

1

Operating System Management
of Shared Caches

on Multicore Processors

-- Ph.D. Thesis Presentation --

Apr. 20, 2010

David Tam

Supervisor: Michael Stumm

2

Multicores Today

Multicores are Ubiquitous
● Unexpected by most software developers
● Software support is lacking (e.g., OS)

General Role of OS
● Manage shared hardware resources

New Candidate
● Shared cache: performance critical
● Focus of thesis

Cache Cache

Shared Cache

...

...

3

Thesis
OS should manage on-chip shared caches
of multicore processors

Demonstrate:
● Properly managing shared caches at OS level

can increase performance

Management Principles
1. Promote sharing

● For threads that share data
● Maximize major advantage of shared caches

2. Provide isolation
● For threads that do not share data
● Minimize major disadvantage of shared caches

Supporting Role
● Provision the shared cache online

4

#1 - Promote Sharing
Problem: Cross-chip accesses are slow
Solution: Exploit major advantage of shared caches:

 Fast access to shared data
OS Actions: Identify & localize data sharing
View: Match software sharing to hardware sharing

Thread A Thread B

Shared Data Traffic

Shared Data Shared Data

Chip A Chip B

L2 L2

5

#1 - Promote Sharing

Chip A Chip B
Thread A

Thread B

L2 L2
Shared Data

Problem: Cross-chip accesses are slow
Solution: Exploit major advantage of shared caches:

 Fast access to shared data
OS Actions: Identify & localize data sharing
View: Match software sharing to hardware sharing

6

Identify Data Sharing
● Detect sharing online with hardware performance counters

● Monitor remote cache accesses (data addresses)
● Track on a per-thread basis
● Data addresses are memory regions shared with other threads

Localize Data Sharing
● Identify clusters of threads that access same memory regions
● Migrate threads of a cluster onto same chip

Thread A Thread B

Shared Data Traffic

Shared Data Shared Data

Chip A Chip B

L2 L2

Thread Clustering [EuroSys'07]

7

Chip A Chip B
Thread A

Thread B

L2 L2
Shared Data

Identify Data Sharing
● Detect sharing online with hardware performance counters

● Monitor remote cache accesses (data addresses)
● Track on a per-thread basis
● Data addresses are memory regions shared with other threads

Localize Data Sharing
● Identify clusters of threads that access same memory regions
● Migrate threads of a cluster onto same chip

Thread Clustering [EuroSys'07]

8

Visualization of Clusters

{16
threads

● SPECjbb 2000
● 4 warehouses, 16 threads per warehouse

● Threads have been sorted by cluster for visualization

Memory Regions

Threads

Sharing Intensity
High
Medium
Low
None

0 264

(Virtual Address)

9

{16
threads

Memory Regions

Threads

Sharing Intensity
High
Medium
Low
None

Memory Regions0 264

(Virtual Address)

Visualization of Clusters
● SPECjbb 2000

● 4 warehouses, 16 threads per warehouse

● Threads have been sorted by cluster for visualization

10

Performance Results

● Multithreaded commercial workloads
● RUBiS, VolanoMark, SPECjbb2k

● 8-way IBM POWER5 Linux system
● 22%, 32%, 70% reduction in stalls caused by

cross-chip accesses
● 7%, 5%, 6% performance improvement

● 32-way IBM POWER5+ Linux system
● 14% SPECjbb2k potential improvement

36 MB

4 GB

1.9MB L2 1.9MB L2
36 MB

4 GB

11

#2 – Provide Isolation

Apache

MySQL

Problem: Major disadvantage of shared caches
Cache space interference

Solution: Provide cache space isolation between applications
OS Actions: Enforce isolation during physical page allocation
View: Partition into smaller private caches

12

#2 – Provide Isolation

Apache

MySQL

Problem: Major disadvantage of shared caches
Cache space interference

Solution: Provide cache space isolation between applications
OS Actions: Enforce isolation during physical page allocation
View: Partition into smaller private caches

13

#2 – Provide Isolation

Apache

MySQL

Problem: Major disadvantage of shared caches
Cache space interference

Solution: Provide cache space isolation between applications
OS Actions: Enforce isolation during physical page allocation
View: Partition into smaller private caches

14

#2 – Provide Isolation

Apache

MySQL

Boundary

Problem: Major disadvantage of shared caches
Cache space interference

Solution: Provide cache space isolation between applications
OS Actions: Enforce isolation during physical page allocation
View: Partition into smaller private caches

15

#2 – Provide Isolation

Apache

MySQL

Problem: Major disadvantage of shared caches
Cache space interference

Solution: Provide cache space isolation between applications
OS Actions: Enforce isolation during physical page allocation
View: Partition into smaller private caches

Boundary

16

Cache Partitioning
● Apply page-coloring technique
● Guide physical page allocation to control cache line usage
● Works on existing processors

Physical Pages
Color A

Color A

Color A

}Color A
(N sets)

L2 Cache
{

Virtual Pages

Application

Fixed Mapping
(Hardware)

OS Managed

[WIOSCA'07]

17

Physical Pages
Color A

Color A

Color A

}Color A
(N sets)

L2 Cache
{

Virtual Pages

Application A

Fixed Mapping
(Hardware)

OS Managed

Virtual Pages

Application B

Color B

Color B

Color B

}Color B
(N sets)

{

● Apply page-coloring technique
● Guide physical page allocation to control cache line usage
● Works on existing processors

Cache Partitioning [WIOSCA'07]

18

Impact of Partitioning

Performance
Without
Isolation

16 14 12 10 8 6 4 2 0 art
mcf

L2 Cache Sizes (# of Colors)

art

mcf

Performance of Other Combos
● 10 pairs of applications: SPECcpu2k, SPECjbb2k

● 4% to 17% improvement (36MB L3 cache)
● 28%, 50% improvement (no L3 cache)

19
0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100
Application X

Allocated Cache Size (%)

M
is

s
R

at
e

(%
)

Provisioning the Cache
Problem: How to determine cache partition size

Solution: Use L2 cache miss rate curve (MRC) of application
Criteria: Obtain MRC rapidly, accurately, online, with low overhead,

on existing hardware
OS Actions: Monitor L2 cache accesses

using hardware performance counters

20

Design
● Upon every L2 access:

● Update sampling register with data address
● Trigger interrupt to copy register to trace log in main memory

● Feed trace log into Mattson's stack algorithm [1970]
to obtain L2 MRC

Results
● Workloads

● 30 apps from SPECcpu2k, SPECcpu2k6, SPECjbb2k
● Latency

● 227 ms to generate online L2 MRC
● Accuracy

● Good, e.g. up to 27% performance improvement when
applied to cache partitioning

RapidMRC [ASPLOS'09]

21

xalancbmk

● Execution slice at 10 billion instructions

Cache Size (# colors)

M
is

s
R

at
e

(M
P

K
I)

jbb

mcf 2k

gzip mgrid

Accuracy of RapidMRC

ammp

22

Performance
Without
IsolationRapidMRC Real MRC

L2 Cache Sizes (# of colors)
16 14 12 10 8 6 4 2 0

twolf
equake

0 2 4 6 8 10 12 14 16

Effectiveness on Provisioning

Performance of Other Combos Using RapidMRC
● 12% improvement for vpr+applu
● 14% improvement for ammp+3applu

23

Contributions
On commodity multicores, first to demonstrate
● Mechanism: To detect data sharing online & automatically cluster threads
● Benefits: Promoting sharing [EuroSys'07]

● Mechanism: To partition shared cache by applying page-coloring
● Benefits: Providing isolation [WIOSCA'07]

● Mechanism: To approximate L2 MRCs online in software
● Benefits: Provisioning the cache [ASPLOS'09]

...all performed by the OS.

24

Concluding Remarks
Demonstrated Performance Improvements
● Promoting Sharing

● 5% – 7% SPECjbb2k, RUBiS, VolanoMark (2 chips)
● 14% potential: SPECjbb2k (8 chips)

● Providing Isolation
● 4% – 17% 8 combos: SPECcpu2k, SPECjbb2k (36MB L3 cache)
● 28%, 50% 2 combos: SPECcpu2k (no L3 cache)

● Provisioning the Cache Online
● 12% – 27% 3 combos: SPECcpu2k

OS should manage on-chip shared caches

25

Thank You

26

24-9=15 slides

27

Future Research Opportunities
Shared cache management principles
can be applied to other layers:

● Application, managed runtime, virtual machine monitor

Promoting sharing
● Improve locality on NUMA multiprocessor systems

Providing isolation
● Finer granularity, within one application [MICRO'08]

● Regions
● Objects

RapidMRC
● Online L2 MRCs

● Reducing energy
● Guiding co-scheduling

● Underlying Tracing Mechanism
● Trace other hardware events

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

