CLOCK RECOVERY IN HIGH-SPEED MULTILEVEL SERIAL LINKS

Faisal A. Musa and Anthony Chan Carusone

Dept. of Electrical and Computer Engineering

University of Toronto

Toronto, Canada

OUTLINE

- Introduction
- Conventional CDR Methods:
 - 1. Linear Phase Detector based CDR
 - 2. Alexander Phase Detector based CDR
- SSMMSE Phase Detector based CDR
- Simulation Results
- Conclusion

INTRODUCTION

Typical Serial Link

INTRODUCTION (contd.)

• Challenges of increasing data rate:

- 1. Finite channel bandwidth (increased ISI)
- 2. CMOS circuit speed limitations
- 3. Stringent jitter requirements (1ps r.m.s. for 10Gb/s serializers and 0.25ps r.m.s. for 40Gb/s).

Altenative: Multilevel Signaling

Symbol Rate=Data Rate=1/T

4-PAM Data (2 bits/symbol)

Symbol Rate=1/T; Data rate=2/T

CLOCK RECOVERY FROM MULTILEVEL SIGNALS

- Conventional methods use data transitions to update the sampling phase of the receiver clock.
- Multilevel signals have both symmetric and asymmetric zero crossings; thus resulting in a complicated phase detector (PD) in the CDR.

CONVENTIONAL CDR METHODS

1. Linear Phase Detector based CDR

2.ALEXANDER PD BASED CDR (contd.)

SSMMSE PD BASED CDR

• Truth Table:

Sampling point	Error	Slope	Sampling
	(e)	(s)	Phase
А	1	0	Early
В	1	1	Late
D	0	0	Late
Е	0	1	Early

SSMMSE PD BASED CDR (contd.)

- Based on Minimum Mean Squared Error criteria: $E_{k} = E\left[e_{k}^{2}\right] = E\left[\left(A_{k} - y(kT + \tau_{k})\right)^{2}\right]....(1)$
- Update Rule:

$$\tau_{k+1} = \tau_k - \mu \partial E_k / \partial \tau_k \dots (2)$$

• Using an instataneous estimate for E_k :

$$\tau_{k+1} = \tau_k + 2\mu e_k \dot{y}(kT + \tau_k)\dots(3)$$

• Sign-Sign MMSE Update Rule:

 $\tau_{k+1} = \tau_k + 2\mu \operatorname{sgn}[e_k] \operatorname{sgn}[\dot{y}(kT + \tau_k)].....(4)$

• SSMMSE preserves the direction but not the magnitude of the update

SSMMSE PD BASED CDR (contd.)

- Problem: High-Speed Slope Detector Required
- Solution: Integrate and Dump Receiver $y(kT + \tau) = \int u(t)dt \Rightarrow \dot{y}(kT + \tau) = u(kT + \tau) - u((k-1)T + \tau)$ $((k-1)T + \tau)$

Advantages:

Fewer clock phases than other two methods

Diasadvantages: Higher jitter

SIMULATION RESULTS

• Simulated System:

• Charge pump gain was varied to ensure constant loop dynamics.

• SSMMSE CDR Performance:

Monitored	Charge	Settling	Average	RMS	Peak to
Level(s)	Pump	Time	Phase in	Jitter	Peak
× /	Gain		lock		Jitter
V	μ A/rad	μ sec	rad	ps	ps
+0.5 or -0.5	μ A/rad 1.6	μ sec 0.41	rad 1.13	ps 3.2	ps 12.48

• SSMMSE PD based CDR Performance (multiple level):

Monitored	Charge	Settling	Average	RMS	Peak to
Levels	Pump	Time	Phase (in	Jitter	Peak
	Gain		lock)		Jitter
V	µA/rad	μsec	rad	ps	ps
Two mid-levels	0.8	0.41	1.13	2.8	10.53
Max. & min. levels	0.8	0.36	1.36	1.2	5.3
Max./min level and mid	0.8	0.39	1.27	1.82	7ps
level					
Two mid-levels and max/	0.53	0.42	1.23	1.9	7.4
min level					
Max. & min. levels and one	0.53	0.39	1.31	1.24	5
mid-level					
Four levels	0.4	0.4	1.28	1.5	6

• Comparison of CDR Performance:

Phase Detector	Charge	Settling	Average	RMS	Peak to
Туре	Pump	Time	Phase	Jitter	Peak
• •	Gain		in lock		Jitter
	µA/rad	µ sec	rad	ps	ps
Linear	2000	0.36	0.86	0.5	1.8
Alexander	420	0.32	0.85	1.9	8.2
SSMMSE (two	0.8	0.36	1.36	1.2	5.3
levels=+1.5&-1.5)					

Department of Electrical and Computer Engineering University of Toronto

CONCLUSION

- For channel with AWGN, linear CDR has the lowest jitter and Alexander CDR has the highest jitter.
- SSMMSE requires half the number of sampling phases compared to the other two methods.
- For integrate and dump receivers SSMMSE method becomes very simple to implement since no slope detector is required.
- Ultimate choice of the CDR method depends on the particular channel and shape of the received eye.