cache misses.

a high miss frequency.

Fig. 4 shows the impact of software cache partitioning
on performance for seven combinations of multiprogrammedUnderstanding and characterizing the performance impact
workloads. Each application was run on its own core b@f sharing resources on a CMP chip is an essential part
within the same chip so that the L2 cache is indeed sRareflf (2) predicting which combinations of applications exhib
The units shown are IPC improvement per billion cycles &¢rformance interference and, (b) quantifying the poénti
reported by the hardware performance counter tools degdloperformance improvements of controlling resource shaiimg
by our research group in pre\/ious work [14], [15] ThéhIS case, L2 cache sharing. In this section, we demonstrate
performance is normalized to the performance of the sarf@t cache partitioning can recover up to 70% of degraded IPC
combination of applications without partitioning. We skipe due to chip sharing. Furthermore, we detail how hardware
first 30 billion cycles of execution and capture IPC data far t Performance counters can be used to predict the potential
next 60 billion cycles using hardware performance counterperformance interference between applications executimng

The bottom x-axis shows the number of partitioN§ given  different cores of the same chip.
to one application, while the remainiri§ — N partitions are ~ Fig. 5 shows the performance degradation suffered by
given to the second application, as indicated by the top &PPlications when executing as a pair, compared to exegutin
axis. For example, when SPECjbb is given 12 partitions iR Single-programmed mode. Each application in the multi-
Fig. 4(a),equakeis given the remaining 4 partitions. The grapHprogrammed pair is executed on its own core but within the
indicates that SPECjbb can achieve a throughput improvem&ame chip, thus sharing the L2 cache. Two different setups
of up to 8% (12 partitions) whileequake is penalized by are plotted: (1) the reduction of IPC, normalized to single-
less than 5%. If SPECjbb is intended to be the high priorifffo9rammed mode, of applications executing with no cache
application whileequake is the low priority application, then Partitioning, and (2) the reduction of IPC, normalized to
these priorities could be enforced with software-basedeacSingle-programmed mode, of applications executing with a
partitioning. As an extreme example, SPECjbb could be giveest’, fixed, manually selected partition size.

14 partitions with the remaining 2 partitions givenenuake, With most combinations shown, cache partitioning is able
resulting in a 13% improvement to SPECjbb while penalizing Significantly reduce the IPC degradation due to chip sigari
equake by 8%. For the SPECjbb+equake combination, we us&f one of the applications, while possibly slightly degragli

a MaxTry value of 25000, rather than the default. Usinge IPC of the second application. The worst degradation see
a lower value caused the performance of SPECjbb to bedgnin equake when run together with SPECjblequake's IPC
showing degradations from 11 to 15 partitions. This ocauirréuffers a 4% decrease, while enabling a 9% improvement of
becauseequake would exceed theMaxTry 100 threshold SPECjbb’s IPC. The best improvement is seetwalf when
frequently since it was allowed only 1 to 5 partitions. Upofun together withgzip. This combination shows that cache
this occurrencesquake would obtain physical page belongingPartitioning can recover up to 70% of degraded IPC due to

to SPECjbb instead. chip sharipg. . .
Fig. 4(b) indicates that the performance wif can be The main reason behind most of the benefit seen by control-

ling L2 cache sharing is the fact that while some application
3Examining the impact of SMT, by running both applicationstbe same are memory 'nten&_‘"ve in their behe_lw_or, they may not benefit
core, is beyond the scope of this paper. from using the entire L2 cache. This is the case, for example,

VI. QUANTIFYING CHIP SHARING INTERFERENCE
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Fig. 5. IPC comparison of applications executing in isolaton a CMP chip, versus executing while sharing the chip.

for the art application. Fig. 6 shows the number of cycles imrt does not improve its memory performance. The same
which instruction retirement is stalled due to L1 data cacluharacteristics apply tewim and gzip, as can be seen by
misses in a billion cycles, with varying L2 cache partitiocomparing Fig. 3(i) and Fig. 3(l) to the various combinatigm
sizes, as collected by the Power5 hardware performance cokig. 5, and described in various papers regarding theirsscce
ters. In this figure, each application is executed alone en timtensities [7], [8], [16], [17].

chip. Fig. 6(a) shows the variation of memory access reIated_I_
stalls forart. There are two notable observations. First, the run

time curve shown in Fig. 3(d) closely resembles curve 6( tonically d th ber of partiti A
demonstrating that for this application, memory stallsnse onotonically decreases as e numboer of partitions graes.

by the core are strongly related to its performance. Secoﬁ@,n t:cet segtr;] n F;]g. 5 l:;c:thcf and\r:ortex shovt\{ perflo rmanige
it is clear that giving more than 2 L2 cache partitions tgene ItS with cache partiioning when executing along sioe o
art, because the partitioning isolates the lack of localitynsae

he curves formcf and vortex in Fig. 6, however, show
different behavior. The number of memory related stalls
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Fig. 7. L2 miss rate curve (MRC) of varying L2 cache partitisizes, as reported by the PowerPC performance counteiglegirogrammed mode.

art and avoids the replacement of useful cache lines belonging |
to the other application, which otherwise would have been th
case with the LRU hardware mechanism.

Finally, the performance of a few application combinations
are not affected when sharing the same chip. This is the case
for the apsi+crafty, vortex+mesa, and gap+parser combina- 0 2 4 6 810121416 2 4 6 8 10 12 14 16
tions shown in Fig. 5. This can also be explained by analyzing L2 Goche Size (#ofpartions) 2 Coche Size (rofpartions)
the instruction retirement stalls due to L1 data cache raiss&ig. 8. L3 victim cache and local memory hit rates &nt, per billion cycles,
As can be seen in Fig. 6(d), althougtesa shows sensitivity as reported by the PowerPC performance counters. Singtggmmed mode.
to varying cache partitions, instruction retirement isllsth
due to L1 data cache misses for, typically, only around 5
of the cycles. This indicates thatesa has very low cache
requirements and is unlikely to replace important cacheslin
from applications executing on a sibling core when using t
default LRU hardware mechanism.
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(g&amining the L3 victim cache and local memory hit rate
curves, shown in Fig. 8, it is apparent that the source of the
erformance improvements is due to the source in which data
i§ acquired. In the 2 partition case, most L2 cache misses are
resolved in the L3 victim cache. In contrast, in the 1 patiti

A Sall Rate Curve Versus Miss Rate Curve case, most L2 cache r_n_|ss_es are resolved in the local main
memory due to L3 partitioning.

Fig. 7 shows the L2 miss rate curves for the same four
applications in Fig. 6. While the stall rate curves (SRCs) in VII. DiscussioN
Fig. 6 directly measure instruction retirement stalls eaus Due to current hardware indexing of cache lines, software
by the memory hierarchy, the L2 miss rate curves in Fig. dache partitioning is compatible with larger page sizesaup t
measure only a single component of the performance pictugecertain extent. As the size of a page grows by doubling its
which is therate of misses experienced at the L2 cache onlgize, the number of possible partitions in the L2 decreases
It is interesting to note that in some scenarios, the L2 migy half. However, if the size of a page causes the number of
rate is not sufficient to accurately predict the performange possible partitions to drop below two, then cache partitign
pact of memory operations because it does not account for theuld no longer be possible.
penalty of misses. In a multi-level cache hierarchy, theatgn  Our partition mechanism does not create load imbalance
of an L2 cache miss can vary dramatically depending on tbe the main memory banks of the system since our Power5
source from which the cache miss is served. For exampsystem make use of standard interleaved memory design.
when varying from 1 to 2 partitions withrt, although there In this work, we have assumed that per application L2
is a significant performance increase and L1 data cache stMIRCs and instruction retirement stall rate curves (SRCs),
drop, the L2 miss rate curve does not show a correspondinbere stalls are caused by memory latencies, are available t
decrease. Rather, it shows an increase in the miss rate. tBg operating system as they are obtained during profiling ru



and stored in a repository. In order to add a new applicatiopa]
to the repository, these curves must be calculated by rgnnin
the application (or at least a representative portion of it}5]
several times (16 in our setup). ldeally, one might want to
calculate an application’s L2 MRC online with low overhead 6]
Unfortunately, this is not possible given the existing heaice
performance monitoring features of today’s microprocesso [7]
Nonetheless, there is much room for speeding up the process
of calculating the L2 MRC. For instance, Berg and Hagerste[é]
use a software approach based on data adevatshpoints to
calculate MRC online with the runtime overhead of 40% [18][°]

Secondly, we have assumed the application’s L2 MRC al
SRC are stable throughout the execution of the application.
In reality, each application goes through seveadses that

i 1

may have different memory access patterns. To react to SL[IC:H
phase changes, dynamic repartitioning of the L2 cache may
be required which may potentially incur significant copyofg
data from one color to another. However, if program phasgg]
are long enough to offset the overhead of repartitioning, o[14]
software-based approach is still applicable.

VIII. CoNCLUSION & FUTURE WORK [15]

We have demonstrated a software-based cache partitioﬁﬂ%
mechanism and shown some of the potential gains inj@
multiprogrammed computing environment. Our mechanism
allows for flexible management of the shared L2 cache rgg
source. Although we have implemented this mechanism at the
operating system level in this paper, it can also be applied a
the virtual machine monitor level.

Our experience on a real system has led us to the insight that
instruction retirement stall rate curves (SRCs), wherksséae
caused by memory latencies, provide more useful informatio
for our purposes than L2 cache miss rate curves (MRCs).

We are currently investigating many other possible com-
binations of workloads. Other potential workloads that we
are considering include SPECcpu2006, and SPECweb2000
multiprogrammed with TPC-C.

We plan to extend the basic mechanism by creating a contin-
uous optimization system that (1) dynamically determimes t
optimal partition size in an automated, online, low overhea
manner using hardware performance monitoring facilithes]
that (2) dynamically adjusts the number of partitions giten
an application in an online, low overhead manner.
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