
An Example Application for the TMU Package

Dave Galloway

Edward S. Rogers Sr. Department of Electrical and Computer Engineering
University of Toronto

January 2011

Introduction

This document describes a simple application circuit for the TMU package on the DE-3
demonstration board, and explains how to create, compile and run it.

The circuit implements a 32-bit counter. A program running on a workstation will read the output of
the counter over the network.

Getting the Source for the Circuit

The source for this example circuit is on the EECG machines in the directory
˜tm4/tmu/examples/de3/counter.

Sign on to one of the EECG Debian Linux workstations (ex: laggan.eecg). Make a new directory,
and copy some of the files from the example directory:

mkdir counter
cd counter
mydir=‘pwd‘
pushd ˜tm4/tmu/examples/de3/counter
cp makefile top.qpf top.sdc top.qsf $mydir
cp counter.v top.vhd top.ports suncounter.c $mydir
popd

Add the following directory to your path, so that the Transmogrifier commands are available to you:

PATH="/jayar/i/tm4/bin:$PATH"

You should probably add that line to your .profile file so that the change will be permanent.

The files that you copied include:

counter.v the circuit that will run on the board, described in Verilog

top.vhd a top level wrapper that connects counter.v to the usb_portmux circuit

top.sdc a file containing timing constraints for Altera’s Quartus software

top.qsf a file containing compiler settings for Altera’s Quartus software

- 2 -

top.qpf another file that Altera’s Quartus software wants to have

top.ports a description of the inputs and outputs of the circuit

makefile used to compile the circuit and the program

suncounter.c a C program that runs on a UNIX workstation and talks to the circuit

Compiling the Example

To compile the circuit into a form that can be used to program the board, type:

make bits

The circuit source will be compiled by the quartus_sh and qcmd commands that are supplied with
Altera’s Quartus software. The results, along with a number of intermediate files, will be placed into your
current directory. The whole process will take about 3 minutes.

To compile the program that runs on a Linux workstation and talks to the circuit, type:

make linux_counter

Downloading the Example to the Board

First, you must decide which demonstration board you want to use. By default, the commands will
use the DE-3 board attached to andy.eecg. If you want to use a different board, you must set the
TM_SERVER environment variable to the name of the workstation that is attached to the board you
want, something like this:

export TM_SERVER=some_other_machine.eecg

At this point, you may want to run the status monitor display on your workstation. Make sure your
DISPLAY environment variable is set correctly and run:

tmstatus -t &

This will produce a new window on your screen which displays the name of the person currently using
the board, if any.

Now use the tmget command to reserve the board for 10 minutes:

tmget

If someone else is using the machine, you will get a message telling you how long you will have to wait:

sorry, drg has it (priority 100) for 597 more seconds

- 3 -

To download your circuit into the board, run:

quartus

open the top.qpf project and use the Quartus programmer tool to communicate with the USBblaster
cable attached to the board.

Interacting with the Circuit

To communicate with the circuit, run the linux_counter program that you compiled earlier:

% linux_counter
0 1 2 3 4 5 6 7 8 9

Every time you run it, you will get another 10 numbers from the counter.

Releasing the Board

You should now release the board so that someone else can use it:

tmrelease

How the Sample Design Works

The circuit is written in Verilog. The complete counter.v file contains this:

module counter (
input clk,
input reset,
output reg [31:0] result,
output reg count_ready,
input want_count);

reg [31:0] count;

always @(posedge clk or posedge reset) begin
if(reset) begin

count <= 0;
count_ready <= 0;
result <= 0;

end
else begin

if(count_ready && want_count) begin
count_ready <= 0;
count <= count + 1;

end
else begin

result <= count;
count_ready <= 1;

- 4 -

end
end

end

endmodule

The circuit has one 32-bit output port called result, and two 1-bit handshaking variables called
want_count and count_ready. The circuit sits in an infinite loop, waiting for someone to ask for a
count. It performs a handshake with the outside world using the want_count and count_ready
variables, increments the counter, and waits for the next request.

The circuit uses the TMU ports package to communicate with the outside world. The connections to
the outside world are handled by the component named usb_portmux. This component is
automatically supplied by the TMU ports package. Read The TMU Ports Package for a description of
how this works. The top.ports file contains:

Name direction bits Handshake_from_circuit Handshake_from_workstation
result o 32 count_ready want_count

It describes the single 32-bit output called result along with the two handshaking variables.

The top.vhd that connects the counter module to the automatically generated usb_portmux
component contains:

library ieee;
use ieee.std_logic_1164.all;

entity top is port(
OTG_D : inout std_logic_vector(31 downto 0);
OTG_A : out std_logic_vector(17 downto 1);
OTG_CS_n : out std_logic;
OTG_WE_n : out std_logic;
OTG_OE_n : out std_logic;
OTG_HC_IRQ : in std_logic;
OTG_DC_IRQ : in std_logic;
OTG_RESET_n : out std_logic;
OTG_HC_DREQ : in std_logic;
OTG_HC_DACK : out std_logic;
OTG_DC_DREQ : in std_logic;
OTG_DC_DACK : out std_logic;
OSC1_50 : in std_logic
);

end;

architecture arch_top of top is
signal count_ready : std_logic;
signal result : std_logic_vector(31 downto 0);
signal want_count : std_logic;

- 5 -

component usb_portmux
port(
result : in std_logic_vector(31 downto 0);
count_ready : in std_logic;
want_count : out std_logic;

OTG_D : inout std_logic_vector(31 downto 0);
OTG_A : out std_logic_vector(17 downto 1);
OTG_CS_n : out std_logic;
OTG_WE_n : out std_logic;
OTG_OE_n : out std_logic;
OTG_HC_IRQ : in std_logic;
OTG_DC_IRQ : in std_logic;
OTG_RESET_n : out std_logic;
OTG_HC_DREQ : in std_logic;
OTG_HC_DACK : out std_logic;
OTG_DC_DREQ : in std_logic;
OTG_DC_DACK : out std_logic;

reset_n : in std_logic;
OSC1_50 : in std_logic;
clk : in std_logic);

end component;

component counter
port(
clk : in std_logic;
reset : in std_logic;
count_ready : out std_logic;
want_count : in std_logic;
result : out std_logic_vector(31 downto 0)
);

end component;

signal reset_n : std_logic;

begin

reset_n <= ’1’;

usb_portmux_inst: usb_portmux port map (
result,
count_ready,
want_count,

OTG_D,
OTG_A,

- 6 -

OTG_CS_n,
OTG_WE_n,
OTG_OE_n,
OTG_HC_IRQ,
OTG_DC_IRQ,
OTG_RESET_n,
OTG_HC_DREQ,
OTG_HC_DACK,
OTG_DC_DREQ,
OTG_DC_DACK,

reset_n,
OSC1_50,
OSC1_50);

counter_inst: counter port map (
OSC1_50,
not reset_n,
count_ready,
want_count,
result
);

end arch_top;

It connects to a DE-3 clock signal called OSC1_50, and to a number of DE-3 signals with names that
start with OTG_ that connect to the USB interface chip on the DE-3 board. It connects those signals to
the usb_portmux component, and also connects the user’s signals between the counter and
usb_portmux.

The suncounter.c program that runs on the workstation looks like this:

/* A program to test a simple counter circuit, using the ports package */

#include <stdio.h>
#include <stdlib.h>

main(argc, argv)
int argc;
char *argv[];
{
int portresult;
int *result;
int i, count, j;

tm_init("");

if((portresult = tm_open("result", "r")) < 0) {

- 7 -

printf("Can’t open port result\n");
exit(1);
}

count = 10;
if(argc>1)

count = atoi(argv[1]);

result = (int *) malloc(count * sizeof(int));
if(result == NULL) {

printf("Can’t allocate memory\n");
exit(1);
}

if(tm_read(portresult, result, count * sizeof(int))
!= (count * sizeof(int))) {

fprintf(stderr, "suncounter: error in reading\n");
exit(1);
}

for(i=0; i<count; i++) {
printf("%d ", result[i]);
if((i % 10) == 9) {

printf("\n");
}

}
printf("\n\n");

exit(0);
}

It initializes the ports package by calling tm_init(), opens the result port with tm_open(),
reads 10 values of the counter with a single call to tm_read() and then prints them out.

