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Abstract

This paper describes our work-in-progress on the design and implementation of Jupiter: a
modular and extensible Java Virtual Machine (JVM) infrastructure. Jupiter serves as a vehicle
for our research on JVM architectures that deliver scalable high performance for scientific
applications on large numbers of processors. Our goal is to run Jupiter on our 128-processor
cluster of PC workstations that supports shared memory in software. Jupiter is constructed
out of many discrete modules with small, simple interfaces, much like Unix shells build complex
command pipelines out of discrete programs. This structure allows rapid prototyping of our
research ideas by confining changes in JVM design to a small number of modules. The structure
is also efficient despite its flexibility, resulting in no loss in performance. We describe the basic
architecture of Jupiter and give an example of how its components may be used to compose
object creation subsystems with different locality policies.

1 Introduction

The use of the Java programming language has been steadily increasing over the past few years.
In spite of its popularity, the use of Java remains limited in high-performance computing, mainly
because of its execution model. Java programs are compiled into portable stack-based bytecode
instructions, which are then interpreted by a run-time system referred to as the Java Virtual
Machine (JVM). The limited ability of a Java compiler to optimize stack-based code and the
overhead resulting from interpretation lead to poor performance of Java programs compared to
their C or C++ counterparts.

Consequently, there has been considerable research aimed at improving the performance of
Java programs. Examples include: just-in-time compilation [1, 2], improved array and complex
number support [3, 4], efficient garbage collection [5, 6], and efficient support for threads and
synchronization [1].

The majority of this research has focused on improving performance on either uniprocessors or
small-scale SMPs. Large-scale parallel computing is a viable means of delivering high-performance,
but there appears to be little or no research that examines the performance of the JVM for large
numbers of processors. Existing research and production JVMs are designed for small-scale SMPs
(8 or 16 processors). It remains unclear how these JVMs will perform well in a large-scale parallel
environment.

Our research addresses scalability issues of the JVM. In particular, our goal is to design and
implement a JVM that scales well on our 128-processor cluster of PC workstations, interconnected
by a Myrinet network and with shared memory support in software. This paper reports our initial
work on the design and implementation of an infrastructure JVM in support of this research.



We believe that JVM scalability can be achieved by examining four aspects of its design:

1. Memory locality. At present, objects are allocated on the heap with little or no consideration
for locality. While this approach may be appropriate for uniprocessors or small-scale SMPs,
it is unlikely to work well on a cluster of workstations where remote memory access is one
or two orders of magnitude slower than local memory access. Hence, one of our goals is to
develop allocation heuristics for enhancing locality.

2. Parallel garbage collection. Garbage collection can consume a considerable amount of appli-
cation time. Typically, JVMs employ “stop-the-world” garbage collectors, where program
threads are halted during garbage collection [5]. This approach will not work for large num-
bers of processors, for two reasons. First, the cost of “stopping the world” is considerably
higher when the number of processors is large. Second, using a single thread to collect
garbage results in an unacceptably large sequential fraction for any application. Conse-
quently, we are developing a multi-threaded “on-the-fly” garbage collector that scales well
to large numbers of processors.

3. Memory consistency model. To achieve scaling performance on a large number of proces-
sors, it is important to exploit the “relaxed” Java Memory Model [7]. Presently no JVM
implements the JMM faithfully, and indeed many implement it incorrectly, leading to lack
of coherence and loss of optimization opportunities [8]. The specification of the JMM is
presently under revision. We will investigate the use of this revised model within a JVM
and determine impact on performance.

4. Efficient Threads and Synchronization. With a large number of processors, it is critical to
provide efficient threading support and synchronization mechanisms that scale well. We are
examining means of providing such support.

In order to carry out our research, we require a JVM infrastructure that allows us to explore
design and implementation options. There exist a number of JVM frameworks that we could
use [1, 9, 10, 11]. These frameworks provide limited extensibility and are hard to modify. Hence,
we embarked on the design and implementation of a modular and extensible JVM, called Jupiter.
Jupiter implements design patterns which enhance the ability of developers to modify or replace
discrete parts of the system in order to experiment with new ideas. Further, to the extent feasible,
Jupiter maintains a separation between orthogonal modifications, so that the contributions of
independent researchers can be combined with a minimum of effort. In spite of this flexibility,
Jupiter supports simple and efficient interfaces among modules, hence preserving performance. In
this paper, we focus on the Jupiter framework and how it may be used to explore some of the
research issues described above.

The remainder of this paper is organized as follows. In Section 2 we give an overview of Jupiter
and its design. In Section 3 we demonstrate Jupiter’s flexibility and efficiency by presenting several
configurations of the object creation subsystem. In Section 4 we describe how a JIT may be
incorporated into Jupiter. In Section 5 we give an overview of related work. Finally, in Section 6
we provide some concluding remarks.

2 Basic Design and Implementation

In this section, we give an overview of Jupiter’s architecture and describe some of its implemen-
tation details.



2.1 Overview

The philosophy behind Jupiter is to construct a JVM out of many discrete units with small, simple
interfaces, much like Unix shells build complex command pipelines out of discrete programs.
By keeping the interfaces between the units small, we reap the benefits of information hiding.
Furthermore, by careful design of the interfaces, we avoid the need to sacrifice performance in
order to achieve modularity.

In designing Jupiter, we have strived to achieve three goals with respect to modularity. The
first goal is atomicity: any anticipated modification to the system should not require modules
to be split. Dividing one module into two, when the original module was not designed to be
split, is not something that Jupiter developers should have to face as a normal part of working
on the system. The second goal is coherence: modifications should require changes to very few
modules; preferably, just one. Otherwise, it becomes difficult to determine the set of modules
that need to be changed, and modifications end up being spread across many modules, increasing
the coupling among them. The third goal is independence: unrelated modifications should affect
separate modules. This allows the work of multiple researchers to be combined more easily.

The overall structure of Jupiter is shown in Figure 1. Components which are part of Jupiter
are shown inside in the dashed box, and external resources are outside it. Jupiter is written in
an object-oriented style, and a running incarnation of Jupiter is constructed from instances of the
Jupiter classes’. The classes belong to two groups: those representing transient resources used
by a running Java program, and the “facility” classes that manage the resources. The resources
include Java classes, fields, methods, attributes, objects, locks, threads, stacks and stack frames
(not all of which are shown in the diagram).

Most of the facility classes take the form of Sources, which share a simple, uniform interface:
every Source class has a single get method which returns an instance of the appropriate resource.
The arguments of any get method reflect the information needed by the Source to choose or
allocate that resource, and the Source is responsible for deciding how the resource should be
created, reused, or recycled. For example, MemorySource has a method getMemory which takes a
size argument indicating the quantity of memory to allocate, and it may reuse chunks of memory
if a garbage collector can determine that it is safe to do so. On the other hand, ClassSource has
a method getClass which returns a Class; it takes the class name as an argument, and always
returns the same Class object for each unique name. The ExecutionEngine directs the execution
of the system, making use of the other facility classes to manage resources.

2.2 Implementation

Jupiter has a collection of Base classes, which provide interfaces to the basic services that any JVM
requires (such as object creation, method dispatch, and memory allocation). Of course developers
are permitted (and encouraged) to define their own classes, but the Base classes represent the
fundamental design of Jupiter, and are to be implemented in any incarnation of the system. Any
module which is written so that it depends only on the Base classes becomes an independent
entity which can be used orthogonally with other such modules.

Jupiter is implemented in C, though the same module structure could be used in other lan-
guages. We use a coding style which encourages independence of modules, and preserves the
object-oriented design. Classes are defined entirely by their methods, and the data structures
used to implement the classes are not declared in header files; instead, an opaque reference type is
declared in the header, and each method is declared to take one such reference (the “this” pointer)

!By “classes” we don’t mean Java classes, nor instances of java.lang.Class, but rather the classes which
constitute Jupiter’s own source code.
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Figure 1: The high-level architecture of Jupiter.

as its first argument. Further, none of the Base headers declare any constructors: if construction of
some class is important to model, then it has an associated Source; otherwise, construction is left
as a matter of implementation. Thus, Jupiter’s class declarations are like Java’s interfaces: they
provide method signatures, but no constructors, no method bodies, and no data representation.

This code structure may suggest a performance problem, since all JVM operations which cross
module boundaries require function calls. However, a developer is always free to substitute his
own version of a Base header—the include path used by Jupiter’s make system ensures that the
developer’s own directory is searched before the Base directory—and so it can be made as efficient
as necessary, using inline functions or even macros. So long as the new header is source-compatible
with the existing one, it will remain inter-operable with the rest of the modules in the system.

A benefit of passing opaque reference types throughout the system is that these references
are not required to be implemented as pointers. For instance, if a given object is small and
immutable, it can be passed by value. Or, if the JVM were modified to span multiple memory
spaces, a reference could be a handle to a remote object, and the handle itself could be passed
by value. Requiring references to be pointers would make this sort of modification difficult, but
passing opaque references by value makes it quite straightforward and efficient.

3 Object Creation — An Example of Flexibility

In this section, we demonstrate the system’s flexibility by examining several configurations of the
object creation subsystem. Through examples, we present several ways in which Jupiter can be
modified (which we refer to as “modes of extension”). In addition, we demonstrate how the module
boundary overhead can be optimized away entirely when performance is important. Though we
concentrate on object creation, the design philosophies presented here are ubiquitous in the Jupiter
system, and the same level of flexibility can be found throughout.

3.1 The Configurations

At the implementation level, Java objects are composed of two resources: memory to store field
data, and a lock to synchronize accesses to this data. Objects are created by an ObjectSource,
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whose getObject method takes the Class to instantiate, and returns a new instance of that
class. In order to allocate the memory and lock for this new instance, the ObjectSource uses a
MemorySource and a LockSource, respectively.

The MemorySource may be as simple as a call to a garbage collector such as the Boehm
conservative collector. The LockSource could use that same MemorySource to allocate a small
amount of memory for the lock. The objects employed by such a simple scheme are shown in
Figure 2, where arrows indicate the uses relation between objects. The ExecutionEngine at the
top is responsible for executing the bytecode instructions, and calls upon various facility classes,
of which only ObjectSource is shown.

Having established this basic structure, there are many modifications that can be explored. To
begin with, suppose an alternative layout for the object fields is desired [9]. Such a modification
simply substitutes a new ObjectSource which computes the proper size of the object based on
the new layout?, and uses the same MemorySource and LockSource. Conversely, using a different
garbage collector means substituting the MemorySource while using the same ObjectSource and
LockSource. Hence, this structure allows different modifications to be used orthogonally: a new
object layout can easily be used with or without a new garbage collector since each modification
is confined to a single module.

This represents the simplest mode of extension to the Jupiter system: in-place substitution
of a single module. A great many modifications can be implemented this way. It is the most
desirable kind of extension, since it has the least impact on the rest of the system. However, there
are more advanced modifications which cannot be implemented this way.

Consider the case in which Jupiter is to run on a multiprocessor system with non-uniform
memory accesses (NUMA), such as our cluster of workstations which supports shared memory in
software. In such a system, accesses to local memory are faster than accesses to remote memory.
Hence, it is desirable to take advantage of local memory whenever possible.

The memory allocator on a NUMA system may take a node number as an argument and
allocate memory in the physical memory module associated with that node:

void *nodeAlloc(int nodeNumber, int size);

We can make use of this interface, even though our getMemory function does not directly
utilize a nodeNumber argument. We do so by having one MemorySource object for each node in

20f course there is more to changing object layout than computing the new size, but this is not pertinent to our
example.
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the system. We then choose the memory module to allocate an object in by calling upon its
associated MemorySource.

There are a number of ways the ExecutionEngine can make use of these multiple MemorySources.
One way would be to use a “facade” MuxMemorySource module that chooses which subordinate
node-specific MemorySource to use, in effect multiplexing multiple MemorySources into one inter-
face. This is shown in Figure 3. MuxMemorySource uses appropriate heuristics (such as first-hit
or round robin) to delegate the request to the appropriate subordinate MemorySource. The ad-
vantage of such a configuration is that it hides the locality decisions inside MuxMemorySource,
allowing the rest of the system to be used without any modifications.

A second possibility is to manage locality at the ObjectSource level, as shown in Figure 4.
MuxObjectSource is similar to MuxMemorySource, in that it uses some heuristics to determine the
memory module in which to allocate an object. We can use the same node-specific MemorySource
code as in the previous configuration from Figure 3. We can also use the same ObjectSource and
LockSource classes as in the original configuration (Figure 2); we simply use multiple instances
of each one. Very little code needs to change in order to implement this configuration.

Yet a third possibility is to allow the ExecutionEngine itself to determine the location of the
object to be created. Since the ExecutionEngine has a great deal of information about the Java
program being executed, it is likely to be in a position to make good locality decisions. In this
configuration, shown in Figure 5, the ObjectSource and MemorySource remain the same as in the
original configuration. The execution engine chooses where to allocate its objects by calling the
appropriate ObjectSource. Again, we have not changed ObjectSource or LockSource classes,
and the node-specific MemorySource class is the same one from the previous configurations.

The above configurations are examples of our second mode of extension, which involves chang-
ing the interconnection of the modules. In most cases, the modules need not be modified at all;
only their relations with respect to other modules change.
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3.2 Performance

At first glance, it would appear that our flexible structure results in much object duplication
within the JVM. Consider our final memory allocation configuration, illustrated in figure 5. This
structure requires that ObjectSources, LockSources, and MemorySources be duplicated, one for
each node. In a system with many nodes, this could amount to hundreds of small objects. A JVM
that does not provide the flexibility or modularity of Jupiter would make calls to the nodeAlloc
interface directly from the ExecutionEngine with no need to create and maintain additional
objects. Hence, it would appear that our system incurs overhead to maintain these objects,
resulting in extra CPU and memory usage, and poor cache locality. For a researcher interested
in performance, it would be tempting to bypass the module structure entirely, thereby degrading
the extensibility of the system.

However, this overhead can be eliminated by exploiting the immutability of the data contained
in these objects. Immutable data can be freely replicated, unlike mutable data which needs careful
coordination to ensure consistency among the various copies. In the present situation, because the
data is immutable, it is possible to avoid creating and manipulating hundreds of small objects.
Instead, they can be constructed on demand, perhaps on the stack or even in registers; passed
around the system by value; and discarded when they are no longer needed. This allows us to
regain a high level of performance while still enjoying the benefits of Jupiter’s modular design.

Consider for example the Jupiter configuration with the locality management in MuxMemorySource
which was shown in Figure 3. For each MemorySource, the node number is fixed. The header file
MemorySource.h defines the MemorySource class, using the following definitions:

typedef struct ms_struct *MemorySource;
void *ms_getMemory(MemorySource this, int size);

However, a developer could provide her own implementation of this header file (thus overriding
the Base implementation) by substituting the above definitions with:

typedef struct ms_struct {
int nodeNumber;
} MemorySource;

static inline MemorySource ms_forNode(int nodeNumber) {
/* Returns the MemorySource for the given node */
MemorySource result = { nodeNumber };
return result;

}

Since the node number of any given MemorySource is fixed, it can be passed by value. The
result is that there is no need to create all the MemorySources ahead of time; instead, they are
created as temporaries whenever they are needed. The effect is much like currying, whereby
a function call with multiple arguments is transformed into a series of function calls with one
argument. In our case, recall that memory allocation on our cluster system looks like this:

void *ptr = nodeAlloc(nodeNumber, size);
With currying, code in Jupiter can achieve the same semantics with a call like this:

void *ptr = ms_getMemory(ms_forNode (nodeNumber), size);



Notice that we have “sneaked” an extra parameter (the node number) into the ms_getMemory
call by packing it into the this object. Any number of extra arguments could be passed this
way. Such code has the advantage that it still conforms to Jupiter’s Base class interface for
MemorySource, and so it can still be used by other parts of the system which are unaware of
this scheme of memory allocation. Thus, the information hiding properties of the modules are
preserved.

We cannot overlook the fact that our example in Figure 3 also uses a second type of MemorySource:
the MuxMemorySource. To be treated as a true MemorySource by the rest of the system, the
MuxMemorySource must use the interface defined in MemorySource.h. This could be achieved in
our case by representing the MuxMemorySource by an invalid node number, say -1, and treating it
specially using an if statement. It is reasonable to expect the if statement to be optimized away
whenever the node number is known at compile time, which should almost always be the case.

If the C compiler cannot put structs in registers, making our MemorySource implementation
too slow, we could go the final step and simply declare MemorySource to be an int. (We then lose
some type safety, because C’s type system will not distinguish a MemorySource from any other
integer, but we gain performance.) Our final MemorySource.h would look like this:

typedef int MemorySource;
static inline MemorySource ms_forNode(int nodeNumber){ return nodeNumber; }
static inline MemorySource ms_mux(){ return -1; } /* The MuxMemorySource */

static inline void *ms_getMemory(MemorySource this, int size){
if (this == ms_mux())
return nodeAlloc(/* The appropriate node */, size);
else
return nodeAlloc(this, size);

At this level there is no performance penalty for using Jupiter’s MemorySource interface;
the MemorySources are just integers, and as far as the compiler is concerned, the signature for
ms_getMemory looks exactly like that of nodeAlloc. Further, as wildly different as they are,
these definitions are source-code compatible with the original Base version of MemorySource.h:
code recompiled with these new definitions will work as it always did. That we can produce an
implementation which is source-code compatible with the existing module, yet which suffers no
performance penalty from the module interface, demonstrates the remarkable flexibility of the
Jupiter system.

4 JIT Compilation

It may appear that the information hiding inherent to Jupiter’s modular structure makes JIT
compilation difficult, since the JIT compiler needs this information in order to generate fast code.
For example, consider Jupiter’s Frame and Object classes. Object represents an instance of a Java
class, and Frame represents a stack frame for an executing Java method. Below is a portion of
the interfaces of these classes. They provide the interpreter with the ability to get and set object
fields, and to access the operand stack.

Value ob_field(Object this, Field fd);
void ob_setField(Object this, Field fd, Value vl);

void fr_pushOperand(Frame this, Value vl, Type tp);
Value fr_popOperand(Frame this, Type tp);
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From a modularity point of view, these are good interfaces: they completely hide the object and
stack layouts from the rest of the system. However, they make the JIT compiler’s job difficult;
the compiler does not have enough information to generate efficient data-access code. Of course,
it would be unacceptable to generate code that uses these interfaces, when simple memory loads
and stores would often suffice.

To circumvent this problem, the ExecutionEngine makes use of an OpcodeSpec module, which
contains code that specifies the operations performed by each bytecode instruction in terms of
Jupiter’s Base class operations. The ExecutionEngine always executes this specification code
regardless of whether it is interpreting or compiling bytecode. When the ExecutionEngine is
interpreting bytecode, it uses an implementation of the Base classes which performs the expected
actions. However, when the ExecutionEngine chooses to generate native code, it invokes an
implementation of the same Base classes that generates an intermediate representation (IR). This
IR is then passed to the JIT compiler to generate optimized native code. This scheme is shown
in Figure 6.

For example, the specification of the putfield opcode, which stores a value from the operand
stack into a field of an object, uses the Frame and Object classes as follows:

case PUTFIELD:
Field fd = ctp_field(constantPool, CODE_USHORT(1));
Value vl = fr_popOperand(curFrame, fd_type(fd));
Object ob = fr_popOperand(curFrame, cl_type(fd_class(fd)));
ob_setField(ob, fd, vl);
break;

OO WN

The call to ctp_field in line 2 looks up the appropriate field in the constant pool. The two calls
to fr_popOperand in lines 3 and 4 take the new field value and the target object reference off the
stack. Finally, the call to ob_setField in line 5 sets the appropriate field of the target object to
its new value.

When the ExecutionEngine is interpreting bytecode, calls to fr_popOperand, and ob_setField
use the interpreter’s operand stack to perform their actions. In contrast, when the ExecutionEngine
is generating native code, calls to fr_popOperand in lines 3 and 4 simply return numbers of virtual
registers storing the corresponding values. These numbers are saved in the variables v1 and ob,
respectively. The call to ob_setField in line 5 then uses the register numbers to generate the
store instruction which will actually set the field’s value. Thus, the execution of the putfield
opcode is accomplished with a single instruction that directly accesses its operands.



This approach to the design of the execution engine and the JIT compiler allows the sharing of
code between the interpreter and the JIT compiler. A similar approach to JIT design has proven
successful in Kaffe [11], and we expect it to provide the same benefits to Jupiter.

As in Kaffe, this approach requires a certain discipline when writing the ExecutionEngine
code, since that code must behave very differently with the JIT compared to the interpreter. To
allow for this, it must only perform actions which can occur at JIT-compile time, calling functions
to perform actions which occur at run time. For instance, when specifying the iadd opcode, it
may be tempting to write code like this:

case IADD:
int v1, v2;
vl = fr_popOperand(curFrame, INT);
v2 = fr_popOperand(curFrame, INT);
fr_pushOperand(curFrame, vi+v2, INT); /* oops */
break;
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The actual addition takes place in line 5. However, this makes it difficult to use this same code
for the JIT, because that addition must occur at run time, not at compile time. Instead, the
interpreter must call a function that adds the two values. For the JIT, another function can be
substituted which generates the appropriate add instruction.

5 Related Work

There has been considerable work on improving performance of Java programs in uniprocessor
environments [1, 2, 3, 4]. For example, Alpern et al. describe the design and implementation of
the Jalapeno virtual machine [1], which incorporates a number of novel optimizations in its JIT
compiler. Artigas et al. [3] investigate compiler and run-time support for arrays in Java, and show
that improvements can be attained by eliminating run-time checks. Much of this work is orthogonal
to ours, in that it improves uni-processor performance. However, such improvements carry over
to multiprocessors, and we expect them to be easily integrated into the Jupiter framework.

There exist a number of projects investigating JVM on parallel machines, including clusters
of workstations [12, 13, 14, 15, 16, 17, 18]. The goals of these projects were to provide a JVM-
based system image and to provide an environment for parallel execution of multi-threaded Java
applications on clusters. Although these projects differ in their approach to implementing Java
on clusters of workstations, they all target only a small number of processors (8 to 16). In
contrast, our work aims to enable efficient execution of parallel Java programs on large numbers
of processors (64 to 128). In additions, while these projects have built JVMs to explore their
respective approaches to performance, they have not implemented their JVMs in such manner
to allow exploring alternative approaches. In contrast, we are building a modular and extensible
JVM that will allow us, and others, to explore multiple approaches to JVM scalability.

6 Concluding Remarks

In this paper, we presented the basic design of a modular and extensible JVM called Jupiter,
composed of many building-block modules with small interfaces. Jupiter’s design will provide the
JVM with the power and simplicity that Unix shell pipelines have provided to operating systems
for decades. Yet, since our module composition occurs at compile-time, this approach has the
potential to reduce runtime overhead to zero when required. We expect this infrastructure to
facilitate our research into JVM design for parallel scalability.
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