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Multicores Today

Multicores are Ubiquitous
● Unexpected by most software developers
● Software support is lacking (e.g., OS)

General Role of OS 
● Manage shared hardware resources

New Candidate
● Shared cache: performance critical
● Focus of thesis

Cache Cache

Shared Cache

...

...
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Thesis
OS should manage on-chip shared caches
of multicore processors

Demonstrate:
● Properly managing shared caches at OS level

can increase performance

Management Principles
1. Promote sharing

● For threads that share data
● Maximize major advantage of shared caches

2. Provide isolation
● For threads that do not share data
● Minimize major disadvantage of shared caches

Supporting Role
● Provision the shared cache online
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#1 - Promote Sharing
Problem: Cross-chip accesses are slow
Solution: Exploit major advantage of shared caches:

  Fast access to shared data
OS Actions: Identify & localize data sharing
View: Match software sharing to hardware sharing

Thread A Thread B

Shared Data Traffic

Shared Data Shared Data

Chip A Chip B

L2 L2
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#1 - Promote Sharing

Chip A Chip B
Thread A

Thread B

L2 L2
Shared Data

Problem: Cross-chip accesses are slow
Solution: Exploit major advantage of shared caches:

  Fast access to shared data
OS Actions: Identify & localize data sharing
View: Match software sharing to hardware sharing
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Identify Data Sharing
● Detect sharing online with hardware performance counters

● Monitor remote cache accesses (data addresses)
● Track on a per-thread basis
● Data addresses are memory regions shared with other threads

Localize Data Sharing
● Identify clusters of threads that access same memory regions
● Migrate threads of a cluster onto same chip

Thread A Thread B

Shared Data Traffic

Shared Data Shared Data

Chip A Chip B

L2 L2

Thread Clustering [EuroSys'07]
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Chip A Chip B
Thread A

Thread B

L2 L2
Shared Data

Identify Data Sharing
● Detect sharing online with hardware performance counters

● Monitor remote cache accesses (data addresses)
● Track on a per-thread basis
● Data addresses are memory regions shared with other threads

Localize Data Sharing
● Identify clusters of threads that access same memory regions
● Migrate threads of a cluster onto same chip

Thread Clustering [EuroSys'07]
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Visualization of Clusters

{16
threads

● SPECjbb 2000
● 4 warehouses, 16 threads per warehouse

● Threads have been sorted by cluster for visualization

Memory Regions

Threads

Sharing Intensity
High
Medium
Low
None

0 264

(Virtual Address)
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Performance Results

● Multithreaded commercial workloads
● RUBiS, VolanoMark, SPECjbb2k 

 

● 8-way IBM POWER5 Linux system
● 22%, 32%, 70% reduction in stalls caused by

cross-chip accesses
●   7%,   5%,   6% performance improvement

● 32-way IBM POWER5+ Linux system
● 14% SPECjbb2k potential improvement

36 MB

4 GB

1.9MB L2 1.9MB L2
36 MB

4 GB
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#2 – Provide Isolation

Apache

MySQL

Problem: Major disadvantage of shared caches
Cache space interference

Solution: Provide cache space isolation between applications
OS Actions: Enforce isolation during physical page allocation
View: Partition into smaller private caches
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#2 – Provide Isolation

Apache

MySQL

Boundary

Problem: Major disadvantage of shared caches
Cache space interference

Solution: Provide cache space isolation between applications
OS Actions: Enforce isolation during physical page allocation
View: Partition into smaller private caches
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#2 – Provide Isolation

Apache

MySQL

Problem: Major disadvantage of shared caches
Cache space interference

Solution: Provide cache space isolation between applications
OS Actions: Enforce isolation during physical page allocation
View: Partition into smaller private caches

Boundary



  

16

Cache Partitioning
● Apply page-coloring technique
● Guide physical page allocation to control cache line usage
● Works on existing processors

Physical Pages
Color A

Color A

Color A

}Color A
(N sets)

L2 Cache
{

Virtual Pages

Application

Fixed Mapping
(Hardware)

OS Managed

[WIOSCA'07]
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Physical Pages
Color A

Color A

Color A

}Color A
(N sets)

L2 Cache
{

Virtual Pages

Application A

Fixed Mapping
(Hardware)

OS Managed

Virtual Pages

Application B

Color B

Color B

Color B

}Color B
(N sets)

{

● Apply page-coloring technique
● Guide physical page allocation to control cache line usage
● Works on existing processors

Cache Partitioning [WIOSCA'07]
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Impact of Partitioning

Performance
Without
Isolation

16 14 12 10 8 6 4 2 0 art
mcf

L2 Cache Sizes (# of Colors)

art

mcf

Performance of Other Combos
● 10 pairs of applications: SPECcpu2k, SPECjbb2k

● 4% to 17% improvement  (36MB L3 cache)
● 28%, 50%  improvement  (no L3 cache)
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Provisioning the Cache
Problem:  How to determine cache partition size 

Solution: Use L2 cache miss rate curve (MRC) of application
Criteria: Obtain MRC rapidly, accurately, online, with low overhead,

on existing hardware 
OS Actions: Monitor L2 cache accesses

using hardware performance counters
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Design
● Upon every L2 access:

● Update sampling register with data address
● Trigger interrupt to copy register to trace log in main memory

● Feed trace log into Mattson's stack algorithm [1970]
to obtain L2 MRC

Results
● Workloads

● 30 apps from SPECcpu2k, SPECcpu2k6, SPECjbb2k
● Latency

● 227 ms to generate online L2 MRC
● Accuracy

● Good, e.g. up to 27% performance improvement when 
applied to cache partitioning

RapidMRC [ASPLOS'09]
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xalancbmk

● Execution slice at 10 billion instructions
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Accuracy of RapidMRC

ammp
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Performance 
Without
IsolationRapidMRC Real MRC

L2 Cache Sizes (# of colors)
16 14 12 10 8 6 4 2 0

twolf
equake

0 2 4 6 8 10 12 14 16

Effectiveness on Provisioning

Performance of Other Combos Using RapidMRC
● 12% improvement for  vpr+applu
● 14% improvement for  ammp+3applu



  

23

Contributions
On commodity multicores, first to demonstrate
● Mechanism: To detect data sharing online & automatically cluster threads
● Benefits: Promoting sharing [EuroSys'07]

● Mechanism: To partition shared cache by applying page-coloring
● Benefits: Providing isolation [WIOSCA'07]

● Mechanism: To approximate L2 MRCs online in software
● Benefits: Provisioning the cache [ASPLOS'09]

...all performed by the OS.
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Concluding Remarks
Demonstrated Performance Improvements
● Promoting Sharing

● 5% – 7%         SPECjbb2k, RUBiS, VolanoMark  (2 chips)
● 14% potential: SPECjbb2k  (8 chips)

● Providing Isolation
● 4% – 17%   8 combos: SPECcpu2k, SPECjbb2k  (36MB L3 cache)
● 28%, 50%   2 combos: SPECcpu2k  (no L3 cache)

● Provisioning the Cache Online
● 12% – 27%   3 combos: SPECcpu2k

OS should manage on-chip shared caches
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Thank You
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24-9=15 slides
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Future Research Opportunities
Shared cache management principles 
can be applied to other layers:

● Application, managed runtime, virtual machine monitor

Promoting sharing
● Improve locality on NUMA multiprocessor systems

Providing isolation
● Finer granularity, within one application [MICRO'08]

● Regions
● Objects

RapidMRC
● Online L2 MRCs

● Reducing energy
● Guiding co-scheduling

● Underlying Tracing Mechanism
● Trace other hardware events
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