An Example Application for the TMU Package

Dave Galloway

Edward S. Rogers S. Department of Electrical and Computer Engineering
University of Toronto

April 2013
Introduction

This document describes a simple application circuit for the TMU package on the DE-4
demonstration board, and explains how to create, compile and run it.

The circuit implements a 32-bit counter. A program running on a workstation will read the output of
the counter over the network.

Getting the Source for the Circuit

The source for this example circuit is on the EECG machines in the directory
“tmd/tmu/exampl es/ded/counter.

Sign on to one of the EECG Debian Linux workstations (ex: islanders.eecg). Make a new directory,
and copy some of the files from the example directory:

nmkdi r counter

cd counter

mydi r = pwd’

pushd ~tnmd/tnu/ exanpl es/ de4/ count er

cp nmakefile top.qgpf top.sdc top.qgsf $nydir

cp counter.v top.v top.ports suncounter.c $mydir
cp EXT_PLL_CTRL.v $nydir

popd

Add the following directory to your path, so that the Transmogrifier commands are available to you:
PATH="/j ayar/i/tm4/ bi n: $PATH"
Y ou should probably add that line to your .profile file so that the change will be permanent.
Thefiles that you copied include:
counter.v the circuit that will run on the board, described in Verilog
top.v atop level wrapper that connects counter.v to the

EXT PLL _CTRL. vV aVerilog file that describes some pll information needed by the DE-4

t op. sdc afile containing timing constraints for Altera’ s Quartus software
t op. gsf afile containing compiler settings for Altera s Quartus software
t op. qpf another file that Altera’ s Quartus software wantsto have

top. ports adescription of the inputs and outputs of the circuit

mekefil e used to compile the circuit and the program

suncount er.c aC program that runs on a UNIX workstation and talks to the circuit
Compiling the Example
To compile the circuit into aform that can be used to program the board, type:
make bits
The circuit source will be compiled by the quartus_sh and gcnd commands that are supplied with
Altera’s Quartus software. The results, along with a number of intermediate files, will be placed into your
current directory. The whole process will take about 5 minutes.
To compile the program that runs on a Linux workstation and talks to the circuit, type:
make |inux_counter
Downloading the Example to the Board
First, you must decide which demonstration board you want to use. By default, the commands will
use the DE-4 board attached to skynet.eecg. If you want to use a different board, you must set the
TM_SERVER environment variable to the name of the workstation that is attached to the board you
want, something like this:

export TM SERVER=sone_ot her machi ne. eecg

At this point, you may want to run the status monitor display on your workstation. Make sure your
DISPLAY environment variableis set correctly and run:

tnstatus -t &

This will produce a new window on your screen which displays the name of the person currently using
the board, if any.

Now usethe t nget command to reserve the board for 10 minutes:
t nget

If someone else is using the machine, you will get a message telling you how long you will have to wait:

sorry, drg has it (priority 100) for 597 nore seconds
To download your circuit into the board, run:
quart us

open the t op. gpf project and use the Quartus programmer tool to communicate with the USBblaster
cable attached to the board.

Interacting with the Circuit
To communicate with the circuit, run the linux_counter program that you compiled earlier:

% | i nux_counter
0123456789

Every time you run it, you will get another 10 numbers from the counter.
Releasing the Board
Y ou should now release the board so that someone else can useiit:
tnr el ease
How the Sample Design Works
Thecircuit iswritten in Verilog. The complete counter.v file contains this:

nodul e counter (
i nput cl k,
i nput reset,
output reg [31:0] result,
out put reg count _ready,
i nput want _count);

reg [31:0] count;

al ways @ posedge clk or posedge reset) begin
if(reset) begin
count <= O,
count _ready <= 0;
result <= 0;
end
el se begin
i f(count_ready &&% want_count) begin
count _ready <= 0;
count <= count + 1
end
el se begin

result <= count;
count _ready <= 1,
end
end
end

endnodul e

The circuit has one 32-bit output port called result, and two 1-bit handshaking variables called
want _count and count _ready. Thecircuit sitsin an infinite loop, waiting for someone to ask for a
count. It performs a handshake with the outside world using the want _count and count ready
variables, increments the counter, and waits for the next request.

The circuit uses the TMU ports package to communicate with the outside world. The connections to
the outside world are handled by the component named usb_portmux. This component is
automatically supplied by the TMU ports package. Read The TMU Ports Package for a description of
how thisworks. The t op. port s file contains.

Nane direction bits Handshake fromcircuit Handshake_from wor kst ati on
resul t o] 32 count _r eady want _count

It describes the single 32-bit output called r esul t along with the two handshaking variables.

The top.v that connects the counter module to the automatically generated usb_port mux
component contains:

nodul e top(

/'l The code above this |ine was auto-generated by the Terasic DE4 System Buil der.

/1 Connect the user’s counter.v circuit to the usb_portnux w apper that was
/'l generated by the tnmu command.

wire [31:0] result;
Wi re count _ready;
W re want count;

usb_portnux usb_portnux_inst(
.reset_n(rstn),
. ¢l k(OsSC_50_BANK2),
. OSC1_50(GsC _50_BANK2),

.result(result),
.count _ready(count _ready),
.want _count (want _count),

. OTG_D(OTG D),

. OTG_A(OTIG A,

.OTG_CS n(OrG_Cs _n),

. OTG WVE_n(OTG_VWE n),

.OIG_CE n(OTG_CE_n),

. OTG_HC | RQQ OTG_HC_| RQ),

. OTG_DC | RQQ OrG DC | RQ),

. OTG_RESET_n(OIG_RESET _n),

. OTG_HC _DREQ OTG_HC DREQ,

. OTG_HC_DACK(OTG_HC_DACK) ,

. OTG_DC_DREQOTG_DC_DREQ),

. OTG_DC_DACK(OTG_DC_DACK)
);

counter counter _inst(
.reset("rstn),
. ¢l k(OsC_50_BANK2),

.result(result),
.count _ready(count _ready),
.want _count (want _count)

),
endnodul e

It connectsto a DE-4 clock signal called OSC_50_ BANK2, and to a number of DE-4 signals with names
that start with OTG _ that connect to the USB interface chip on the DE-4 board. It connects those signals
to the usb_port nux component, and also connects the user's signals between the counter and
usb_port nux.

The suncounter.c program that runs on the workstation looks like this:
/* A programto test a sinple counter circuit, using the ports package */

#i ncl ude <stdi o. h>
#i nclude <stdlib. h>

mai n(argc, argv)
i nt argc;
char *argv[];
{
int portresult;
int *result;
int i, count, j;

tminit("");

if((portresult = tmopen("result”, "r")) < 0) {
printf("Can’t open port result\n");

exit(1);
}

count = 10;
i f(argc>1)
count = atoi(argv[1]);

result = (int *) malloc(count * sizeof(int));

if(result == NULL) {
printf("Can't allocate nenory\n");
exit(1);
}

if(tmread(portresult, result, count * sizeof(int))
= (count * sizeof(int))) {
fprintf(stderr, "suncounter: error in reading\n");
exit(1);
}

for(i=0; i<count; i++) {
printf("% ", result[i]);
if((i %10) == 9) {

printf("\n");
}
}
printf("\n\n");
exit(0);
}

It initializes the ports package by caling tm_init(), opensthe result port with t m open(),
reads 10 values of the counter with asinglecall to t m r ead() and then prints them out.

