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ABSTRACT

The Design and Implementation of a Java Virtual Machine on a Cluster of Workstations

by

Carlos Daniel Cavanna

Master of Applied Science

Edward S. Rogers Sr. Department of Electrical and Computer Engineering

University of Toronto

2003

We present the design, implementation, and evaluation of a Java Virtual Machine

(JVM) on a cluster of workstations, which supports shared memory in software. More

specifically, we first extend the Jupiter JVM infrastructure to support multithreading on

Symmetric Multiprocessors (SMPs). We then extend this multithreaded Jupiter to deal

with memory consistency, private memory allocation, and the limitations on the use of

some resources on a 16-processor cluster of PCs interconnected by a Myrinet network;

which supports Shared Virtual Memory and a pthreads interface. Our experimental

evaluation is performed using standard benchmarks. On a 4-processor SMP, it indicates

that the performance of the multithreaded version of Jupiter is midway between a näıve

and a state-of-the-art implementations of a Java interpreter. Our evaluation on the

cluster demonstrates that good speedup is obtained.
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CHAPTER 1

Introduction

In recent years Java has steadily gained wide acceptance as a programming lan-

guage of choice for application development. The main reason for this success is that

Java provides a set of tools that give a platform-independent context for developing and

deploying these applications. Furthermore, it includes a wide set of classes and libraries

that simplify application development. In particular, these features benefit projects that

target heterogenous platforms.

However, Java programs often lack performance compared to programs written in

languages like C or C++. This is mainly due to the Java execution model, which consists

of a software interpreter, called a Java Virtual Machine (JVM) that executes a Java

program, compiled to an abstract set of instructions called Java bytecodes. This model

can give rise to poor performance because the functionality required for the execution

of individual bytecodes is delivered entirely in software.

Therefore, there has been considerable research into approaches for improving the

performance of Java programs. The most significant of these approaches is just-in-time

(JIT) compilation [AAB+00, IKY+99], which dynamically translates Java bytecodes into

native instructions that can be directly executed in the target hardware, thus reducing

the performance penalty incurred by interpretation. Other approaches include improved

array and complex number support [AGMM99, WMMG99], efficient garbage collection

[DKL+00, BAL+01], and efficient support for threads and synchronization [AAB+00].

Parallel processing is another important and orthogonal approach for improving

the performance of Java programs. The availability of multiple processors improves

1
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the execution time of multithreaded applications. Since their introduction, JVMs have

allowed for the execution of multiple threads in a Java program in shared memory on

Symmetric Multiprocessors (SMPs). Unfortunately, SMPs are limited in their scalability,

and can be very expensive at large scales.

A cost-effective alternative to SMPs is clusters of workstations, which offer large

and potentially scalable environments; clusters can be expanded by easily incorporating

additional off-the-shelve hardware and software components. For this reason, clusters

provide an interesting platform for the execution of Java applications. However, clusters

do not support the traditional shared memory programming model. This creates many

challenges in enabling JVMs to run on clusters, including memory consistency and non-

shared memory allocation issues. This thesis explores these challenges, and addresses the

issues involved in the design and implementation of a JVM on a cluster of workstations.

1.1 Objectives and Contribution

The main goal of this work is to explore the design and implementation of a

JVM that delivers good performance on a cluster of workstations. More specifically,

the objective is to explore the issues involved in enabling a JVM to execute on a 16-

processor cluster with Shared Virtual Memory (SVM). The cluster nodes are intercon-

nected through Myrinet network interfaces [BCF+95, Myr03], which offer low latency

and high bandwidth communications, and serve as support media for SVM.

For this purpose, it was necessary to utilize a JVM infrastructure that could be

extended to work on the cluster. The Jupiter JVM [Doy02, DA02] is an extensible single-

threaded JVM research framework. It was designed with strong emphasis on modularity,

flexibility and portability, and thus it possesses the properties required for this work.

Our work focuses on the design and implementation of a multithreaded and

cluster-enabled versions of the Jupiter JVM, while maintaining its extensibility and

flexibility properties. The first part of this work presents the extension of the origi-

nal Jupiter JVM to support multithreaded Java applications on SMPs. The second part

shows the extension of the multithreaded Jupiter JVM to run on the SVM cluster. These

two extensions of Jupiter are evaluated using standard benchmark suites (SPECjvm98
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[SPE03] and Java Grande [EPC03, Jav03]). Our experimental results demonstrate that

the multithreaded Jupiter speed is midway between Kaffe [Wil02], a näıve implementa-

tion of a Java interpreter, and Sun’s JDK [SUN03], a highly optimized state-of-the-art

interpreter. The performance of the multithreaded Jupiter is also comparable to that of

the single-threaded Jupiter [Doy02]. This indicates that our multithreading extensions

do not introduce significant overhead. Furthermore, the cluster evaluation indicates that

good speedup is achievable for the applications.

The main contribution of this work is the development of a cluster-enabled JVM,

that delivers good performance and speedup. In this respect, the extensions to Jupiter

deliver superior speedup to existing JVMs that run on clusters. More specifically, this

work involves the addition of some needed functionality that would allow Jupiter to

run multithreaded programs on an SMP, and ultimately on the cluster. This further

involved:

• The creation of the required infrastructure to support all the operations involved

with thread handling, which had to correspond to the interfaces of the Java Thread

class.

• The development of the necessary support for the thread behavior stated in the

JVM Specification [LY99].

• The synchronization of those Jupiter structures and objects that become shared in

a multithreading configuration.

• The extension of the Java opcode optimizations (quick opcodes) to work safely in

the presence of threads.

• Dealing with a lazy release memory consistency model [KCZ92], provided by the

SVM system, which adheres to the Java Memory Model.

• The exploitation of non-shared memory allocation, which led to an efficient imple-

mentation of a distributed JVM on the current realization of the cluster.

• A careful utilization of the cluster resources that have limitation constraints.
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In addition, this work constitutes a step towards providing a single system image

(SSI) based on a JVM on a cluster, and provides an infrastructure for further investi-

gation of issues related to the design of JVMs on SMPs and clusters. However, it does

not currently address the issues of supporting a single-image I/O infrastructure for Java

programs or distributed garbage collection on the cluster.

1.2 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 introduces the

background required for the understanding of this work and presents some related work.

Chapter 3 describes the steps needed to extend the Jupiter JVM to support multithread-

ing. Chapter 4 details the design issues and techniques involved in enabling Jupiter to

work on the cluster. Chapter 5 shows the results of the experimental evaluation. Chap-

ter 6 draws conclusions. Appendix A gives details on the benchmarks used for the

experimental evaluation. The thesis concludes with Appendix B where an alternative

implementation of the Java stack is explored and evaluated.



CHAPTER 2

Background and Related Work

This chapter introduces necessary background required for understanding the

implementation of the multithreaded and cluster-enabled versions of the Jupiter JVM,

and provides a summary of related work that aims at running JVMs on clusters of

workstations. Section 2.1 briefly describes the Java model. Section 2.2 gives a short

overview of the Jupiter JVM. In Section 2.3, the concept of memory consistency and

the consistency models relevant to this work are discussed. Clusters are introduced in

Section 2.4 and Shared Virtual Memory clusters, including the platform used for this

work, are addressed in Section 2.5. Finally, Section 2.6 provides a summary of the

related work in this area.

2.1 The Java Model

A Java Virtual Machine [LY99] is an abstract specification for a computer imple-

mented in software that interprets and executes a program, in a similar way in which

a microprocessor executes machine code. This program is referred to as the Java pro-

gram. Java programs are compiled to a standard set of codes, called Java bytecodes,

which are an abstract, portable, machine-independent representation of the executable

code [LY99]. The Java environment includes the JVM, Java compilers (to generate Java

bytecodes from Java program source files) and Java system classes. The latter is a set

of standard classes that perform common tasks, and act as a uniform and limited API

to the underlying operating system.

Portability is one of the most important features of the JVM environment. For

5
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that reason, Java has gained much popularity both in industry and academia. Today,

there are several JVMs publicly available, including: Sun’s JDK [SUN03], Kaffe [Wil02],

ORP [ORP02], Kissme [KIS03], SableVM [SAB03], OpenJIT [OPE01, MOS+98, Mar01]

and JikesRVM (Jikes Research virtual machine, formerly known as Jalapeño) [AAB+00,

JAL01, JIK03]. Some of these JVMs were designed for special purposes or are not

flexible or modular enough to be suitable for general research environments.

2.2 The Jupiter JVM

The Jupiter JVM [Doy02, DA02] was conceived as a modular and extensible

JVM research framework. It was designed to be a JVM infrastructure that will support

experimentation with a wide variety of techniques for improving JVM performance and

scalability. Thus, it was developed with a set of carefully designed abstract interfaces.

This allows the different Jupiter components to be fully isolated from one another, thus

becoming interchangeable. Ultimately, these features made Jupiter portable and easy

to modify [Doy02, Jog03].

Jupiter uses the ClassPath [GNU03] project as its core Java runtime library.

ClassPath is distributed under a General Public Licence (GPL), and aims at creating a

free software replacement for Sun’s proprietary Java core class libraries. It is intended

to include all native methods and internal classes necessary to support a completely

functional JVM. At the time of this writing, ClassPath is still under development.

Jupiter suited the needs of our project well, therefore it was elected as the base

research platform. Its inherent modularity properties gave the necessary flexibility for

the ultimate goal, enabling the project to run on top of a cluster. Furthermore, this was

a good opportunity to fully test its extensibility in a real and challenging project.

2.3 Memory Consistency

A memory consistency model for a shared address space specifies constraints on

the order in which memory operations must appear to be performed (i.e., to become

visible to other processors) with respect to one another. This includes operations to the
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same and different memory locations and by the same or different processes1 [CSG99].

There are many memory consistency models. An overview of the two models that

are relevant to this work is presented in the remainder of this section.

A memory model is sequentially consistent if the result of any execution is the

same as if operations of all the processors were executed in some sequential order, and

the operations of each individual processor occur in this sequence in the order specified

by its program [Lam79]. Every process in the system appears to issue and complete

memory operations one at a time and atomically in program order [CSG99]. A memory

operation does not appear to be issued until the previous one issued by the same process

has completed. The shared memory appears to service these requests one at a time in

an arbitrarily interleaved manner. Memory operations appear atomic in this interleaved

order. Synchronization is still required to preserve atomicity (mutual exclusion) across

multiple memory operations from a process or to enforce constraints on the interleaving

across processes.

The lazy release consistency memory model [KCZ92] relaxes all program orders

for memory operations that take place outside synchronization operations by default.

It only guarantees that orderings will be made consistent at synchronization operations

that can be identified by the system. When synchronization operations are infrequent,

this model provides considerable reordering freedom to the hardware and compiler. This

model is based on the observation that most parallel programs use synchronization

operations to coordinate accesses to data when it is necessary. Between synchronization

operations, they do not rely on the order of accesses being preserved. The intuitive

semantics of these programs are not violated by any program reordering that happens

between synchronization operations or accesses as long as synchronization operations

are not reordered with respect to data accesses or one another. This memory model

makes a distinction among types of synchronization operations, acquires and releases.

An acquire operation is defined as a read (or read-modify-write) operation performed to

gain access to a set of operations or variables; for example, lock(mutex)2. A release is

1In this sense, memory consistency subsumes coherence.
2A mutex is a variation of a binary semaphore or lock. The terms mutex and lock are used indistinctively

throughout this work.
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Figure 2.1: Lazy Release Memory Consistency Model

a write (or a read-modify-write) operation that grants permission to another processor

to gain access to some operations or variables; for example, unlock(mutex).

In the lazy release model, each page is designated with a processor, or a node,

which is called its home node. Processors cycle through acquire-compute-release cycles.

As seen in Figure 2.1, when a thread requests a lock release, it ends the current time

interval by committing all pages updated by any local thread during the past interval.

Then, the thread releases the corresponding lock to the next requesting node, and com-

putes and sends the differences of the updated pages to their home nodes. During an

acquire operation, the processor fetches from each remote node the list of updates which

are needed for this synchronization step and invalidates the corresponding pages. This

is determined by comparison of timestamp values. A subsequent access to an invalidated

page triggers a page fault that results in remote fetching the latest version of the page

from its home node.

In SMP systems, which are usually sequentially consistent, it is the hardware that

guarantees the memory properties. In SVM systems (to be discussed in Section 2.5),

which for the purpose of this work are assumed to adhere to the lazy release memory
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consistency model, it is the application that is responsible for using the tools provided

by the memory system and signal the appropriate execution points (synchronization

points) where these should take place.

2.4 Clusters

Clustering is the use of multiple computers (typically workstations), multiple

storage devices and (sometimes) redundant interconnections, to form what appears to

users as a single (and sometimes highly available) system [CSG99].

A cluster can be used for load balancing, fault tolerance, high availability and

high-performance computing. It is a relatively low-cost form of parallel processing for

scientific and other applications that lend themselves to parallel operations. Other

benefits include the ability to use commodity hardware. This allows clusters to expand

at the sole expense of adding (and interconnecting) new off-the-shelf hardware.

SMPs provide a single address space programming model, where shared memory

is equally accessible by all processors. Cluster systems lack a single address space, which

is provided by additional support (either in hardware or software). Also, shared memory

is distributed among the cluster nodes, and access time is not uniform to all CPUs. Since

private memory resides in the local node, its access time is equivalent to that of an SMP.

Thus, the use of private memory becomes an important issue to consider, as an efficient

alternative to shared memory, whenever the semantics of the program being executed

allow it.

2.5 Shared Virtual Memory Clusters

Software Distributed Shared Memory (SDSM) clusters provide users with a shared

memory programming abstraction. The shared address space of these systems is usu-

ally page-based3, and it is implemented either by run-time methods or by compile-time

methods [LH89, ACD+96, SGT96]. SDSM systems can be cost-effective compared to

hardware DSM systems [LC96]. However, there is a large coherence granularity imposed

3It is also possible to construct object-based SDSM systems.
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by the page size of the underlying virtual memory system that tends to induce false

sharing4 for most applications.

SVM [SHT98] clusters belong to the family of Software Distributed Shared Mem-

ory (SDSM) clusters. SVM is an extension of the virtual memory manager of the under-

lying operating system, where the paging system is modified to implement the mapping

between local memory and shared memory on each node. The distinctive feature of

SVM is that the operating system page fault exceptions are used to trap memory read

and write operations. Shared memory is accessed in the same way as local memory,

with remote page faults taking longer time than local ones. Thus, the running applica-

tion memory reads and writes use the virtual protection mechanisms provided by the

operating system.

2.5.1 The Myrinet Cluster, VMMC, GeNIMA and CableS

The cluster system used for this work is comprised of a number of software and

hardware layers, as shown in Figure 2.2. These layers allow the cluster memory to be

seen as a single address space. The current configuration consists of 8 interconnected

dual-processor PC workstations, referred to as nodes, providing a total of 16 processors.

For the remainder of this thesis, the above system will be referred to as “the cluster”.

The system area network (SAN) layer in this project is Myrinet [BCF+95, Myr03],

a point-to-point interconnect, which provides a fast, high bandwidth physical commu-

nication layer to the system. The cluster nodes are interconnected by PCI Myrinet

network interface cards (NICs) through a Myrinet (Myricom) switch, and by Ethernet

NICs to an Ethernet switch.

VMMC [BLS99, Azi02] is the communication layer, which supports internode

communication. It consists of a custom NIC control program installed in the Myrinet

card, an operating system driver and a user library. It allows access to the NIC in a

protected manner, avoiding the need to trap (interrupt) in the kernel for data exchange.

When user programs access any memory area, they can only make a reference to a

4False sharing occurs when two or more processors access different variables within a page, with at least one
of the accesses being a write. In the case of SVM clusters, this may cause coherence messages to be sent to
other processors when shared pages are modified.
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Figure 2.2: Cluster Layers

virtual memory address. VMMC translates those addresses into physical references,

using a dynamic mapping scheme [CBD+98].

In addition to VMMC, which provides internode communication, GeNIMA [BJS01,

JOY+99] implements the protocol that provides the shared address space abstraction.

CableS [Jam02b, JB02] is a set of libraries that provide thread and memory

extensions to the SVM functionality in GeNIMA. It aims at supplying a single system

image with respect to thread and memory management on top of the cluster. Its services

are accessed through a standard POSIX [IEE90] pthread interface5. CableS provides a

set of mechanisms that allow the application to use the system resources safely among

the different cluster nodes. These mechanisms are:

• Shared Memory Allocation. CableS includes routines that allow the application

program to allocate memory in a shared area. This memory will be visible to other

cluster nodes, subject to the restrictions imposed by the lazy release consistency

memory model [KCZ92].

5POSIX, which stands for Portable Operating System Interface, is a set of standard operating system inter-
faces based on the Unix operating system.
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• Locks. Locks are usually employed as a mechanism for enforcing a policy for serial-

izing access to shared data. However, on the cluster they are also used to guarantee

memory consistency.

• Barriers. A barrier is a synchronization mechanism for coordinating threads oper-

ating in parallel. It requires threads reaching a barrier at different times to wait

until all threads reach the barrier.

The application layer in Figure 2.2 is the beneficiary of all the previously men-

tioned layers. It is a shared memory application that uses POSIX pthreads. However,

the application requires some modifications in order to work properly with CableS and

the SVM system. These modification are further explored in Section 2.5.2. For the

purpose of this work this layer is the Jupiter JVM.

2.5.2 Programming using CableS

CableS provides a standard POSIX interface. This may give the impression that

CableS is a set of libraries that can make a POSIX-compliant application suitable to

execute on the cluster. This is not the case, because CableS exposes the underlying

lazy release memory consistency model of the SVM system to the application. Thus, all

shared memory accesses must be protected with synchronization operations, even when

synchronization is not necessary.

In the SVM system, locking has a double role. In addition to mutual exclusion,

the SVM system locks invoke the routines that keep track of the changes made to the

shared memory regions. Memory consistency operations are performed when the acquire

and release lock primitives are invoked. This implies that every access to shared memory

has to be protected with locks when that memory is read or written. At that point, the

SVM system takes over and performs all the necessary memory update operations.

The locking operations guarantee that the latest values are always available to the

other threads in the system. It must be noted that this does not immediately refresh

values in the remote nodes. When the memory is written, it is marked as modified.

When that memory is read after an acquire operation, perhaps from a remote node, the
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procedure ChangeFlagValue(NewValue)

Lock(SharedMutex)
Flag ← NewValue
Unlock(SharedMutex)

procedure WaitForFlag()

repeat
Lock(SharedMutex)
TempFlag ← Flag
Unlock(SharedMutex)

until TempFlag �= OldValue

Figure 2.3: Use of Locks for Shared Values

system checks for the latest value for the accessed addresses in the whole system, updates

it in the local node (if necessary) and returns it to the application. For example, when

pthread mutex lock is called, the standard call for locking a mutex, the SVM system

executes the memory consistency routines that search for the most up to date copy

of the memory areas the program accesses. After the mutex is unlocked, the memory

consistency routines are no longer invoked.

The following examples illustrate situations where the acquisition and release of

a mutex signal the SVM system when the memory segments have to be updated from

one node to another. Figure 2.3 shows a shared variable which is used as a flag. Its value

can only be safely probed if the lock is acquired before reading and writing it. A call to

ChangeFlagValue made from one thread will signal another thread, which is waiting on

WaitForFlag, that a certain event has occurred. If access to the flag is not protected

in WaitForFlag, there is no guarantee that the new value set in ChangeFlagValue will

be visible if these calls occur in different cluster nodes. Analogously, ChangeFlagValue

must also protect its access to the flag. Notice that ChangeFlagValue and WaitForFlag

have to access the same lock, SharedMutex.

Figure 2.4 shows how a dynamically allocated array must be protected before

each or all of its values are set. Then, when these values are accessed, perhaps by

another thread, the reading operation also has to be protected with locks. This is true

even if the array is defined as read-only, because the appropriate use of locks guarantees
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procedure CreateAndSetArray()

Array ← CreateArray()
Lock(ArrayMutex)
for each element in the array do

Array[element] ← Value
end for
Unlock(ArrayMutex)

procedure ReadArray(Array,element)

Lock(ArrayMutex)
ReturnValue ← Array[element]
Unlock(ArrayMutex)

Figure 2.4: Use of Locks for Read-Only Arrays

that the SVM system updates the memory values when or if it is required. Notice that

the memory allocation routines, which are called from CreateArray, are not protected.

Section 4.2 provides further details on the usage of locks in the SVM system.

2.6 Related Work

This section presents various projects that aim at running a JVM on a cluster.

2.6.1 JavaParty

JavaParty [PZ97] is a cooperating set of JVMs that run on nodes of a distributed

system. It is implemented as a preprocessor to the Java compiler and a runtime system.

JavaParty extends the Java language with a new class modifier, called remote. This

modifier is used to explicitly indicate to the preprocessor when classes can be spread

among remote nodes. The precompiler and the runtime system ensure that access to

remote class fields or methods are handled by Remote Method Invocations (RMI). Java-

Party aims to hide the increased program size and complexity of explicitly using RMI or

sockets for parallelization of Java programs on distributed systems. Object migration in

JavaParty is supported through the use of proxies, with no replication, which slows down

access to those objects that are shared between threads. The performance of JavaParty

is reported to be comparable to that of RMI.
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Unlike Jupiter, JavaParty requires that Java programs be modified. Jupiter sup-

ports the standard Java thread model, while JavaParty requires that Java programs be

expressed using the special remote class modifier, which is not part of the Java standard.

As a consequence, Java programs lose portability. Furthermore, the runtime component

of JavaParty is implemented on top of RMI, which introduces considerable overhead. In

contrast, Jupiter uses a shared address space memory model.

2.6.2 JESSICA/JESSICA2

JESSICA [MWL00] is a middleware system which creates a single system image

of a JVM on a cluster. It is based on the Kaffe JVM [Wil02]. It uses Treadmarks

[ACD+96] for DSM support, as well as the socket interfaces provided by Linux. JESSICA

is similar to Jupiter in many respects. Both support the execution of Java programs

on a cluster using DSM. However, JESSICA is not focused on obtaining a scalable

JVM on the cluster. The main purpose of the system is abstraction from the cluster

and appropriate load balancing. Thus, unlike Jupiter and other projects, JESSICA

successfully implements I/O support, though it is centralized.

There are a number of other differences between JESSICA and Jupiter. In Tread-

marks, the memory pages allocated in different nodes may not reside at the same ad-

dresses. This affects references to objects stored in the heap, which have to be translated

when passed between nodes. Jupiter does not suffer from such translation problems.

Also, JESSICA does not take full advantage of the relaxed properties of the Java Mem-

ory Model. The implementation performs a DSM-lock acquire and release operation

for every object access. JESSICA also uses a double locking mechanism for the update

of shared objects. First, an object lock is requested, then, a DSM-lock, resulting in

some extra traffic and delays. Another difference is that some system requests, such

as thread signaling mechanisms (wait() and notify()) and mutex operations (lock()

and unlock()), are centralized in the main node. While this simplifies implementation,

it is a potential bottleneck. Jupiter follows a decentralized schema, provided by the

underlying SVM system.
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Only three applications were used for the performance evaluation of JESSICA,

for a cluster configuration of up to 8 processors. For RayTracer and SOR, the speedup

obtained in Jupiter on the cluster is significantly better than that in JESSICA, which

suffers from a significant slowdown introduced by the distributed object model and DSM

systems. The slowdown ranges from 3% to 131% for a single worker thread.

JESSICA2 [ZWL02] is the extension of the JESSICA project. This prototype

follows a different approach, using a JIT compiler, while maintaining much of the prop-

erties of the previous architecture. JESSICA2 differs from JESSICA in three respects.

JESSICA2 uses a JIT compiler; instead of a page-based DSM system, JESSICA2 uses

object-based DSM (which adheres to the Java Memory Model); and the master and

worker nodes communicate through TCP connections. The experimental evaluation on

the cluster is based on three Java applications, with a configuration of up to 8 nodes.

The performance of JESSICA2 is considerably better than that of JESSICA, because of

the use of the JIT compiler. However, the speedup is worse.

2.6.3 Java/DSM

Java/DSM [YC97] is an implementation of a JVM based on Sun’s JDK 1.0.2

[SUN03] on top of the Treadmarks [ACD+96] distributed shared memory system. It

runs on a cluster of heterogeneous computers, providing a single system image and hiding

hardware differences. Java/DSM aims at integrating heterogeneous environments, using

a translation mechanism to convert data of the same type between different hardware

platforms. Java/DSM requires the threads in the Java program to be modified to specify

the location to run. It is unclear if it was ever developed to completion.

Java/DSM bases its memory management on Treadmarks, and thus, it suffers

from the same address translation drawbacks described earlier for JESSICA [MWL00].

Java/DSM differs from Jupiter in that its focus is to integrate heterogeneous systems.

It also requires that threads specify the location where they run, thus making Java pro-

grams not portable. The synchronization primitives wait and notify, which are impor-

tant for developing multithreaded Java applications, are reported not to work between

threads running on different nodes. Jupiter supports these primitives transparently.
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The focus of the experimental evaluation of Java/DSM is to compare the difficulty

of programming the application using Java/DSM and RMI. Thus, the experiments are

based on a distributed spreadsheet that supports collaboration between users.

2.6.4 cJVM

cJVM [AFT99, CJV00, AFT+00] is a JVM based on Sun’s JDK 1.2 [SUN03]

which provides a single system image of a cluster, where the nodes are interconnected

with a Myrinet [Myr03] network. This project focuses mostly on exploiting optimization

strategies based on Java semantic information obtainable at the JVM level, which is

used to determine the most efficient way to handle remote object access. cJVM does

not support all the core classes that have native methods.

In contrast to Jupiter, cJVM uses message passing (MPI) for communication,

which requires extensive modifications to the JVM, and introduces efficiency and com-

plexity problems. Jupiter follows a shared memory approach. The object model is also

different from Jupiter’s. In Jupiter memory pages that store objects are shared between

the nodes. However, cJVM supports distributed access to objects using a master-proxy

model. This causes the thread stack to be distributed across multiple nodes, making the

load distribution across the cluster dependent on the placement of the master objects.

The implementation was only tested to up to 4 cluster nodes, running one thread

per node. Unfortunately, the applications used for the experimental evaluation are

different from those used in Jupiter.

2.6.5 Kaffemik

Kaffemik [AWC+01] is a cluster-enabled JVM based on the Kaffe JVM [Wil02].

It provides a single machine abstraction of a cluster, with hardware support for DSM

offered by a Scalable Coherent Interface (SCI) [IEE93]. Kaffemik is in its early stages

of development.

Unlike our cluster-enabled Jupiter, the current implementation of Kaffemik does

not support a release consistency memory model, object replication or caching; rather, it

relies on cache coherence provided by SCI. Therefore, frequent access to remote objects
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as well as array operations suffer from performance loss. This also creates some problems

at thread creation, since part of the Java Thread object remains on the original node

instead of being sent to the remote node. Jupiter fully supports the release memory

consistency model, with data replication handled at the SVM level. The optimization of

the execution is done at the Java application level, modifying it for enhancing memory

locality. Jupiter is able to run unmodified Java applications efficiently.

The performance of Kaffemik is only reported for up to 3 nodes, running one

thread per node. For this purpose, non-optimized and optimized versions of RayTracer

were used. The speedup is comparable to that of Jupiter only for the optimized version.

2.6.6 Hyperion

Hyperion [ABH+01] provides a single system image of a JVM on a cluster of

workstations. The cluster supports two interconnection networks: SCI [IEE93], which

uses the SISCI protocol, and Myrinet [Myr03], which uses message passing (MPI). It

executes on PM2, a distributed multithreaded run-time system that provides a generic

DSM layer. Hyperion comprises a Java-bytecode-to-C translator and a run-time library

for the distributed execution of Java threads.

A distinctive feature of Hyperion, which contrasts with Jupiter, is that it trans-

forms Java bytecodes into C. The C code is then compiled and linked with Hyperion’s

run-time library before it can be executed. Also, Hyperion uses an object-based DSM

system. Hyperion keeps a single consistent master copy of an object. The nodes use

their locally cached copy of objects, which are explicitly written back to the master copy

at Java synchronization points using RPC. During the transfer, the thread blocks and

performance is likely to suffer if objects are modified frequently. In contrast, Jupiter

uses a page-based DSM system, and pages are flushed following a lazy release mem-

ory consistency protocol. Hyperion lacks support for classes containing native methods,

which must be manually converted in order to work.

The evaluation of Hyperion was performed to up to 8 processors using a single

specially-developed application.



CHAPTER 3

Multithreading Extensions

This chapter discusses the design and implementation of multithreading in Jupiter.

Section 3.1 gives an overview of the functionality that a multithreaded JVM must pro-

vide in order to correctly execute multithreaded Java programs in accordance with the

JVM Specification [LY99]. Section 3.2 presents the approach taken in Jupiter to imple-

ment these requirements. Section 3.3 explains the changes in the initialization routines

of Jupiter, which involve the integration between Jupiter and the ClassPath libraries.

Section 3.4 describes the use of synchronization operations to avoid race conditions in

the various Jupiter shared data structures. Finally, Section 3.5 details the support for

multithreaded quick opcodes.

3.1 Multithreading in JVMs

The JVM Specification [LY99] and the Thread class interface require that a JVM

provide three general types of functionality, relevant to multithreading: thread handling,

synchronization, and wait-sets and notification.

3.1.1 Thread Handling

Thread handling refers to all the operations that can be performed on threads.

A JVM provides threading functionality to Java programs through the interface of the

Thread class, which is the only mechanism available for this purpose. These operations

fall into the following categories:

19
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• Definition of thread creation properties. Java threads can be set to behave as non-

daemon threads or as daemon threads. Non-daemon threads can be joined on

termination, while daemon threads cannot.

• Definition of thread execution priorities. Priorities are attributes that determine

the relative importance given to threads for CPU allocation, thus allowing some

threads to have precedence over others. Java allows for this attribute to be modi-

fied.

• Thread startup. This is the operation by which a thread begins its execution.

In Java, threads are created in two steps. First, a Thread object (a subclass of

Thread or a class that implements the Runnable interface) must be instantiated

and configured (priority and daemon properties). After that, the thread must be

launched calling the start method.

• Thread joining. A Java thread has the mechanisms to wait for another thread to

complete its execution. This is called thread joining, and can only be performed

on non-daemon threads. It accepts an optional time-out parameter.

• Thread execution state verification. This operation probes a thread to check if it

has completed its execution or not.

• Thread sleep. The currently executing thread can be forced to temporarily cease

execution for a period of time, which may make it also relinquish the CPU.

• Thread interruption. Some thread operations, such as thread sleep and join, can

be interrupted. This allows the thread to resume execution.

• Processor yield. The currently executing thread can be forced to relinquish the

CPU. In this case, other threads in the system will compete for the CPU, which

allocation will be determined by the scheduler.

• Thread identification. A Thread object can be uniquely identified, thus providing

the means to distinguish it from others. At this level, the interface only requires

that a Thread object have a name.
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Notice that there are no operations for thread termination. The reason is that

Java threads cannot be killed. The stop method, initially intended for this purpose, has

been deprecated [SUN03].

3.1.2 Synchronization

Synchronization is the process by which two or more threads coordinate their

execution or the use of shared resources or common data structures. For this purpose,

the Java language allows method definitions as well as blocks of code to be marked with

a special synchronized clause. This functionality requires support for two opcodes, as

specified in Chapter 6, Section 7.14 and Section 8.13 of the JVM Specification [LY99].

The monitorenter and montitorexit opcodes are invoked when a synchronized sec-

tion is entered or exited respectively. They must guarantee mutual exclusion using the

locks associated with Java object instances [LY99]. If the synchronized code is marked

as static, then the lock associated with the Class object that represents the class in

which the method is defined is used instead of object instance locks.

3.1.3 Wait-Sets and Notification

Each Java Object must have an associated wait-set and notification mechanism

[LY99]. This mechanism is used in the Object class for the implementation of the

methods: wait, notify and notifyAll, for which a JVM must provide the following

support:

• wait. This method causes the calling thread to enter a waiting-for-notification

state and be placed in the wait-set of the corresponding object. The thread’s

activity is suspended, and it remains so until it receives a notification. This inter-

acts with the scheduling mechanism for threads. When a thread is in a waiting-

for-notification state, it can be forced to relinquish the CPU and, therefore, is

not scheduled for execution. The wait method has to be called from within

synchronized code. The lock held on the object, regardless of the level of re-

cursion (i.e., successive calls to monitorenter), is released, but locks on other

objects, if any, are retained [NBF96].
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Figure 3.1: Single-Threaded Design

• notify. This method sends a notification to one thread in the wait-set of the object

on which the method containing notify is applied. This causes the thread to exit

from the wait-set so that it can be rescheduled for execution. Since the thread

had executed the wait from inside a synchronized method, it will be competing

again to obtain the object lock, which it had previously released. When it finally

reacquires the lock, it does so with the same recursion level it had before the

execution of the wait method. The notifyAll method is a special case, where the

notification is sent to all the threads in the wait-set. The notify and notifyAll

methods have to be called from within synchronized code.

3.2 Multithreading in Jupiter

The overall structure of Jupiter is shown in Figure 3.1. The ExecutionEngine is

the heart of the opcode interpreter. It integrates and coordinates the calls to the different

components of the system. MemorySource provides the interface for memory allocation.

Error handles the error conditions that may appear. FrameSource allocates frames in

the thread stack. NativeSource manages the calls to native methods. ThreadSource

is used for spawning child threads. ClassSource controls the creation of Java classes.

Finally, ObjectSource is responsible for creating Java objects.

We elected to implement multithreading in Jupiter by having a completely func-

tional JVM in every thread, where each thread shares some of its components with other

threads, but has other components that remain private. In this case there is an addi-
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Figure 3.2: Multithreading Design

tional module, MonitorSource, which creates Monitor structures. This architecture is

shown in Figure 3.2. As the figure shows, ExecutionEngine, MemorySource, Error,

FrameSource, NativeSource and ThreadSource remain private to the thread, while

ClassSource, ObjectSource and MonitorSource are shared. The rationale for these

design decisions are listed below:

• ExecutionEngine. Having independent JVMs in each thread allows this module

to remain private, since this comprises the opcode interpreter.

• MemorySource. Since memory allocation is performed through the standard POSIX

call malloc, it can be independently invoked by all threads, thus making this
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module private. In an SMP, this same call is used to allocate both memory that

will be private to a thread or shared among threads. The allocated shared memory

will be equally accessible by all threads. A similar situation occurs for the cluster

case, which is described in Section 4.3.1.

• Error. This module is made private because each thread can manage its error

conditions independently of the other threads.

• FrameSource. Since the stack always remains private to the thread, this module

is not required to be shared.

• NativeSource. In Jupiter, the management routines for native calls can be called

by more than one thread simultaneously. Each thread can safely construct its own

references to native calls, since the internal Jupiter structures that are used do not

require to be shared. Thus, this module is made private to each thread.

• ThreadSource. This module is used for thread creation and keeping track of non-

daemon child threads, which must be joined before a JVM finishes its execution.

These operations can be managed independently between threads, since each thread

waits for its own child threads before finishing, thus allowing this module to remain

private. The joining of threads is explained in further detail in Section 3.2.6.

• ClassSource. The JVM Specification [LY99] requires that loaded Java classes

be accessible to all threads. Therefore, Jupiter creates classes in the global heap.

The MonitorSource module and the internal data structures that store references

to such classes (which are used to access them) must be shared, thus making

ClassSource a shared module.

• ObjectSource. Even though it is not required by the standard, Jupiter conserva-

tively creates Java objects in the global heap. This allows them to be shared among

threads. Similar to the case of ClassSource, the MonitorSource module, which

is used for the creation of these objects, must be shared, making ObjectSource a

shared module.
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• MonitorSource. This module relies on the use of a single special instance of

ThreadSource, which is created in the main thread. Therefore, a single instance

of MonitorSource is created for the system, which is shared among threads.

This high level design anticipates the need to enable the multithreaded Jupiter to

run on the cluster of workstations, which will be described in Chapter 4. Having inde-

pendent, decentralized components reduces the use of shared memory and the need for

synchronization operations on the cluster, and thus, it is likely to improve performance.

The remainder of this section discusses the development of the multithreading

modules, the design decisions made in the process, the problems faced and how they

were solved.

3.2.1 Threading Modules

The design of the threading modules was planned to accommodate the needs of

two other modules, the Java class libraries and the native thread libraries. On the one

hand, there are functionality requirements imposed by the Java Thread class, the Object

class (with support from the ClassPath class called VMObject) and the implementation

of some opcodes. On the other hand, there is the functionality provided by the native

thread libraries on the target system. Their requirements and services do not match one

to one, although they aim at providing equivalent functionality.

Therefore, the main responsibility of the threading modules is to act as a simple

interface between these modules, avoiding conflicts and constraints between the require-

ments of the upper layer and the services provided by the lower layer.

Furthermore, it was necessary to provide an interface that would abstract away

the details of the native thread libraries. This requires that the interface do not have

complex functionality that some native libraries may not be able to supply, and it must

only provide the smallest set of functions necessary to implement multithreading in

Jupiter.

The threading modules implement two abstraction layers, Thread and Monitor,

and ThinThread that link the Java class libraries and the native thread libraries, as

shown in Figure 3.3.
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Figure 3.3: Multithreading Modules

Thread and Monitor provide services to the Java class libraries, whose interface

was specified by ClassPath and adheres to the JVM Threading Specification, which

was described in Section 3.1. Thread and Monitor rely on ThinThread, which in turn

abstracts the native thread libraries.

The problem and solutions of over-constraint interfaces were introduced in the

discussion on design for flexibility in the original work on Jupiter [Doy02]. In the design

of the Thread, Monitor and ThinThread modules, it was attempted not to change the

interfaces defined in the original Jupiter JVM. These interfaces were designed with the

purpose of making Jupiter flexible and modular.

An important element in designing the interface was to isolate different func-

tionality in several layers, gradually accommodating the abstract interface of the native

thread libraries into the needs of Jupiter. While a single interface could have been used,

a layered approach is a design technique that simplifies the implementation and improves

maintainability. In this case, instead of having a single and complex module, the func-

tionality is divided into smaller tasks and placed in separate modules. The functionality

on each layer is supported on simple and well defined functions provided by the layer

below.
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Thread and Monitor are designed to enhance portability. They provide function-

ality that may not always be available in the lower layers or was restricted at ThinThread,

such as recursion, protection against spurious wake-ups, thread joining and priority set-

ting. In those cases where it can rely on the lower layers, it supplies a uniform access

interface.

3.2.2 ThinThread

ThinThread encompasses the minimal set of functionality that Jupiter requires

for thread handling. It defines a standard and simple interface upon which Thread

and Monitor can be built. As its name indicates, this is a thin layer, thus it does not

add functionality to the native thread libraries. Instead, it is intended to simplify the

replacement of native libraries without the need of any major redesign in the upper

layers of the threading modules, as was described above.

ThinThread’s interface was inspired in the POSIX thread libraries, because they

are well known and standard, in particular for Unix systems. ThinThread is divided in

three sections:

• Thread operations. These include thread startup, execution priority setting (lim-

ited to priority values defined internally), processor yield, sleep, interrupt and self

identification.

• Mutex operations. These comprise acquire, release and try. It is possible to imple-

ment custom locks at this level using testandset.

• Condition Variable operations. These include wait and waitwithtimeout on condi-

tions, and signal and broadcast of completed operations. It must be noted that

this functionality does not necessarily have to rely on condition variables. It can

be implemented using shared variables or signals.

This functionality, and the rationale for including such functionality in this layer

are described below:

• Definition of thread creation properties. The option of setting the daemon prop-

erty of a thread was not included in the ThinThread module. The reason for
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this decision is to avoid relying on this feature provided by POSIX, which makes

ThinThread as simple as possible. Therefore, only detached (daemon) threads can

be created, and thread joining is controlled explicitly by Jupiter (see Section 3.2.6

for further details). Notice that this gives freedom of implementation because the

interfaces do not rely on any specific property of the native thread libraries.

• Definition of thread execution priorities. The priority setting at the JVM level

has to be isolated from the setting at the native library level. The reason is that

both use different priority scales and ThinThread must remain as abstract as it

is possible in this respect. Thus, ThinThread has an independent range of thread

priorities that is converted to a valid range within the values that the native library

can handle.

• Thread identification. The need for thread identification at a lower level extends

the requirements of the Thread class. At this point, it involves the internal identi-

fication used, at system level, by the native thread libraries. This is necessary for

operations such as priority setting, thread interruption and self thread identifica-

tion. The latter is used to give support to the implementation of thread startup

and Monitor.

• Thread execution state verification. The native thread libraries do not provide

primitives for checking the execution state of threads. It is the operating system

that keeps track of this information. In this case, an internal Java field that will

store this state information is kept in the Java Thread class. When a thread starts

and terminates, its value is updated using calls to ThreadSource and Thread that

ultimately use the thread identification mechanisms in ThinThread.

It must be noted that some of the functionality required by the Thread class

is programmed in the Java class libraries, and there is only specific functionality that

Jupiter must provide this class through the JNI (Java Native Interface).

ThinThread limits locks to the fast (i.e., non-recursive) type [IEE90]. This de-

sign decision avoids relying on the recursive feature supplied by POSIX, thus making

ThinThread simple and the system libraries interchangeable. This restriction proved
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useful when enabling Jupiter to run on the cluster since CableS does not provide recur-

sive locks.

ThinThread also allows condition variables to have spurious wake-ups1, which are

also permitted by the underlying system libraries. The reason for the system libraries

to experience such behavior is that a completely reliable once-and-only-once wake-up

protocol at that level can be expensive. Furthermore, it is considered that spurious

wake-ups promote good programming practices [HPO01]. This behavior is allowed at

the ThinThread interface because it simplifies the calls to the underlaying thread library.

3.2.3 Thread and Monitor Modules

Monitor provides the synchronization and the wait-sets and notification function-

ality required by the JVM Specification [LY99]. It is a structure associated with Java

objects and classes, which is used for the implementation of synchronized code. The

design allowed for both synchronization and wait-sets to be included in the same mod-

ule because they base their mutual exclusion requirement on the same mutex. Monitor

provides the following interfaces: Enter, Exit, Try (monitor operations), Mine (monitor

ownership), Wait/WaitWithTimeout and Notify/NotifyAll (wait-sets and notification).

In Jupiter, Monitor is implemented using mutexes and condition variables. However,

there are two aspects in Monitor design that had to be considered:

• Recursion. The JVM Specification [LY99] allows for monitors to be called recur-

sively. However, the ThinThread interface does not allow mutexes to provide this

property. Only fast (non-recursive) mutexes are provided. This restriction requires

that Monitor be responsible to handle this case. This will be described in Section

3.2.4.

• Spurious wake-ups. The native thread libraries, as well as the ThinThread layer,

do not enforce that condition variables, used for Monitor waiting, return only after

a successful notification. This means that there is no guarantee that the return

from a wait call is due to a signal or broadcast call [OPE97]. The spurious

1A spurious wake-up is a return from a waiting call on a condition variable predicate, even if the predicate
remains false.
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wake-up demands that Monitor give extra support to eliminate the problem. This

will be explained in Section 3.2.5.

Thread presents the necessary interfaces for thread handling. These are as fol-

lows: Start (thread startup), Set/Get Priority (priority setting), Interrupt (operation

interruption), Self Identification (thread identification), Yield (processor yield), Sleep

and Join/JoinWithTimeout (thread joining). This module also presents two distinct

aspects that required further consideration and analysis:

• Thread startup. In contrast to the two-step thread creation in Java, once the thread

libraries create a thread, it immediately begins its execution. This is done through

the call to a generic function which receives the thread function as a parameter.

Thread creation in ClassPath works differently. It calls a native function for cre-

ating the system thread when the Thread object constructor is invoked. This is

designed for the creation of the system thread without triggering its execution.

Then, a different native function is called when the start method is invoked,

which is intended to start the execution of the previously created system thread.

This accommodates thread libraries that may work in two steps. This difference

requires a careful design, which maintains Java semantics, when deciding where to

execute the thread creation function2 from the thread library. One possibility was

to create the thread during the creation of the Thread object, and force the thread

to spin until it is signaled to continue from within the start method. However,

the alternative elected was to invoke the thread creation function in the start

method, which creates and starts the system thread in a single step.

• Thread joining. Since only daemon threads are supported by the ThinThread

layer, Jupiter must provide its own thread joining mechanisms. The solution to

this problem is detailed in Section 3.2.6.

As the requirements of the Java class libraries are unlikely to change drastically

in the future, the interfaces of Thread and Monitor were designed to match them. This

way, the lowest level of the Java class libraries remains simple.

2System thread creation is implemented as calls to the Jupiter modules ThreadSource and Thread.
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3.2.4 Monitor Support for Recursive Calls

Monitors can be called recursively. This means that a thread that is already

holding a monitor can request to use it again. This functionality can be implemented

using recursive locks [LY99]. However, since the ThinThread interface restricts the use

of locks to the fast (non-recursive) type, this had to be tackled in Monitor. This was

achieved by direct control of recursion and ownership of the monitor, using functions for

thread identification, provided by the Thread module.

An outline of the algorithm needed by Monitor to support recursive calls is shown

in Figure 3.4. There are two important aspects to consider. In the method enter, if

the current thread already holds Monitor (and, therefore, the lock), the only required

action is to increment the locking count MonitorCount. Otherwise, the thread requiring

exclusive access to Monitor must contend to acquire the lock. In the method try

similar steps are taken. It must be ensured that the internal count MonitorCount shows

a complete unlock before Monitor can be given to another thread. In the method exit,

the count is decreased until it reaches 0. At that point, no thread owns the monitor, and

therefore the lock can be released. Normally, the Java compiler guarantees that there

are no more unlocking than locking operations [LY99].

3.2.5 Monitor and Spurious Wake-ups

The Monitor module implements the wait-set and notification mechanism for

Java objects and classes. The synchronization structures used to support this mechanism

are condition variables, because they best match the functionality requirements. A

condition variable is a synchronization object which allows a thread to suspend execution

until some associated predicate becomes true [OPE97].

Consequently, an interface for accessing condition variables was added at the

ThinThread layer. However, the native thread libraries as well as the ThinThread mod-

ule are allowed to produce spurious wake-ups on condition variables. This behavior

should not occur in the implementation of wait-sets. As a result, it was not possible

to use condition variables directly for the wait-sets. It was required that their behavior

be adapted to the needs of Monitor. A solution was implemented at Monitor level,
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procedure enter()

if MonitorOwner �= CurrentThread then {If this thread is not the
owner of the monitor, contend for its exclusive access}

Lock(MutexMonitor)
MonitorOwner ← CurrentThread {Keep monitor ownership
information}

end if
MonitorCount ← MonitorCount + 1

procedure exit()

MonitorCount ← MonitorCount - 1
if MonitorCount = 0 then {The thread exited the monitor
completely}

MonitorOwner ← NoThread {No thread owns the monitor}
Unlock(MutexMonitor)

end if

function boolean try()

MutexLocked ← FALSE
if MonitorOwner �= CurrentThread then

MutexLocked ← Try(MutexMonitor)
if MutexLocked then

MonitorOwner ← CurrentThread
MonitorCount ← MonitorCount + 1

end if
else

MonitorCount ← MonitorCount + 1
end if
return MutexLocked

Figure 3.4: Monitor Support for Recursive Calls

which has the added advantage of allowing a simple integration of the functionality of

the wait-set with that of the lock associated with each Java Object and Class. Thus,

all the Java synchronization structures could be centralized in one module.

An outline of the wait-sets and notification mechanism that handles spurious

wake-ups is shown in Figure 3.5. The number of waiting threads and the notifications

received are counted. The call to WaitOnCondition in the method wait is protected from

spurious wake-ups by the count on the notifications. It must be noted that, since the

wait, notify and notifyAll methods have to be called from within synchronized code,
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which guarantees mutual exclusion among them, it is safe to increment and decrement

the shared variables WaitCount and NotifiedCount.

procedure wait()

MonitorDepth ← GetMonitorDepth(Monitor)-1
for MonitorDepth do {Release the Monitor}

Exit(Monitor)
end for
WaitCount ← WaitCount + 1 {One more thread enters the wait state}
repeat

WaitOnCondition(Condition, Monitor) {Wait on Condition and
release the lock in Monitor. When it returns, the lock in
Monitor was reacquired}

until NotifiedCount �= 0 {There must be a notification present to
continue. This protects from spurious wake-ups}
WaitCount ← WaitCount - 1 {The notification was received}
NotifiedCount ← NotifiedCount - 1 {The notification was processed}
for MonitorDepth do {Reacquire the Monitor}

Enter(Monitor)
end for

procedure notify()

if WaitCount > NotifiedCount then {Protect NotifiedCount from
notifications sent when no threads are waiting}

NotifiedCount ← NotifiedCount + 1
end if
SignalCondition(Condition) {Signals can be sent even if no threads
are waiting}

procedure notifyAll()

NotifiedCount ← WaitCount {Notify all waiting threads}
BroadcastCondition(Condition) {Broadcasts can be sent even if no
threads are waiting}

Figure 3.5: Wait-Sets and Notification that Handle
Spurious Wake-ups
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procedure ThreadFunction(Arguments)

MutexDone ← ReadArguments(Arguments.MutexDone)
DoneFlag ← ReadArguments(Arguments.DoneFlag)
ConditionDone ← ReadArguments(Arguments.ConditionDone)
RunThread(Arguments) {Execute the thread using Arguments}
Lock(MutexDone)
DoneFlag ← TRUE
BroadcastCondition(ConditionDone)
Unlock(MutexDone)

procedure join()

Lock(MutexDone)
while DoneFlag �= TRUE do

WaitOnCondition(ConditionDone, MutexDone) {Wait on ConditionDone
and release MutexDone. When it returns, MutexDone was
reacquired}

end while
Unlock(MutexDone)

Figure 3.6: Thread Joining

3.2.6 Thread Joining

ThinThread only supports daemon threads. Thus, a joining mechanism was

implemented in Thread, as outlined in Figure 3.6, which involves the use of a lock, a

notification flag, and a condition variable to ensure that threads are joined properly.

The use of a condition variable avoids busy waiting. This makes the call to join

block until the termination event is signaled. A call to BroadcastCondition is used to

signal the termination event. This is because, at a given point in the execution, there

may be more than one thread waiting to join on the same thread. The use of a flag

(DoneFlag) protects the condition variable ConditionDone from spurious wake-ups.

3.2.7 Waiting on Non-Daemon Threads

The JVM Specification [LY99] states in Section 2.17.9 the conditions under which

the JVM can terminate its execution:
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Figure 3.7: Thread Spawn Relationship

“The Java virtual machine terminates all its activity and exits when one

of two things happens:

• All the threads that are not daemon threads terminate.

• Some thread invokes the exit method of class Runtime or class System,

and the exit operation is permitted by the security manager.”

Thus, it is necessary to guarantee that the multithreaded version of Jupiter treats

non-daemon threads according to the specification. This implies that Jupiter needs to

maintain a repository where references to running child threads are stored.

It was elected to use a decentralized structure, with each of its fragments kept

private to each thread. Each thread keeps track of all the non-daemon child threads it

spawns. When the thread completes its execution, it performs a last call that verifies

the status of all its child threads. This call will not return until all of them are reported

to have completed.

Therefore, the spawn relationship among threads may be viewed in the form of

a tree, as illustrated in Figure 3.7. This tree is only used for joining the threads, and

does not impose any kind of hierarchy among them. As indicated by the figure, Child 2

waits for Child 2.1, Child 2.2 and Child 2.3 to exit before finishing. The Main thread,

does not terminate, and therefore finalize the execution of the program, until Child 1

and Child 2 complete their execution. This solution has the advantage of avoiding a

centralized repository, which would require expensive lock operations to be accessed by

multiple threads.
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3.3 Initialization Routines

Jupiter’s main thread is responsible for the initialization of the whole JVM. This

entails:

• Creation of the first instances of the key objects that comprise the JVM, such

as: memory management (MemorySource), class management (ClassSource), ob-

ject management (ObjectSource), stack management (FrameSource, Context),

opcode execution (ExecutionEngine) and opcode profiler, if enabled.

• Initialization of the Java class libraries, ClassPath.

Extending Jupiter to support multithreading involves the addition of two more

tasks:

• Creation of the Monitor manger (MonitorSource) and Thread manager

(ThreadSource).

• Explicit initialization of the Java objects used for multithreading, the Thread and

ThreadGroup Java classes, which are part of the Java core classes, in the java.lang

package [CWH00].

Every thread executing in a JVM has to be associated with a Java Thread ob-

ject. Threads in the Java program have to be created using Thread, which handles all

the threading operations. When Jupiter obtains control on the native thread creation

routines, the connection between the native thread and Thread is made. This associa-

tion is used from within Thread in the native method currentThread, which is part of

the implementation of the construction of the Thread object, priority settings, property

settings, sleep, thread identification (used for groups and subgroups) and interruption

[GNU03].

The main thread is an exception, because it is implicitly created at JVM startup,

when none of the routines in Thread was invoked, or the ClassPath libraries initialized.

Therefore, it is necessary to force the creation of an initial Java Thread object as part of

ClassPath initialization. This is achieved by calling the appropriate Jupiter methods for
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loading and initializing classes, and creating an instance of the Thread object afterwards.

Finally, the association with the main thread is explicitly made.

For its construction, the Thread class needs the support of the ThreadGroup

class. ThreadGroup represents sets of threads and allows for some operations to take

place on all the members as a group. Its initialization and instantiation was done in a

similar way as Thread during Jupiter startup.

3.4 Mutable Data and Synchronization

The original Jupiter JVM is limited to the execution of single-thread Java appli-

cations. Thus, its code did not provide for sharing and protection of its internal data

structures among multiple threads. Jupiter internal structures represent elements in the

Java program, such as classes and objects. Some of these structures can be simultane-

ously accessed by more than one thread. Thus, it is necessary to protect access to these

structures with locks to avoid race conditions.

It must be noted that only those Jupiter modules that could be affected by such

race conditions are protected. Jupiter provides the appropriate synchronization support

for Java programs to use, which are responsible for maintaining consistency in their own

data. The Jupiter modules affected by race conditions are:

• Quick Opcodes. Java methods can be optimized at runtime by replacing the

implementation of some of its opcodes, using a technique called quick opcodes

[LY96, Doy02]. Since a Java opcode may be invoked simultaneously by more than

one thread, the opcode and its parameters become shared data. If the opcode is

changed, it must be protected with appropriate synchronization calls to prevent

the interpreter from reading invalid parameter values while the change is taking

place. The handling of quick opcodes is exposed in more detail in Section 3.5.1.

• Class Reflection. Reflection allows an executing Java program to examine itself

and manipulate some of its internal properties. It does so through the creation

of Java objects that depict different aspects of the program such as classes, fields,

constructors and methods [SUN03]. Since reflection classes can be created and
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manipulated simultaneously by more than one thread, they become shared and

therefore must avoid race conditions. Synchronization on access and manipulation

is guaranteed by Java semantics, but the consistency of the internal data structures

that represent reflection classes must be ensured by Jupiter.

• Class Creation. Class initialization has to follow a strict protocol, detailed in Sec-

tion 2.17.5 of the JVM Specification [LY99]. This operation can be requested by

multiple threads simultaneously. Furthermore, when a class is being initialized, it

can trigger the initialization of other classes (thus the class creation modules can be

called recursively). This initialization protocol contemplates all the possible cases

that may appear in the presence of multiple threads by storing internal initializa-

tion status values and requiring that the JVM acquire and release the Monitor

class at some particular points during class creation. These synchronization points

are necessary for properly storing references of those classes that were already ini-

tialized in the internal data structures. The use of Monitor is advantageous in the

case of recursive class initialization, since Monitor supports recursive calls. For

example, a variable initializer in a Java Class A might invoke a method of an

unrelated Class B, which might in turn invoke a method of Class A.

• Class Jump Tables. Class jump tables are structures used for finding the appro-

priate class method (a process called method lookup) to execute in a Java object.

They are necessary because of method overloading and class inheritance. Jump ta-

bles are constructed during class creation, and at that time they require exclusive

access to internal hash tables, that are used for storing references to methods and

interfaces accessible from a Java object.

• Constant Pool Creation. The constant pool table is a structure that provides exe-

cuting JVM instructions references to classes, fields, methods, strings and constant

values. The JVM Specification [LY99] allows the instructions not to rely on the

runtime layout of classes, interfaces, class instances or arrays. The constant pool

is created during the class parsing phase, when it may be simultaneously accessed

by multiple threads. Locks ensure the consistency of the information stored there.
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3.5 Multithreaded Quick Opcodes

The use of quick opcodes is a technique employed in the implementation of a

JVM to improve the performance in interpreting some Java opcodes [LY96]. It consists

of the replacement, at runtime and under certain conditions, of the standard opcodes

with faster, more efficient, implementations.

Jupiter originally employed this technique to tackle single-threaded Java appli-

cations [Doy02], where it can be implemented by simply replacing the opcode and its

parameters. This is safe because no other section of Jupiter or the Java program will

try to simultaneously access an opcode that is being replaced. However, this procedure

can lead to race conditions under multithreading, as described in Section 3.5.2. Thus, it

became necessary to extend the quick opcode technique to support multithreading. A

lock and new temporary opcodes are used to protect the opcode replacement procedures

from these race conditions, without introducing significant overhead.

3.5.1 Quick Opcodes Overview

Some Java opcodes must perform several checks in their implementation, since

they can be invoked under many different conditions. These conditions are tested every

time. However, after the opcodes are executed once, some of these checks become

redundant because the conditions they examine are guaranteed to remain unchanged.

Thus, the checks can be avoided and the opcodes can be replaced with more efficient

implementations, which are referred to as quick opcodes.

For example, when putfield is invoked to operate on a field for the first time, the

field is checked to verify if it exists and is accessible. This is referred to as field resolution.

Thus, if a reference to the field was not yet resolved, the resolution process is executed

and the reference is made available for putfield to use. This requires the support

from internal data structures. However, the check and resolution steps are necessary

only the first time the opcode is encountered. Performing such operations on successive

invocations of the same putfield opcode is redundant, since the resolution process

would return the same result every time. Furthermore, traversing the data structures

is time consuming, and can be avoided using a cache. Thus, after its first invocation,
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a specific putfield opcode is replaced with a quick opcode, qputfield, that does not

require any resolution or checks and caches the results from the internal Jupiter data

structures, thus saving execution time.

Bytecodes are maintained in the Java class. There is a bytecode array that

contains a sequence of bytecodes for each method to which they belong in the class.

Each bytecode consists of an opcode and its parameters. The opcode interpreter reads

bytecodes, and for each opcode in a bytecode, it obtains its parameters. With this infor-

mation, it can call the appropriate procedure that will service it. The JVM Specification

[LY99] defines the number and size of the parameters that each opcode takes.

For example, the putfield opcode has the following format [LY99]:

putfield parameter1 (index1) parameter2 (index2)

It takes two parameters, index1 and index2, which are byte values used to con-

struct an index into the runtime constant pool of the current class. In turn, the item

stored at that index location contains a symbolic reference to a field in the object where

putfield was invoked. From there, an offset value must be obtained to access the field

value.

Figure 3.8 depicts the mechanism of the putfield opcode execution. When the

putfield opcode is read, a resolution table is used to point to the appropriate procedure

that must be executed, in this case putfield impl. The resolution table contains an

entry for each standard Java opcode in addition to the quick opcodes defined in Jupiter.

The putfield impl procedure reads the opcode parameters, index1 and index2, which

are used to resolve the references into the Jupiter structures and obtain the offset value.

Then, putfield impl can rewrite putfield as qputfield and index1 as the offset value

(index2 is not used). qputfield has the following format:

qputfield parameter1 (offset) parameter2 (index2)

The only action taken was the replacement of the opcode and its parameters,

which was done in the putfield impl function. The putfield implementation was
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putfield_impl:
/* Implement putfield */
GetOpcodeParameters()
CalculateIndex()
GetField()
GetOffset()
RunOpcode(offset)

Resolution table

... ...

qputfield qputfield_impl

putfield

...

putfield_impl

...

index1 index2putfield

... ...

Bytecode array

Figure 3.8: putfield Opcode Resolution

not invoked. Therefore, qputfield, which took the place of putfield and has all the

information required to service the request, is forced to execute.

During quick opcode replacement no other bytecode is changed, only the occur-

rence containing putfield which was invoked in the bytecode array. When the method

containing this bytecode array is executed the following time, the opcode interpreter

will find a qputfield opcode, which will be serviced by the procedure qputfield impl.

This procedure will use the already computed offset value stored in the first parameter

(ignoring the second parameter), as shown in Figure 3.9. Thus, after the replacement is

complete, qputfield implements the semantics of putfield.

The most important aspect of quick opcodes relevant to the multithreading im-

plementation is how the Java opcodes are actually rewritten. The opcode itself and its

parameters must be replaced with the new quick opcode and its new parameters.

It must be noted that the quick opcode technique is not standard. Quick opcodes

must be internally defined by each JVM; they are not part of the JVM specification or

instruction set and are invisible outside of a JVM implementation. This implies that they

do not use any support from external components, such as Java compilers. Nevertheless,

they have been proven to be an effective optimization [LY99, Doy02] technique. And

the lack restrictions from the specification gives JVM designers freedom to choose any
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qputfield_impl:
/* Implement quick putfield */
GetOpcodeParameters()
RunQuickOpcode(offset)

Resolution table

... ...

qputfield qputfield_impl

putfield

...

putfield_impl

...

offset index2qputfield

... ...

Bytecode array

Figure 3.9: qputfield Opcode Resolution

particular implementation method that suit their needs.

3.5.2 Multithreaded Quick Opcode Replacement

Implementing quick opcode replacement in the presence of multiple threads in-

volves the risk of race conditions, from which Jupiter must be protected. Immediately

after the opcode is replaced with a quick opcode, the values of the parameters still re-

main as valid values for the original opcode. However, these are inconsistent with the

implementation of the quick opcode. Another thread reading through the bytecode ar-

ray may encounter this invalid data, thus causing an error. Therefore, the bytecodes

(i.e., opcode and parameters) must be replaced atomically.

A näıve approach to avoid this race condition is to protect every bytecode, or the

entire bytecode stream, with a lock. However, this requires that the lock be acquired

every time a bytecode is interpreted, which is unacceptable.

Instead, a more efficient solution is presented, which involves the use of a lock

and a temporary opcode. In this case, the quick opcode change is made in two steps.

When the original opcode is executed, it is replaced with a temporary opcode. Then, the

temporary opcode is replaced with the quick opcode, which will provide the functionality

required from the original opcode. Both steps are protected with locks. As in the single-
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threaded case, after each opcode is modified, its replacement is forced to execute in order

to continue with the replacement process and, ultimately, to service the opcode that was

originally intended to run. Subsequent calls will utilize the quick opcode without going

through all these steps.

Each Java method contains a lock that is used to protect its entire bytecode array.

This lock is not acquired when the bytecodes are read. Instead, it is only acquired when

the bytecodes are replaced with their intermediate and quick versions. This allows

threads to proceed to read the bytecodes and parameters and use the resolution table

to determine the implementation function to execute. In the first invocation of the

bytecode, the implementation function will perform the replacement.

3.5.2.1 Opcode Replacement

Threads are allowed to read the bytecode stream without locking. However, it is

still necessary to prevent another thread from reading the opcode until the parameters

have been updated. For this, a special lock and a temporary opcode are used. The

special lock is acquired in the implementation function, before the opcode replacement

takes place, and is released afterwards. This function then proceeds to replace the

original opcode and parameters with the temporary opcode and the new parameters.

The execution of this temporary opcode by other threads, while the first is still updating

the opcode parameters, will cause its implementation to also attempt to acquire the same

lock. However, these other threads will not be able to proceed until the replacement

of both the opcode and its parameters is completed. When the temporary opocde

implementation acquires the lock, it replaces itself with the quick opcode, thus ensuring

that the parameters are valid for the quick opcode.

Figure 3.10 illustrates this process, which shows a scenario that exemplifies the

way locks are used. While the putfield opcode is replaced by Thread 1, the lock is

being held by the putfield impl procedure. However, since the opcode interpreter must

remain lock-free, it may cause a race condition because the interpreter in Thread 2 can

encounter inconsistent opcode and parameter values while the replacement takes place.

In this case, the putfield tmp opcode is found by the interpreter while the changes
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putfield parameter1 (index1)

bytecode

Bytecode array

parameter2 (index2)

... bytecode bytecode bytecode ...

putfield_tmp parameter1 (index1) parameter2 (index2)

putfield_impl:
/* Implement replacement */
...
lock()
ReplaceOpcode(putfield_tmp)
ReplaceParameter(offset)
unlock()

putfield_tmp_impl:
/* Implement replacement */
lock()
...
unlock()

Thread 1

Thread 2

Figure 3.10: Use of Locks for Multithreaded Opcode
Replacement

still underway (the parameters were still not modified). For this opcode to be serviced

correctly, the putfield tmp impl procedure must also acquire the lock, thus ensuring

that if the opcode is accessible, so are its parameters. If the lock is not acquired in both

putfield impl and putfield tmp impl race conditions may occur.

It must be noted that if putfield tmp remained as the quick opcode, its imple-

mentation would acquire the lock every time it executes. This would be detrimental

to performance, which would contradict the purpose of using quick opcodes. There-

fore, the second replacement stage is introduced. Once putfield tmp impl can acquire

the lock, it is ensured to have valid parameter values. Therefore, it can safely replace

the putfield tmp opcode with the final quick opcode, qputfield, that will use these

parameters but will not require the use of locks.

The complete mechanisms for opcode replacement are depicted in the examples

shown in Figures 3.11 and 3.12. These examples also account for the case where the

opcode cannot be replaced. The original opcode (putfield) is implemented by an
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assessment function (putfield impl). This will determine if the replacement with a

quick opcode can be made or not3. If it cannot, then the original opcode (putfield) is

replaced with a conventional, slow opcode (putfield slow). If it can be replaced, the

opcode is changed for a temporary opcode (putfield tmp), which in turn changes the

opcode to the quick version (qputfield). These replacements are protected with locks,

as shown in their respective functions (i.e., putfield impl and putfield tmp impl).

When the original opcode is replaced with the temporary opcode, the parameters are

also changed accordingly.

Not that it is not possible to overcome this problem by the use of atomic memory

reads and writes on SMPs. Java opcodes and their parameters are logically placed one

after another as a bytestream. Thus, the opcode-parameter pair could be seen as a two-

byte number that could be replaced atomically, taking advantage of the memory system

of a sequentially consistent SMP, which guarantees word-size memory operations to be

atomic. However, not all the opcodes take one or two parameters. Even if this was the

case, it is possible that the opcode and its parameter do not reside in the same word.

This may happen when the opcode is placed as the last byte in the word, so its parameter

would be aligned as the first byte of the following word. No hardware architecture can

guarantee the atomicity of the memory operations under these conditions.

This solution may give the impression that it is inefficient to use a lock for quick

opcode replacement. However, it must be noted that subsequent executions of the code

will not run the assessment or replacement functions. The interpreter will encounter

either the quick opcode or the slow opcode. In the worst case, locks are used only twice

by a thread during the replacement of an individual opcode (the assessment function and

the temporary opcode implementation). Neither the quick opcode nor the slow opcode

implementations use locks.

Allowing read access to the bytecode stream without locking has the advantage

that avoids the use of a synchronization mechanism that will likely generate contention,

thus saving execution time. Associating the lock with the bytecode array of each method

allows opcode replacement to be protected at method granularity. This makes the quick

3It should be noted that if an opcode is to be replaced with a quick opcode, that such replacement will be
made by the first thread that encounters the opcode.
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Resolution table

putfield_impl:
/* Implement replacement */
...
lock()
If Opcode can be replaced then
ReplaceOpcode(putfield_tmp)
ReplaceParameter(offset)
else
ReplaceOpcode(putfield_slow)
end if
unlock()

offset

IF REPLACEMENT WITH A QUICK OPCODE
IS POSSIBLE

...

putfield_tmp

...

...

putfield_tmp_impl

...

Resolution table

putfield_tmp_impl:
/* Implement replacement */
lock()
ReplaceOpcode(qputfield)
unlock()

offset

...

qputfield

...

...

qputfield_impl

...

Resolution table

qputfield_impl:
/* Implement quick putfield */
GetOpcodeParameters()
RunQuickOpcode(offset)

...

putfield_slow

...

...

putfield_slow_impl

...

Resolution table putfield_slow_impl:
/* Implement slow putfield */
GetOpcodeParameters()
CalculateIndex()
GetField()
GetOffset()
RunOpcode(offset)

index1 index2

IF REPLACEMENT WITH
A QUICK OPCODE
IS NOT POSSIBLE

... ...

putfield

...

putfield_impl

...

index1 index2putfield

putfield_tmp

qputfield

putfield_slow

index2

index2

Bytecode array

Figure 3.11: Multithreaded Opcode Replacement
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procedure putfield impl()

Lock(QuickOpcodeMutex)
Parameter ← GetOpcodeParameters()
Index ← CalculateIndex(Parameter)
Field ← GetField(Index)
Offset ← GetOffset(Field)
if Opcode has not changed then {Protect from threads waiting on
QuickOpcodeMutex}

if Opcode can be replaced then {Based on the value of offset}
ReplaceOpcode(putfield tmp) {Temporary Opcode}
ReplaceParameter(Offset) {Parameters must be changed}
NextOpcode ← putfield tmp {Continue replacement}

else
ReplaceOpcode(putfield slow) {Slow Opcode}
NextOpcode ← putfield slow {Continue execution}

end if
else

NextOpcode ← GetOpcode() {Opcode has changed. Execute it}
end if
Unlock(QuickOpcodeMutex)
Execute(NextOpcode) {Continue execution}

procedure putfield tmp impl()

Lock(QuickOpcodeMutex)
ReplaceOpcode(qputfield) {Quick Opcode}
Unlock(QuickOpcodeMutex)
Execute(qputfield) {Continue execution}

procedure qputfield impl()

Offset ← GetOpcodeParameters()
RunQuickOpcode(Offset)

procedure putfield slow impl()

Parameter ← GetOpcodeParameters()
Index ← CalculateIndex(Parameter)
Field ← GetField(Index)
Offset ← GetOffset(Field)
RunOpcode(Offset)

Figure 3.12: Multithreaded Quick Opcodes
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opcode technique flexible enough to be applied simultaneously at different methods,

which also avoids unnecessary contention.

There is no significant degradation in performance for this procedure, which is

confirmed by the comparative experimental results on SMPs presented in Chapter 5.



CHAPTER 4

Shared Virtual Memory Extensions

This chapter describes the extensions and architectural changes required for en-

abling Jupiter to run on the Myrinet cluster. It details the design challenges that arose in

this enabling process and the techniques required to tackle them. Section 4.1 introduces

the general design issues that had to be addressed. Section 4.2 explains the problems

with memory consistency on the cluster and the solutions employed to solve them. Sec-

tion 4.3 describes how Jupiter exploits private memory allocation. The limitations in

the creation and use of some resources in CableS are exposed in Section 4.4. Finally,

this chapter concludes with some details on the efficient use of barriers in Section 4.5

and the problems that arise with the use of a garbage collector on the cluster in Section

4.6.

4.1 Design Issues

There are some design issues that impact the enabling of Jupiter to run on the

cluster. These issues can be classified in three categories:

• Memory consistency. This issue arises due to the use of the lazy release memory

consistency model to provide a shared address space on the cluster, as opposed

to the sequential consistency model used on SMPs1. This implies that, on the

cluster, the contents of shared memory are guaranteed to be consistent only when

1It must be noted that since the Myrinet cluster nodes are SMPs, intra node memory management remains
sequentially consistent. However, internode memory management follows the lazy release consistency model.

49
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synchronization mechanisms (locks) are used to protect read and write memory

operations. Consistency issues are dealt with in Section 4.2.

• Private memory allocation. Jupiter modules that can benefit from the use of private

memory must be carefully identified, allowing for private memory to be exploited.

Analogously, those structures that could potentially be used from more than one

thread must be conservatively placed in shared memory. This issue is explored in

detail in Section 4.3.

• Limitation of resources. The cluster system sets some limitations in the number

of resources available to the processes executing on the cluster, such as the total

shared memory, the number and type of locks that can be created and the locking

operations that can be performed on them. Thus, it is critical to design the cluster-

enabled Jupiter in such a way to minimize the use of such resources. These issues

are described in detail in Section 4.4.

4.2 Memory Consistency

In this section, the process of cluster-enabling those Jupiter components for which

the lazy release memory consistency model is an issue is described. This was the most

important of the actions needed for enabling Jupiter to run on the cluster, because it is

required to guarantee the correct execution of Java programs.

Unprotected access to shared memory in the SVM system is inherently unsafe, be-

cause there are no implicit memory consistency mechanisms between the cluster nodes.

This requires that some of the multithreaded Jupiter components that relied on se-

quential consistency be adapted to the lazy release memory consistency model. Thus,

it becomes necessary to use additional synchronization operations (locks) to guarantee

that the latest values stored in shared memory are correctly updated between the cluster

nodes.

The Jupiter components that are affected by memory consistency provide the

following functionality: Java class creation (ClassSource), Java object creation and

access (Object through ObjectSource), use of volatile fields (Object and Field), system
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thread creation (Thread and native implementation of the Java Thread start method)

and Java thread creation and termination (native implementation of the Java Thread

start method). A more detailed description of the affected components and how the

memory consistency issue was addressed in each case is given in the following sections.

4.2.1 Locking on Java Class Creation

From the JVM point of view, the structures in a Java program that represent

Java classes (for simplicity, these will be referred to merely as classes) need to be globally

accessible. Classes contain the opcode array of the Java methods in the program, that

must be accessible to all threads. However, it does not justify by itself the use of

shared memory (since this is read-only data, it could be replicated locally on the nodes).

Classes can contain static fields and methods that need to be visible from all its

instances (objects), if there are any, and from other parts of the Java program [GJSB00].

Furthermore, the use of reflection allows for the Java class to be modified from the Java

program at run time [SUN03]. These changes must be made visible to other threads.

Therefore, classes are conservatively placed in shared memory, which implies they have

to be protected with locks when they are created and accessed.

It must be noted that it was not possible to allocate classes in private memory

and promote them to shared memory when requested by another thread. The need to

share the lock used for class access requires that the thread that initially stores the class

in private memory receive a notification from the thread that wants to access the class.

The home thread must then acquire the lock that protects the class, copy the class to

shared memory, and release the lock. Then, it must notify the user thread that it can

safely access the class from shared memory, using the same lock. Unfortunately, the

current implementation of CableS does not include Inter Process Communication (IPC)

between threads in different nodes.

There are several Jupiter modules that are involved in the creation of Java classes.

From a design perspective, Jupiter uses the notion of Source classes. These are resource

managers with simple and uniform interfaces [Doy02]. In this design, ClassSource is the

class responsible for orchestrating all the individual calls that constitute the components
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of a Java class. It returns a valid internal representation of a Java class. As this is a

central point where the Java class is constructed, this was the key location where the

accesses to shared memory could be protected during class creation.

Some locking operations were previously added to this module when extending

Jupiter to support multithreading, as seen in Chapter 3. However, such synchronization

points had to be placed in different locations, since for the cluster they have to protect

more memory operations. Indeed, most of the code in this module deals with the ini-

tialization of structures. In the case of multithreaded Jupiter, described in Chapter 3,

the class creation routines were protected from race conditions with a Monitor. It was

safe and correct to keep this design in the case of the cluster, since the use of Monitor

guarantees that the memory consistency routines will be invoked2.

4.2.2 Locking on Java Object Access

The Java Memory Model states that locks act as the points in the Java program

where the values in an object that were modified by a thread are read from or flushed to

memory. The standard allows for locks not to be used when accessing fields. In this case,

any change that threads make is not necessarily made visible (and thus, the modified

memory contents are not kept consistent) to other threads. If a Java object requires that

a value be properly shared among threads, it has to use these locks. This is achieved only

through the use of the synchronized statement or wait-sets and notification routines,

described in Sections 3.1.2 and 3.1.3 respectively. The order of read and store operations

outside the locking statements are not guaranteed either. This behavior is compatible

with the semantics of locks in CableS [Jam02a].

The Java Memory Model requires that only the contents of volatile fields be

immediately updated in memory, as explained in Section 4.2.4.

Correct initial access by other threads is guaranteed by the mechanisms for mem-

ory consistency at Java thread creation, described in Section 4.2.6.

2Monitor maintains memory consistency in the same way locks do because the implementation of Monitor
uses a lock for mutual exclusion. The cost of using a Monitor on the cluster is comparable to that of using a
lock.



Chapter 4. Shared Virtual Memory Extensions 53

4.2.3 Locking on Java Object Creation

All Java objects created in Jupiter are, conservatively, allocated in shared mem-

ory. This is because any Java object is potentially shared among threads. This implies

that, during creation, these objects must be protected with locks in order to make them

shared. Although data updates or regular access to the fields or methods in these ob-

jects do not require explicit action to maintain memory consistency, locks are required

for object creation in order to avoid memory corruption, as explained earlier. As in the

case of Java class creation, described in Section 4.2.1, it was not possible to allocate

objects in private memory and promote them to shared memory if required.

At the moment of this writing, Jupiter does not provide the analysis tools required

to discern between objects that are private or shared among threads, such as escape

analysis [CGS+99]. These tools can be used to reduce the calls to synchronization

operations and the number of objects that must be allocated in shared memory.

4.2.4 Volatile Fields

The Java Language Specification [GJSB00] states that volatile fields must recon-

cile their contents in memory every time they are accessed. Furthermore, the operations

on volatile fields must be performed in exactly the same order the threads request them.

In Jupiter, both Field and Object internal classes have an interface for accessing

field values. Such accesses were modified to use locks. When a volatile field is accessed,

a lock associated with it is acquired. After all the necessary operations are performed,

the same lock is released. Figure 4.1 illustrates this process. In CableS this process is

also the correct procedure to guarantee that every thread will always have access to the

most recent value in memory. The use of locks results in a slowdown in the accesses

to volatile fields, both for reading and writing values, but this is required for memory

consistency and cannot be avoided.

It must be noted that in the SMP implementation it was not required to take

any direct action on the use of single-word volatile fields, because these accesses are

guaranteed to be atomic and need not be protected with locks. In this case, sequential

consistency guarantees that the latest value stored in memory will eventually become
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procedure FieldSetValue(Value)

if field is volatile then
Lock(FieldMutex)
SetValue(Value)
Unlock(FieldMutex)

else
SetValue(Value)

end if

procedure FieldGetValue()

if field is volatile then
Lock(FieldMutex)
Value ← GetValue()
Unlock(FieldMutex)

else
Value ← GetValue()

end if

Figure 4.1: Implementation of Volatiles

available for all threads to use.

4.2.5 Argument Passing at System Thread Creation

There are some Jupiter components that, instead of only using their own local

lock3 to maintain memory consistency, require the aid of a global lock to protect some of

the data they handle. One of these components is the system thread creation routine.

When a system thread is created, it is common for the parent thread to pass

some argument values to the child thread. This is used as a simple and efficient way of

sharing important information, such as data structures and synchronization mechanisms.

The POSIX pthread interface, as many others, allows for a single value, a pointer, to

be passed to the child thread. This is enough information because a structure, large

enough to hold all the necessary values, can be created in memory and passed through

this reference.

As it was described earlier, there is no way for two threads to safely share a

region of memory if there is not a lock that guards it when the values to that memory

3In this work locks are categorized as local or global, using the same taxonomy for variables in a program.
Local locks are accessible from the scope of a function or class. The scope of global locks is the whole program.
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procedure StartThread()

SharedMutex ← CreateSharedMutex()
Lock(SharedMutex)
Arguments.Values ← CreateArguments()
Arguments.SharedMutex ← SharedMutex
Unlock(SharedMutex)
CreateThread(ThreadFunction,Arguments)

procedure ThreadFunction(Arguments)

SharedMutex ← ReadArguments(Arguments.SharedMutex)
Lock(SharedMutex)
Arguments ← ReadArguments(Arguments.Values)
Unlock(SharedMutex)
RunThread(Arguments) {Execute the thread using Arguments}

Figure 4.2: Problems with Sharing a Lock via Parameters

are being read and written. Therefore, the child thread needs access to the same lock as

the parent, which will allow it to safely access all the parameters its parent is sending.

A problem then arises in how to make the child and the parent to agree on a lock.

It is tempting to solve this problem by having the parent send a lock to its child as

one of its arguments. This way, the parent can directly share it with the child, and both

can use it to protect memory access. However, the point where the child thread needs

to acquire this lock precedes the moment in which the arguments can be read safely.

Figure 4.2 illustrates this problem. StartThread, which is invoked by the parent thread

to start a child thread, uses the lock called SharedMutex to protect all the values that are

set to the Arguments variable, which includes the lock itself. Then, ThreadFunction,

which is the function executed by the child thread, reads the arguments to obtain the

lock. However, the arguments cannot be safely read until the lock is acquired. In other

words, the shared lock cannot be accessed before the arguments can be read, and the

arguments cannot be safely read before the shared lock is accessed.

Thus, an alternative locking mechanism is required for a parent thread to send

parameter values to its child thread. The mechanism employed makes both parent and

child threads agree beforehand on the lock they are going to use to protect the memory

holding the arguments. This makes the lock a system global lock, which both parties
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procedure StartThread()

Lock(GlobalMutex)
Arguments.Values ← CreateArguments()
Unlock(GlobalMutex)
CreateThread(ThreadFunction,Arguments)

procedure ThreadFunction(Arguments)

Lock(GlobalMutex)
Arguments ← ReadArguments(Arguments.Values)
Unlock(GlobalMutex)
RunThread(Arguments) {Execute the thread using Arguments}

Figure 4.3: Need for Global Locks

can share and safely use at all times. The parent thread can protect the memory when

writing the arguments, and the child thread can do so when it reads them. Figure 4.3

illustrates this mechanism. GlobalMutex is the global lock that both parent and child

share. It is locked by the parent to write the arguments and released before the child is

created. Then, it is locked by the child to safely read these arguments as the first step

during its execution.

The implication of using a system global lock is that only one thread at a time

in the system will be able to prepare and read the arguments sent to a thread. For

example, if several threads are preparing to create one child thread each, only one of

them will be setting the arguments to pass, and the others will be waiting for it to finish,

even if there is no need to synchronize this activity between them.

Thread creation is a time consuming process in the current configuration of Ca-

bleS, because in most cases it involves remote communication between nodes and node

initialization. Node attachment, one of the steps required in node initialization, requires

3690 miliseconds on average to execute, and it is invoked every time a new node is being

used to spawn a thread. This time increases as more nodes are dynamically added since

more links between the nodes need to be established [Jam02b]. Thus, the time spent to

serialize argument passing to the child threads becomes negligible.

Notice that, if the thread creation routines allowed for a second parameter, rep-

resenting a lock, to be passed, it would be possible to avoid the global lock entirely. In
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this case, the child thread would receive two parameters: the structure containing all

the arguments, and a reference to the shared lock in the form of a word. As no lock-

ing mechanism is required to share a single word value between threads (CableS passes

these values automatically), the child thread could simply acquire the lock, and read the

arguments safely.

4.2.6 Memory Consistency at Java Thread Creation

A Java thread can, potentially, access any class or object that its parent can.

When a Java Thread object is created, the parent can initialize the fields in the child

Java Thread using references to any of the fields, objects or classes the parent can

reach. As a consequence, the child thread could contain references to elements that were

modified or created by its parent. Thus, it must be ensured that all the values stored in

its fields are in shared memory areas that can be safely accessed between nodes. If there

is no mechanism to protect this memory, the child thread could access a memory segment

containing invalid, uninitialized or inconsistent data, and the program execution may be

corrupted or it may fail.

Figure 4.4 illustrates how these problems can be avoided. In StartThread, a lock

that is shared between the parent and the child system threads, called SharedMutex,

is created and acquired. Then, the memory that will be accessible from the child Java

thread (which was not started yet) is marked as modified when TouchMemory is invoked.

Such memory is up to date in the node where the parent Java thread executes. In

TouchMemory, all the fields in the child Java Thread object (or the corresponding in-

stance of a Java class that extends the Java Thread class) are traversed, and the objects,

arrays, interfaces and the superclass that are accessible from the Thread object are iden-

tified. Any of these can give the child thread access to many other components, through

their respective fields. Therefore, it is necessary to recursively inspect the object fields

and mark the memory they reference; each object, array, interface and the superclass

encountered are also recursively inspected and marked. When the call to TouchMemory

returns, SharedMutex is released, the child system thread that will execute the Java child

thread is created, and SharedMutex is passed as a parameter to it. In ThreadFunction,
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which is the function executed by the child system thread, SharedMutex is acquired.

Then, the child thread starts its normal execution. Every time a memory area passed

from the parent thread is accessed, the SVM system ensures that it is updated appro-

priately (because SharedMutex, the same lock used for marking memory, is being held).

SharedMutex is only shared between the parent and child threads, exclusively for the

purpose of ensuring memory consistency. Before terminating, the child thread releases

SharedMutex. It must be noted that the memory mark mechanism is done in conjunc-

tion with the global lock technique used for passing parameters from a parent system

thread to a child thread, which justifies the use of GlobalMutex, as shown in Section

4.2.5.

Notice that memory accesses within a single node are automatically kept updated

by the memory system due to the sequential consistency model. The procedure explained

above is only necessary when node boundaries are crossed and the thread is created in

another node. But, from the application point of view, it is not possible to learn when

this happens, because it does not have any information (nor should it) that may give

any indication that the child thread is being created in a different node from the parent.

Neither is it possible to anticipate this behavior because there are factors like the system

load and the system parameters that can determine what cluster nodes are being used

and in what order. Therefore, this procedure must be invoked every time a new thread

is created, even when it is started in the same node.

The above mechanism for ensuring memory consistency at thread creation has

the advantage of making only the memory segments actually accessed from the child

thread to be replicated between the nodes. However, its disadvantage is the recursive

traversal and marking of all accessible fields. The amount of memory that has to be

marked depends on the number of fields the Java Thread object contains, and the

objects with which they are initialized. However, the time spent marking memory at

thread creation does not significantly impact performance because of the high overhead

of thread creation in the current configuration of CableS [Jam02b].
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procedure StartThread()

SharedMutex ← CreateSharedMutex()
Lock(GlobalMutex)
Lock(SharedMutex)
TouchMemory()
Unlock(SharedMutex)
Arguments.Values ← CreateArguments()
Arguments.SharedMutex ← SharedMutex
Unlock(GlobalMutex)
CreateThread(ThreadFunction,Arguments)

procedure TouchMemory()

MarkMemory() {Mark the piece of memory as modified}
for each field reference in the constant pool do

if object instance or array then
TouchMemory(field)

end if
end for
for each field in the object do

if object instance or array then
TouchMemory(field)

end if
end for
for each interface do

TouchMemory(interface)
end for
if it has a superclass then

TouchMemory(superclass)
end if

procedure ThreadFunction(Arguments)

Lock(GlobalMutex)
SharedMutex ← ReadArguments(Arguments.SharedMutex)
Arguments ← ReadArguments(Arguments.Values)
Unlock(GlobalMutex)
Lock(SharedMutex)
RunThread(Arguments) {Execute the thread using Arguments}
Unlock(SharedMutex)

Figure 4.4: Memory Consistency at Java Thread Creation
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4.2.7 Memory Consistency at Java Thread Termination

The Java Memory Model [LY99, Lea99] states that, when a Java thread termi-

nates, it has to flush all its written variables to main memory. When the JVM runs on

an SMP, there is no need to take direct action on this, since all data is updated properly

by the hardware. However, on the cluster, where memory is not sequentially consistent,

it is necessary to have a mechanism for forcing the memory system to flush the memory

contents to the other system nodes.

This mechanism was implemented using a system call, svm flush memory4, that

allows updating memory on demand. This call is invoked before the system thread

terminates and after all Java code has completed its execution in the terminating thread.

There was another alternative for tackling this problem. CableS could automatically

force a memory update to other nodes whenever a system thread terminates. However,

this is not a general solution, from which all applications using CableS could actually

benefit, because there may be applications which may not wish this to happen.

4.3 Private Memory Allocation

The current implementation of the SVM libraries makes access to non-shared

memory faster than access to shared memory. This is because non-shared data can

be allocated in the private memory of the processor that accesses it, and there is no

need to invoke the SVM calls that ensure that this data is consistent across the system.

Furthermore, it is natural to allocate non-shared data in private memory to reduce

demands on shared memory. Thus, it is desirable to have non-shared memory allocated

outside the SVM system, i.e., in private memory.

Jupiter’s memory allocation infrastructure was extended with new modules that

contemplate the possibility of allocating private as well as shared memory. Several

Jupiter modules obtain a benefit from the use of private memory. They are: thread

stack, JNI (Java Native Interface), thread handling routines, opcode interpretation and

class parsing.

4This call was developed by the SVM group specifically for the purpose of this project.
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The following sections explain how the Jupiter memory allocation modules were

extended to support the allocation of private and shared memory, and describe how the

different modules benefit from the use of private memory.

4.3.1 Private and Shared Memory Sources

Jupiter’s philosophy encourages the use of Source classes to maintain its flexibility

through the abstraction layers. Source classes are resource managers with simple and

uniform interfaces [Doy02]. In this context, MemorySource is the module responsible

for allocating memory. The original memory management module was replaced with

an extended version that creates memory allocation objects that use POSIX malloc

and CableS svm global alloc system calls for allocating private and shared memory

respectively. There were two possible design options for this extension that minimize or

avoid changes to Jupiter’s interfaces:

• Create two distinct memory allocation objects, one for each memory location (pri-

vate or shared).

• Provide more than one method for allocating memory in the existing memory

allocation module.

Both options are equivalent with respect to functionality. It was decided to

implement the first one, because it provides a clearer interface for the rest of the system

and has some distinct advantages:

• Allocating shared memory does not involve calling a new method, but simply

changing the memory allocation object that is passed to the Jupiter modules. This

makes memory allocation calls more abstract than calling different methods, and

allows for changes in memory allocation policies to take place at higher levels.

• Keeping the original interfaces of the memory allocation objects allowed to reuse

most the existing code without modifying it.
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• Having more than one memory allocation object required the extension of the

interfaces of those modules that need access to private and shared memory simul-

taneously. This way, the need to obtain individual instances of these objects is

explicitly shown in the new interface. Ultimately, this is beneficial to the users

of the modules because the interface gives accurate information about the mem-

ory allocation requirements. Not having a clear interface would force the users to

understand the implementation to find out for themselves these requirements.

However, creating two distinct memory allocation objects has one disadvantage.

In part, this violates one of the initial design constraints, trying to avoid modifications

to the original interfaces. Nevertheless, the new interface still keeps Jupiter flexible and

extensible, but with a minor change.

Conversely, in the alternative solution some of the advantages become disadvan-

tages, and vice versa. The advantage is that it does not require to change the existing

interfaces in the system (with the exception of the memory allocation object). However,

it has some disadvantages:

• It would have forced the interface to the memory allocation object to be extended,

something that should remain as simple and small as possible.

• In order to maintain the modules compatible, it would have been necessary to

extend the original memory allocation class to incorporate an interface for shared

memory allocation. However, this would not provide real functionality when used

on an SMP. But, since the call to this routine would still exist in some Jupiter

modules, it would be misleading for trying to understand the source code. Fur-

thermore, this design would imply that every memory allocation object created in

the future would need to provide this interface, even when it would be impossible

for it to provide real functionality for it.

• It would have been required to modify existing modules throughout Jupiter to add

new calls to the memory allocation method. This would impact every place that

shared memory was needed.
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From a design point of view, the disadvantages of the second option outweigh its

advantage. Moreover, such option does not conform with Jupiter’s philosophy of well

designed interfaces [Doy02]. Conversely, the advantages of the first solution are more

important than its disadvantage. Thus, extending some classes’s interfaces was the best

approach to accommodate the requirements for the memory allocation modules.

It must be noted that it is not possible to use only private memory allocation

unless there is no shared data between the application threads. In this respect, a JVM

has to anticipate the needs of the programs it is going to execute and it has to conser-

vatively decide where the memory for some components will be allocated. If there is

a possibility that some memory area be used by more than one thread, then it has to

reside in shared memory.

4.3.2 Thread Stack

Java programs are compiled to a set of opcodes. These are executed in the JVM,

which is a stack-based interpreter. In this matter, Jupiter’s responsibility is to create

and maintain the stack for the Java program to execute. Stacks are, arguably, the most

used elements in a JVM. Therefore, they have to be kept as efficient as it is possible

[Doy02].

Section 3.5 of the JVM Specification [LY99] defines the use of stacks for Java

threads:

“Each Java virtual machine thread has a private Java virtual machine

stack, created at the same time as the thread. A Java virtual machine stack

stores frames. A Java virtual machine stack is analogous to the stack of a

conventional language such as C: it holds local variables and partial results,

and plays a part in method invocation and return. Because the Java virtual

machine stack is never manipulated directly except to push and pop frames,

frames may be heap allocated.”

In Jupiter, threads are independent opcode interpreters, as it was described in

Chapter 3. Each having its own stack. A thread’s Java stack only stores the state of
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Java non-native method invocations (Native method invocations are handled differently,

as discussed in Section 4.3.3). Since the stack always remains private to a thread, and

is never shared, it was possible to allocate it in private memory.

It must be noted that, at a certain moment in the execution of the Java program,

some of the values stored in the stack will be references to objects. These objects will

be allocated in shared memory, and it is probable that the most updated copy of those

objects will reside in a remote node. However, this does not have any effect in keeping

the stack in private memory.

4.3.3 JNI (Java Native Interface)

JNI is formally defined as a standard programming interface for writing Java na-

tive methods and embedding the JVM into native applications [SUN03]. It is commonly

used to take advantage of native-code platform-specific functionality outside the JVM.

When the operating system creates a new thread, it provides it with a stack that

the thread will use to store values, parameters, and return addresses during its execution.

This stack is created by the operating system for the thread to use it exclusively, and

is not shared. Thus, it is inherently private to the thread. Jupiter allows the call to

native methods to use this same stack to receive its parameters. Consequently, calls to

native methods in Jupiter can be handled private to the thread, with no synchronization

operations.

There are other Jupiter modules that provide additional support for the imple-

mentation of native methods. All natives that are accessed from a Java thread are

resolved and kept in a cache of method bodies, indexed by method name. The cache

contains the resolved addresses of the native functions that were accessed by the Java

program. When the native call is requested more than once, a cache hit prevents the

need to resolve the addresses again. As the calls to native methods are private, the cache

also remains private to the thread.
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4.3.4 Thread Handling

In Jupiter, threads are managed in the same way as resources, they have a cor-

responding Source class, ThreadSource. In the current design, a single instance of

ThreadSource is created for each thread in the system, which remains private to each

of them. This is possible because the use of the various ThreadSource objects is decen-

tralized, as was described in Section 3.2.

There are thread functions that can also exploit private memory allocation. For

example, the JVM has to wait for all non-daemon threads to terminate before it can

complete its execution [LY99]. In Jupiter, each thread only needs to be able to identify

its children and wait for their completion. The supporting data structure (hash table)

used for this purpose, is private to each thread. Therefore, it can be stored in private

memory.

However, it was not possible to use private memory everywhere within the thread

handling routines. In Jupiter, threads are internally represented by a structure that

holds the necessary information to identify and manage a thread in the system, such as

its identifier, priority and termination flags. This structure is also used as part of the

internal implementation of the Java Thread object, where it is stored as a reference in

a private field. From the Java program any Java thread in the system can potentially

obtain references to other Java Thread objects. These references can be used to obtain

relevant information from them or perform some operations, such as changing their

priority or joining. Since Thread objects can be shared among threads, their fields must

be stored in shared memory. Thus, the structure that represent threads must also be

stored in shared memory. This structure exists regardless of the executing status of

the thread (it can be created before a child thread has started executing and can even

survive its termination).

It must be noted that if it was known for certain that in a particular Java program

the Thread objects are not shared, these structures could be kept in private memory.

However, this cannot be discerned without the use of compilation techniques such as

escape analysis [CGS+99].
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4.3.5 Opcode Interpretation

In the current configuration, each thread contains a separate opcode interpreter,

or ExecutionEngine. It invokes the other components that make the opcode execution

possible [Doy02]. This object has a single instance for each of the threads in the system,

and that instance is completely independent of the others. That made it possible to

allocate it in private memory.

4.3.6 Class Parsing

The procedures that are in charge of parsing the class can do their task privately,

since they do not need to keep any permanent information to be shared among threads.

Thus, they can be allocated in private memory. A Java class can be passed to the JVM

for execution in several ways:

• As the main class, which initializes the execution of the Java program.

• As part of the class library (in this case ClassPath) initialization process.

• Referenced by the program or the class library during the execution of class or

object methods.

In all these cases, the first step is to verify if the class was already resolved and

if it was cached in memory. If it was not, then it must be parsed in order to interpret

and discriminate its internal structure. Although the internal parsing structures can

be made private, Jupiter’s internal representation of the class must be stored in shared

memory, as it was described in Section 4.2.1.

4.4 Limitation of Resources

CableS imposes some limitations on the use of some of the resources it provides.

Basically, there is a strict limit on the number of locks and condition variables that can

be created, and the number of times a lock can be acquired and released. Also, the total

amount of shared memory is restricted.
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Regrettably, these restrictions are more strict than those set by operating systems

such as Linux, which do not place any explicit limitation on the creation of locks or

condition variables (although there is always an implicit limit given by the amount of

available memory and the address space of the structures used for identifying them).

Furthermore, no operating system sets a limit on the number of times a lock can be

acquired or released, nor should it.

CableS limits the total amount of available shared memory in the system to 256

Mbytes. This is regardless of the number of nodes the cluster is configured to use. This

implies that, when the number of cluster nodes increases, the proportional amount of

shared memory that each node can use decreases.

In the current configuration of CableS, up to 65536 locks and 50000 condition

variables can be created. There are some limitations in the underlying layers of the

system that force CableS to set these restrictions [Azi02]. Locks can be acquired and

released approximately 100000 times (between successive barrier invocations). This

restriction comes from the way CableS records the memory that the application modifies.

Every time a page is changed, CableS keeps a record of the modified addresses. These

changes are stored in an internal structure that is used to keep memory consistent among

the cluster nodes. At approximately 100000 lock operations, it is no longer possible to

store more modifications in that structure. Memory must be made consistent, and the

structure is reset. This happens only at barrier invocations.

When a barrier is invoked, all the threads in the system have reached a com-

mon point in the execution of the program and CableS can safely refresh the memory

modifications among all the system nodes. After that, it resets the internal structures,

allowing for another 100000 acquire and release operations on locks. Then, the threads

can resume their execution. CableS was designed to work with scientific applications,

which make frequent use of barriers. Although an alternative solution to this problem

exists [Jam02a], it is currently not implemented in CableS.

Regrettably, not all Java programs use barriers, and thus, it was not possible

to rely on the SVM’s mechanism for resource release. Furthermore, Jupiter has little

use for barriers in a general sense. It is impractical to randomly add calls to barriers
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to overcome problems of this kind, or even use barriers as synchronization mechanisms

instead of locks.

The approach that was taken to overcome these restriction was to carefully se-

lect the location where these resources were used. The number of locks and condition

variables created had to be minimized, as well as the number of operations performed

on them. The limit on acquiring and releasing locks proved a challenging problem to

overcome.

However, there are some uses of monitors and condition variables that cannot

be fully controlled. During startup, ClassPath [GNU03] creates several classes and

objects. These serve as the basis for the initialization of the JVM and, ultimately, for

the execution of the Java program. Both classes and objects must contain a mandatory

monitor, as specified in the JVM Specification [LY99]. Jupiter’s implementation of

Monitor requires the use of a lock and a condition variable. Consequently, many of the

locks and conditions variables used are determined by ClassPath initialization routines

and the number of classes and objects created in the Java program.

Condition variables are also used to signal the finalization of threads, as described

in Section 3.2.6. In this case there is only one for each thread. Locks are used for the

synchronization of access to data structures and to keep memory consistent, as detailed

in the previous sections of this chapter.

4.5 Barrier Implementation

The Java Grande benchmarks [EPC03, Jav03], used for performance and scala-

bility evaluation in Chapter 5, use barriers as their primary synchronization mechanism.

Initial experiments revealed that the implementation in the benchmark caused some

problems. The SOR benchmark was tested with three different implementations of bar-

riers:

• Benchmark barriers. These are implemented exclusively in Java and are part of

the benchmark. The problem with this implementation is that it generates a very

large amount of data replication among the nodes, even for a small number of

threads running in few nodes. This implementation does not work well with the
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benchmarks on the cluster and makes the system slow. Furthermore, these barriers

are not guaranteed to be correct under the Java Memory Model. See Section 5.1

for further details.

• Original native barriers. These are the original barriers provided by CableS. They

were designed with the added purpose of resetting the internal SVM structures,

which is a time consuming process, allowing for the use of more resources, such as

locks [Jam02b, Jam02a]. However, the cluster extensions of Jupiter were designed

to alleviate the limitation on the use of such resources. Thus, Jupiter does not need

to rely on the extra functionality of barriers and can avoid the extra overhead they

introduce. Furthermore, since these barriers are not used directly by Jupiter, but

indirectly by the Java program, it is not possible to depend on them to alleviate

the limitations in the use of locks, because it cannot be guaranteed that all Java

programs indeed use barriers (e.g., not all the benchmark applications use barriers).

• Lightweight native barriers. These are a simplified version of the original CableS

barriers. They do not perform any internal structure resetting when they are called.

They only execute code that is responsible for the barrier functionality5.

Simplifying the barrier is only part of the solution. Additionally, it is necessary

to provide a way for Java programs to invoke it. In this case, it was desirable to also

have an implementation that would be compatible and easy to test with other JVMs.

This way, it would be possible to compare results without the need of further changes

to Java programs. For this reason, a Barrier Java class was created as an interface to

the native barrier implementation.

4.6 Garbage Collection

Both the single-threaded [Doy02] and SMP versions of Jupiter currently support

version 6.1 of Boehm’s conservative garbage collector6 [Boe02b]. Unfortunately, it is

not possible to use this garbage collector on the cluster [Boe02a]. Indeed, the use of a

5This simplification was developed by the SVM group specifically for the purpose of this project.
6The original Jupiter JVM needed a specially modified 6.0 version of Boehm’s garbage collector. The features

included in that version were incorporated into the 6.1 release.
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distributed garbage collector [PS95] that is also compatible with the memory manage-

ment routines of CableS is required. The design and implementation of such a collector

is out of the scope of this project.

4.7 The Java Memory Model

For cluster-enabling Jupiter, supporting the Java Memory Model, it was neces-

sary to rely on the lazy release memory model provided by the SVM system. Unfortu-

nately, the Java Memory Model is not well understood and is even believed to be flawed

[Pug99, Pug00]. However, the restrictions and relaxations stated in the JVM Speci-

fication [LY99], which are listed below, were addressed in the context of lazy release

consistency, making us believe that we implement a more constrained model than what

is required by the Java Memory Model.

• Volatile fields. These fields guarantee that the latest value stored in them is always

visible to all threads. This is described in Section 4.2.4.

• Thread creation and termination. This involves several topics, such as thread han-

dling and the memory consistency operations that take place at thread creation

and termination. These are described in Sections 3.1.1, 3.2.6, 3.2.7, 4.2.6 and 4.2.7.

• Object and class sharing. Classes, and some objects, have to be visible from all

threads. The interaction of these requirements with CableS are detailed in Sections

4.2.1, 4.2.2 and 4.2.3.

• Synchronization. The support for synchronization operations was already discussed

in the context of the extensions for multithreading support, in Sections 3.1.2 and

3.1.3. Its implications with respect to the lazy release memory consistency model

are part of the semantics of locks in CableS, as seen in Sections 2.5.2 and 4.2.
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Experimental Evaluation

The performance of the multithreaded Jupiter and the cluster-based Jupiter are

evaluated using standard benchmarks. The results of this evaluation are presented in

this chapter. Section 5.1 introduces the single-threaded and multithreaded benchmarks

elected for the evaluation, and details some minor changes required in some benchmarks

for their execution on the Myrinet cluster. Section 5.2 describes the experimental setup

and methodology, and the platforms that were employed in our evaluation. Section 5.3

presents the results of the evaluation of the multithreaded Jupiter on a 4-processor SMP

system. Finally, Section 5.4 presents the results of the evaluation on the Myrinet cluster.

5.1 The Benchmarks

For the purpose of the experimental evaluation of both the multithreaded and the

cluster-enabled Jupiter, two different sets of standard benchmarks were used, SPECjvm98

[SPE03] and Java Grande [EPC03, Jav03]. Collectively, they provide a mix of single-

threaded and multithreaded applications. Tables 5.1 and 5.2 list these two sets of bench-

mark applications. Most of the Java Grande benchmarks provide two data sets, small-

size (A) and mid-size (B), and some include a large set (C ). Appendix A provides a

detailed description on the SPECjvm98 and Java Grande applications.

The Java Grande benchmarks could not be run unmodified on the cluster. It was

necessary to perform some minor changes to some aspects of the benchmarks:

71
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Application Description
201 compress Lempel-Ziv compression.
202 jess Expert shell system.
209 db Memory-resident database.
213 javac JDK 1.0.2 Java compiler.
222 mpegaudio ISO MPEG Layer-3 audio file decompression.
205 raytrace Scene rendering by ray tracing.
228 jack Commercial Java parser generator.

Table 5.1: SPECjvm98 Benchmark Applications

Application Description
Barrier Performance of barrier synchronization.
ForkJoin Timing of thread creation and joining.
Sync Performance of synchronized methods and synchronized blocks.
Series Computation of Fourier coefficients of a function.
LUFact Solving of a linear system using LU factorization.
Crypt IDEA encryption and decryption on an array.
SOR Successive over-relaxation on a grid.
SparseMatmult Sparse matrix vector multiplications.
MolDyn Particle interactions modeling in a cubic spatial volume.
MonteCarlo Financial simulation using Monte Carlo techniques.
RayTracer 3D scene rendering by ray tracing.

Table 5.2: Java Grande Benchmark Applications
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• Barriers. The barriers provided by the Java Grande benchmarks used an array

for storing the barrier state of every thread, which wait on the barrier using busy

wait with a back-off protocol. The array was declared as volatile, thus forcing

the update of every modified element to memory using a lock, as described in

Section 4.2.4. On the cluster, this implies constant memory replication among

the nodes and constant use of locks, which is a limited resource, as described

in Section 4.4. Furthermore, the Java Grande benchmarks do not guarantee the

implementation of this barrier to be correct under the Java Memory Model [EPC03,

Jav03]. For these reasons, the Java interface to the lightweight native barriers was

used, which provided an efficient native implementation, as described in Section 4.5.

The benchmarks affected by this change are: LUFact, SOR, MolDyn and RayTracer.

• Random number generator. The standard ClassPath version of the random number

generator, which is used by the Java Grande benchmarks by default, has some

synchronized methods for protecting the changes in the seed and caching results,

setSeed, next and nextGaussian. This implies that the monitor, and therefore

the lock, associated with the object is constantly being acquired and released. The

use of locks is a limited resource on the cluster. Fortunately, the Java Grande

benchmarks only generate random values before the parallel computation begins.

As the use of locks is very expensive and this was a limitation that could not be

avoided, the random generation routines were replaced with a compatible version

with no synchronized methods. This modification did not affect the correctness

of the generated results. The benchmarks affected by this change are: Crypt, SOR,

SparseMatMult and MonteCarlo.

• I/O operations. CableS does not support sharing of internal operating system

handles [Jam02a]. This includes those used for opening files for I/O operations.

Therefore, all the I/O operations in MonteCarlo were replaced with a class that

already contains the necessary values stored in it.
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Processor Intel©R XeonTM

Clock Rate 1.40 GHz
Number of Processors 4
Cache Size (L2) 512 Kbytes
Physical Memory 2 Gbytes
Swap Memory 2 Gbytes
Compiler GNU gcc 2.95.3 20010315 (release)
Operating System Linux 7.3 i686 - kernel 2.4.18-4smp
ClassPath Version 0.031

Notes

Hyperthreading was disabled from the BIOS. The com-
pilation optimization level was -O3, with no debug in-
formation, and combining all the Jupiter source code
into a single compilation unit [Doy02], thus facilitating
function inlining optimization.

Table 5.3: SMP Experiment Platform

The Java Grande benchmarks can run unmodified under the multithreaded Jupiter

on the SMP. However, in order to obtain comparable results for future use, these changes

were also performed for the experiments on the SMP.

5.2 The Experiment Platforms

In the SMP and cluster experiments different hardware platforms were used.

Table 5.3 shows the hardware and software platforms used for the experiments on SMPs.

This was the largest Intel-based SMP available for these experiments. At the time of

this work, Jupiter contains some assembly instructions (which are platform dependent),

which did not allow to test other hardware platforms. Table 5.4 shows the hardware and

software platforms used for the experiments on the Myrinet cluster. This is the largest

cluster configuration that is tested and functional under the Linux version of CableS.

1The multithreaded version of Jupiter uses ClassPath 0.03. In order to obtain comparable results, the single-
threaded version of Jupiter was updated to support the same ClassPath version as the multithreaded version.
The original Jupiter results [Doy02] use ClassPath 0.02. ClassPath 0.03 uses fewer synchronized Java blocks
and methods, and consequently fewer acquire and release operations on locks.
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Processor Intel©R Pentium IITM

Clock Rate 400 MHz
Number of Processors per Node 2
Cache Size (L2) 512 Kbytes
Physical Memory 512 Mbytes
Swap Memory 128 Mbytes
Nodes 8
Memory Model Shared Virtual Memory (SVM) provided by CableS
Compiler GNU gcc 2.95.3 20010315 (release)
Operating System Linux 6.0/6.2 i686 - kernel 2.2.16-3smp
ClassPath Version 0.03

Notes

The kernel was modified to accommodate the VMMC
modules. The compilation optimization level was -O3,
with no debug information, and combining all the
Jupiter source code into a single compilation unit
[Doy02], thus facilitating function inlining optimiza-
tion.

Table 5.4: Cluster Experiment Platform

5.2.1 Measurement Methodology

The execution times were obtained using the Unix time utility. Consequently,

the values shown include JVM initialization. The value reported is the total (real)

execution time. In the cluster experiments, the performance values reported by each

specific benchmark are also given, which show the time spent in the parallel computation

section, including thread creation time. This is important because thread creation is a

slow process on the cluster [Jam02b]. These values are the standard measurements

reported by the Java Grande benchmarks, and were not modified. It must be noted that

some Java Grande benchmarks do not start their computation until all the threads are

created, and thus report time that does not include initialization.

Unless otherwise stated, all times shown are measured in seconds. The average

performance of each benchmark is calculated as the arithmetic mean of several indepen-

dent runs. For the SMP experiments, 10 executions were used, and 5 for the cluster.

The average performance across the applications is presented using the geomet-

ric mean, for consistency with previously reported Jupiter performance [Doy02]. The
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geometric mean also has the advantage that ratios of the averages are more meaning-

ful. For example, Kaffe/JDK ratio can be obtained as the product of Kaffe/Jupiter and

Jupiter/JDK.

The overall speedup of all applications is computed as the ratio between the sum

of the execution times of all the benchmarks at one thread and the sum of the execution

times of all the benchmarks at a given number of threads. This gives more relative

importance to those benchmarks that run for longer periods of time. On the cluster,

the speedup of each benchmark is computed as the ratio between the execution time of

such benchmark at one thread and the execution time at a given number of threads.

5.3 SMP Evaluation

Three sets of results are presented in this section, based on the SPECjvm98

and Java Grande benchmark suites. The first set compares the execution time of the

single-threaded Jupiter [Doy02] and the multithreaded Jupiter using the single-threaded

benchmarks from the SPECjvm98 set. The purpose of this set is to demonstrate that

the inclusion of multithreading capabilities to Jupiter does not significantly degrade

performance. Adding synchronization points, such as locks, increases the number of

system calls, and also may create contention in the use of shared resources or structures,

which can lead to performance degradation. It is not possible to do this comparison using

the Java Grande benchmarks, because they are multithreaded and cannot be executed

in the single-threaded version of Jupiter.

The second set of results evaluates the performance of the multithreaded Jupiter

using the multithreaded Java Grande benchmarks. These results compare Jupiter’s

performance to that of Kaffe [Wil02] and Sun’s JDK (interpreted mode only) [SUN03].

These results show that the multithreaded Jupiter speed is midway between a näıve JVM

implementation and a complex, highly optimized JVM implementation. Furthermore,

it shows that the execution time ratios between these JVMs are comparable to those

obtained in the original work on Jupiter, thus extending that work [Doy02].

The final set of results presents the speedup obtained from the Java Grande

benchmarks. This serves as a reference on the scalability of these benchmarks running
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JVM Version Parameters
Sun’s JDK [SUN03] 1.3.1 -noverify -Xint -Xmx1000m -native
Kaffe [Wil02] 1.0.6 -noverify -mx 1000m

Table 5.5: JVMs

Benchmark STJ MTJ MTJ/STJ
201 compress 376.04 391.90 1.04:1
202 jess 116.54 135.47 1.16:1
209 db 178.93 191.68 1.07:1
213 javac 143.09 154.40 1.08:1
222 mpegaudio 314.71 301.69 0.96:1
228 jack 83.56 85.86 1.03:1

Geometric Mean 1.06:1

Table 5.6: Execution Times for the Multithreaded Jupiter
with Respect to the Single-Threaded Jupiter Using the

SPECjvm98 Benchmarks

in Jupiter, Kaffe and Sun’s JDK.

Table 5.5 details the version and execution parameters that were chosen for the

reference JVMs. This selection of parameters is aimed at making a fair comparison

with Jupiter. Verification and JIT compilation, which may have a significant impact it

the execution times of a JVM, were disabled, since Jupiter did not possess any of such

features at the time the tests were executed. For presentation purposes, Sun’s JDK is

referred to as JDK, the single-threaded version of Jupiter as STJ and the multithreaded

Jupiter as MTJ. It must be noted that, for the following experiments, garbage collection

was enabled for Jupiter and the reference JVMs.

5.3.1 Single-Threaded Jupiter vs. Multithreaded Jupiter

Table 5.6 compares the execution times obtained from the single-threaded2 and

the multithreaded versions of Jupiter running the SPECjvm98 single-threaded bench-

marks.
2The single-threaded version of Jupiter did not implement synchronization [Doy02].
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The average slowdown introduced is in the order of 6%, showing that Jupiter

does not suffer from considerable performance degradation due to the addition of multi-

threading support. The reason for the slowdown is that, even when only single-threaded

applications are executed, internal locking mechanisms necessary for multithreaded op-

erations must be created. These include initializing, acquiring and releasing the ap-

propriate locks. Also, class creation was upgraded from the single-threaded version of

Jupiter to support the multithreaded class initialization protocol, as was detailed in

Section 3.4, which adds extra synchronization points to this module.

The 202 jess benchmark was slowed down by 16%. This is expected since this

particular benchmark, despite being single-threaded, contains two synchronized meth-

ods, gensym and putAtom, which are called very frequently, resulting in degraded per-

formance. However, it has the expected relative performance when it is compared with

JDK and Kaffe, as it will be seen in Section 5.3.2.

At the same time, the speed of 222 mpegaudio was improved by 4%. Unfortu-

nately, the sources for this benchmark are unavailable, thus preventing further analysis.

5.3.2 Multithreaded Jupiter vs. Reference JVMs

Table 5.7 compares the execution times obtained from the multithreaded version

of Jupiter and the reference JVMs running the SPECjvm98 single-threaded benchmarks.

The mean execution time of Jupiter is 2.45 times faster than Kaffe and 2.45 times

slower than Sun’s JDK. Thus, the performance of the multithreaded-enabled Jupiter

remains approximately the same relative to Kaffe and JDK as the single-threaded Jupiter

[Doy02].

Table 5.8 compares the times obtained for the Java Grande multithreaded bench-

marks, for the size A data sets. Notice that 205 raytrace from the SPECjvm98 bench-

marks was also included, since that application is also suitable for testing with multi-

threaded JVMs. In this case, Jupiter is between 1.77 and 3.00 times faster than Kaffe,

and 2.01 and 2.18 times slower than Sun’s JDK.

Table 5.9 compares the results obtained from the stress benchmarks in Section

1 of the Java Grande benchmark suite, which measure barrier, fork and join, and syn-
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Benchmark JDK MTJ Kaffe MTJ/JDK Kaffe/MTJ
201 compress 180.79 391.90 1217.02 2.17:1 3.11:1
202 jess 41.23 135.47 292.83 3.29:1 2.16:1
209 db 96.16 191.68 369.80 1.99:1 1.93:1
213 javac 51.19 154.40 354.90 3.02:1 2.30:1
222 mpegaudio 158.06 301.69 673.80 1.91:1 2.23:1
228 jack 32.59 85.86 276.14 2.63:1 3.22:1

Geometric Mean 2.45:1 2.45:1

Table 5.7: Execution Times for the Multithreaded Jupiter
with Respect to the Reference JVMs Using the

SPECjvm98 Benchmarks

chronization operations per second. Notice that, for these tests, obtaining larger values

(or higher ratios) implies better performance. Jupiter still stays midway between Kaffe

and Sun’s JDK. However, Kaffe outperforms both Jupiter and Sun’s JDK when run-

ning the stress tests on synchronization operations (Sync). These results depend on the

implementation of the locking mechanisms in the respective JVMs.

Despite the efforts, the execution of ForkJoin:Simple under 4 initial threads

runs out of memory in the system. Therefore, it is not possible to compute execution

ratios that compare Jupiter’s performance with that of JDK and Kaffe.

5.3.3 Speedup

The sum of the execution times of the Java Grande benchmarks is shown in Table

5.10, for the three JVMs. The speedup is shown in Table 5.11, which is computed as

the ratio between the sum of the execution times at one thread and at a given number

of threads, for each JVM.

The results show that Sun’s JDK scales slightly better than Jupiter. In this case,

the speedup obtained from Jupiter and Sun’s JDK is close to linear. However, Kaffe

does not scale well with these benchmarks and even shows a degradation in performance

for 4 processors. Figure 5.1 plots these results.
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1 Thread
Benchmark JDK MTJ Kaffe MTJ/JDK Kaffe/MTJ
205 raytrace 12.52 32.52 96.21 2.60:1 2.96:1
Series 97.85 72.06 141.61 0.74:1 1.97:1
LUFact 10.38 26.14 29.40 2.52:1 1.12:1
Crypt 11.81 22.25 41.98 1.88:1 1.89:1
SOR 67.38 150.39 126.81 2.23:1 0.84:1
SparseMatmult 30.50 52.37 116.15 1.72:1 2.22:1
MolDyn 119.27 361.90 612.03 3.03:1 1.69:1
MonteCarlo 69.25 134.91 241.78 1.95:1 1.79:1
RayTracer 224.39 574.60 1419.81 2.56:1 2.47:1

Geometric Mean 2.01:1 1.77:1
2 Threads

Benchmark JDK MTJ Kaffe MTJ/JDK Kaffe/MTJ
205 raytrace 9.45 27.62 287.28 2.92:1 10.40:1
Series 48.96 43.04 71.91 0.88:1 1.67:1
LUFact 5.55 13.85 15.75 2.50:1 1.14:1
Crypt 6.51 12.11 23.73 1.86:1 1.96:1
SOR 34.61 77.27 66.50 2.23:1 0.86:1
SparseMatmult 15.06 26.60 60.46 1.77:1 2.27:1
MolDyn 64.28 182.82 372.42 2.84:1 2.04:1
MonteCarlo 36.41 72.67 128.86 2.00:1 1.77:1
RayTracer 116.49 290.00 949.30 2.49:1 3.27:1

Geometric Mean 2.06:1 2.13:1
4 Threads

Benchmark JDK MTJ Kaffe MTJ/JDK Kaffe/MTJ
205 raytrace 8.07 29.35 1496.76 3.64:1 51.00:1
Series 27.33 22.89 36.16 0.84:1 1.58:1
LUFact 3.13 7.75 9.24 2.48:1 1.19:1
Crypt 3.98 7.07 14.86 1.78:1 2.10:1
SOR 18.28 40.71 36.64 2.23:1 0.90:1
SparseMatmult 8.11 14.74 33.98 1.82:1 2.31:1
MolDyn 32.92 94.89 198.91 2.88:1 2.10:1
MonteCarlo 19.96 40.88 96.29 2.05:1 2.36:1
RayTracer 58.49 199.62 1910.27 3.41:1 9.57:1

Geometric Mean 2.18:1 3.00:1

Table 5.8: Execution Times for the Multithreaded Jupiter
with Respect to the Reference JVMs Using the Java

Grande Benchmarks (Size A)
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1 Thread
Benchmark JDK MTJ Kaffe MTJ/JDK Kaffe/MTJ
Barrier:Simple 1157792.88 593708.31 190097.84 0.51:1 0.32:1
Barrier:Tournament 785766.19 463484.41 197210.28 0.59:1 0.43:1
ForkJoin:Simple 9285544.00 4275599.50 1673243.00 0.46:1 0.39:1
Sync:Method 52593.19 38569.08 122156.92 0.73:1 3.17:1
Sync:Object 46140.52 39630.60 135415.11 0.86:1 3.42:1

Geometric Mean 0.61:1 0.90:1
2 Threads

Benchmark JDK MTJ Kaffe MTJ/JDK Kaffe/MTJ
Barrier:Simple 49233.07 59084.70 3062.46 1.20:1 0.05:1
Barrier:Tournament 484642.50 281715.28 93677.67 0.58:1 0.33:1
ForkJoin:Simple 149.59 1064.55 80.18 7.12:1 0.08:1
Sync:Method 24882.99 25168.76 51589.83 1.01:1 2.05:1
Sync:Object 25098.97 25161.12 72954.05 1.00:1 2.90:1

Geometric Mean 1.38:1 0.38:1
4 Threads

Benchmark JDK MTJ Kaffe MTJ/JDK Kaffe/MTJ
Barrier:Simple 12715.25 11524.10 2503.22 0.91:1 0.22:1
Barrier:Tournament 260670.25 151095.59 64985.20 0.58:1 0.43:1
ForkJoin:Simple 733.19 No memory 32.58
Sync:Method 13517.32 14383.81 14340.21 1.06:1 1.00:1
Sync:Object 13393.96 14575.08 17271.22 1.09:1 1.18:1

Geometric Mean 0.88:1 0.58:1

Table 5.9: Stress Tests for the Multithreaded Jupiter with
Respect to the Reference JVMs Using the Java Grande

Benchmarks

5.4 Cluster Evaluation

This section gives the results obtained from the evaluation of the cluster-enabled

Jupiter running the multithreaded Java Grande benchmarks on the Myrinet cluster.

Since the SPECjvm98 benchmarks contain single-threaded applications (only one appli-

cation, 205 raytrace, is multithreaded) they were not used. The scalability study was

performed using different node configurations, varying in the number of nodes in the

system and the number of processors enabled in each node.

At this experimental stage, it is not possible to compare results with any other

JVM, since only Jupiter is suitable for execution on the cluster.
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Processors JDK MTJ Kaffe
1 643.35 1427.14 2825.78
2 337.32 745.98 1976.21
4 180.27 457.90 3833.11

Table 5.10: Added Execution Times for the Multithreaded
Jupiter and the Reference JVMs Using the Java Grande

Benchmarks (Size A)

Processors JDK MTJ Kaffe
1 1.00 1.00 1.00
2 1.91 1.91 1.43
4 3.57 3.12 0.74

Table 5.11: Average Speedup for the Multithreaded Jupiter
and the Reference JVMs Using the Java Grande

Benchmarks (Size A)
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Figure 5.1: Average Speedup for the Multithreaded Jupiter
and the Reference JVMs Using the Java Grande

Benchmarks (Size A)
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Three sets of results are presented. The first set displays the scalability results

obtained with a cluster configuration where one processor per node is enabled for thread

scheduling. The second set indicates the results with a cluster configuration where both

node processors are enabled. These configurations refer only to the number of threads

CableS creates in each node, and they do not limit the number of processors available

to the operating system for scheduling its applications. The reason for making this

distinction is twofold. On the one hand, CableS behaves differently in each case; on

the other hand it simplifies the exposition of the results. The third set indicates the

slowdown introduced to Jupiter through the use of the SVM system on the cluster.

Unlike the SMP case, described in Section 5.3, size A data sets do not provide

enough information for these experiments. It was required that the benchmarks run for

longer periods of time. Thus, results for size B data sets are also presented, since larger

data sets show more accurately how the benchmarks scale because they amortize the

cost of thread creation, node attachment and system initialization.

5.4.1 Evaluation Remarks

For the following experiments, the cluster-enabled Jupiter uses the lightweight

barriers, described in Section 4.5. Garbage collection was disabled, as described in

Section 4.6.

Even when the experiments are executed on one node, the SVM system is used.

Since this system slows down memory access, this provides a fair reference for the

speedup comparison with the subsequent cluster configurations. The overhead of the

SVM system is explored in Section 5.4.4.

In the results, a distinction between execution time and benchmark time is made.

The former shows the total time reported by the Unix time utility and it is the time

experienced by the user, which includes SVM system initialization and termination. The

latter is the time reported by the benchmark, which includes thread creation time. Both

values are reported in order to give a more complete speedup reference.

A detailed analysis of the experiments revealed that some of the Java Grande

benchmarks (SOR and RayTracer) violated the Java Memory Model, since they assumed
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sequential memory consistency [Bul03]. This memory model should not be assumed

even for JVMs running on an SMP. In those cases, the necessary corrections were not

performed since they would require a deep understanding and modification of the core

procedures in the benchmarks.

Results for Crypt are not shown. This application has some problems in some

configurations on the cluster, since it creates very short-lived threads. Due to CableS

thread creation policy, these threads are not distributed evenly among all the cluster

machines and they are concentrated on a few nodes. As a consequence, they exceed the

current capacity of the system to execute them, since they consume all the available

memory. This happens regardless of the data size that is used. It is also important to

mention that, when running size A data set, the Series and SparseMatmult benchmarks

do not always create threads in all the nodes. The cause is also due to CableS’s thread

creation policy. Nevertheless, this is normal system behavior and they still represent

a fair test for those configurations. Changing the thread creation policy in CableS is

out of scope for this work. Furthermore, the necessary changes would only be useful for

those cases where threads are short-lived, which are not the main focus of this study.

When running size B data sets, the Moldyn and MonteCarlo benchmarks also

reach some system limits with respect to the amount of available memory and the number

of locking operations that can be performed. The limitation of resources in CableS,

described in Section 4.4, does not allow to present results for the stress benchmarks

either. Those applications stress CableS more than it can withstand in its current

implementation stage.

5.4.2 One Processor per Node

Tables 5.12 and 5.13 compare the execution and benchmark times obtained for

the size A and B sets of the Java Grande benchmarks respectively. These benchmarks

were executed from 1 to 8 cluster nodes using one processor per node, for a total number

of threads in the system ranging from 1 to 8.

The speedup of the benchmarks was computed using the sum of the execution

(and benchmark) times of all the benchmarks shown in Tables 5.12 and 5.13. These
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results are shown in Tables 5.14 and 5.15, and Figures 5.2 and 5.3 depict these values

for the respective individual benchmarks and overall results. The reference used for the

speedup calculation is the cluster-enabled Jupiter, running one thread on one node.

The benchmarks show close-to-linear speedup in some cases for the size A and

all cases in the size B sets. The MolDyn and MonteCarlo benchmarks do not scale well

on the cluster. Overall, the speedup obtained for the size B set is better than that for

the size A set.

The gap between the execution and benchmark times shows the impact of system

initialization and termination. It must be noted that for the size B set, and in particular

for Series and LUFact, this gap is reduced, and thus the impact of such operations.

5.4.3 Two Processors per Node

Tables 5.16 and 5.17 compare the execution and benchmark times obtained for

the size A and B of the Java Grande benchmarks respectively. The benchmarks were

executed from 1 to 8 cluster nodes using tow processor per node, for a total number of

threads in the system ranging from 2 to 16.

The speedup of the benchmarks was computed using the sum of the execution

(and benchmark) times of all the benchmarks shown in Tables 5.16 and 5.17. These

results are shown in Tables 5.18 and 5.19, and Figures 5.4 and 5.5 depict these values

for the respective individual benchmarks and overall results. The reference used for

the speedup calculation is the cluster-enabled Jupiter, running one thread on one node,

shown in Tables 5.12 and 5.13.

The benchmarks show a sublinear speedup with all size A and close-to-linear

speedup with some size B sets. As in the case with one processor per node, the overall

speedup obtained for the size B set is better than that for the size A set.

It is interesting to note that, for the same number of running threads, the ex-

ecution and benchmark times obtained from the single-processor and dual-processor

configurations are similar. This can be seen when comparing the values in Tables 5.12

and 5.16, and Tables 5.13 and 5.17. This confirms that, up to 8 threads, the applica-

tions scale in a similar way in both configurations. This could indicate the low impact
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of communication in the applications, or that the benchmarks follow a communication

pattern that is handled very efficiently by the SVM system.

5.4.4 Performance Impact of the SVM System

The third and final set of results measures the impact of the SVM system in

the execution of Jupiter. This is because the SVM adds a significant slowdown to the

execution of applications. Thus, the SMP and cluster configurations were compared

using the same cluster node. The execution times were obtained from running the size

A data sets of the Java Grande benchmarks, on one and two threads. The results

obtained are shown in Tables 5.20 and 5.21 for the execution times and times reported

by the benchmark respectively.

As shown, CableS slows down Jupiter by 39% when running one thread, and

by 44% when running two threads. The Series benchmark experiences some speed

improvements. Though it was not possible to confirm the source of the speedup, it is

likely that some pthread calls are faster in CableS (when running on a single node) than

in the operating system, because their execution may not involve system calls. This,

in conjunction with a low use of shared memory (where most of CableS controls take

place), may cause the application to run faster. Unfortunately, the work on CableS

[Jam02b] did not publish these results.
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1 Thread
Benchmark Execution Time Benchmark Time
Series 147.75 137.93
LUFact 111.40 97.01
SOR 494.85 469.09
SparseMatmult 182.02 158.87
MolDyn 1583.76 1573.61
MonteCarlo 460.67 448.77
RayTracer 2319.42 2308.33
Total 5299.87 5193.61

2 Threads
Benchmark Execution Time Benchmark Time
Series 104.21 73.63
LUFact 92.31 56.46
SOR 294.97 249.54
SparseMatmult 127.02 82.80
MolDyn 880.69 850.47
MonteCarlo 363.11 331.68
RayTracer 1212.91 1176.75
Total 3075.22 2821.33

4 Threads
Benchmark Execution Time Benchmark Time
Series 85.48 40.66
LUFact 83.77 31.62
SOR 193.57 129.03
SparseMatmult 101.73 43.45
MolDyn 528.35 485.59
MonteCarlo 265.71 214.09
RayTracer 644.23 600.30
Total 1902.84 1544.74

8 Threads
Benchmark Execution Time Benchmark Time
Series 84.77 24.01
LUFact 89.46 22.98
SOR 150.25 72.98
SparseMatmult 105.61 26.78
MolDyn 489.98 423.67
MonteCarlo 291.36 232.86
RayTracer 380.83 320.10
Total 1592.26 1123.38

Table 5.12: Execution and Benchmark Times for the
Cluster-Enabled Jupiter on One Processor per Node Using

the Java Grande Benchmarks (Size A)
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1 Thread
Benchmark Execution Time Benchmark Time
Series 1388.30 1378.45
LUFact 795.59 768.16
SOR 1094.15 1050.84
SparseMatmult 360.93 324.65
RayTracer 25705.96 25692.78
Total 29344.93 29214.88

2 Threads
Benchmark Execution Time Benchmark Time
Series 749.83 718.82
LUFact 463.54 414.81
SOR 654.78 588.25
SparseMatmult 224.86 165.88
RayTracer 13078.86 13046.50
Total 15171.87 14934.26

4 Threads
Benchmark Execution Time Benchmark Time
Series 419.65 379.66
LUFact 292.74 226.41
SOR 384.25 305.80
SparseMatmult 160.17 84.23
RayTracer 6609.27 6563.77
Total 7866.08 7559.87

8 Threads
Benchmark Execution Time Benchmark Time
Series 244.03 185.87
LUFact 201.76 130.80
SOR 246.84 156.94
SparseMatmult 139.73 48.13
RayTracer 3367.82 3314.06
Total 4200.18 3835.80

Table 5.13: Execution and Benchmark Times for the
Cluster-Enabled Jupiter on One Processor per Node Using

the Java Grande Benchmarks (Size B)
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Processors Execution Time Benchmark Time
1 1.00 1.00
2 1.72 1.84
4 2.79 3.36
8 3.33 4.62

Table 5.14: Average Speedup for the Cluster-Enabled
Jupiter on One Processor per Node Using the Java Grande

Benchmarks (Size A)

Processors Execution Time Benchmark Time
1 1.00 1.00
2 1.93 1.96
4 3.73 3.86
8 6.99 7.62

Table 5.15: Average Speedup for the Cluster-Enabled
Jupiter on One Processor per Node Using the Java Grande

Benchmarks (Size B)
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2 Threads
Benchmark Execution Time Benchmark Time
Series 81.67 71.35
LUFact 65.83 50.82
SOR 266.37 239.78
SparseMatmult 105.96 81.08
MolDyn 827.16 815.74
MonteCarlo 263.87 251.10
RayTracer 1186.33 1175.64
Total 2797.19 2685.51

4 Threads
Benchmark Execution Time Benchmark Time
Series 70.54 40.16
LUFact 70.73 34.69
SOR 173.93 128.11
SparseMatmult 88.68 43.48
MolDyn 507.57 477.91
MonteCarlo 275.55 244.02
RayTracer 641.13 611.17
Total 1828.13 1579.54

8 Threads
Benchmark Execution Time Benchmark Time
Series 66.20 23.50
LUFact 75.18 22.19
SOR 136.27 72.00
SparseMatmult 92.63 26.22
MolDyn 425.66 375.90
MonteCarlo 311.05 259.95
RayTracer 370.94 322.01
Total 1477.93 1101.77

16 Threads
Benchmark Execution Time Benchmark Time
Series 74.83 20.19
LUFact 86.91 23.50
SOR 170.37 49.12
SparseMatmult 111.38 25.56
MolDyn 692.41 632.00
MonteCarlo 317.12 253.35
RayTracer 264.33 207.32
Total 1717.35 1211.04

Table 5.16: Execution and Benchmark Times for the
Cluster-Enabled Jupiter on Two Processors per Node

Using the Java Grande Benchmarks (Size A)
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2 Threads
Benchmark Execution Time Benchmark Time
Series 715.22 704.39
LUFact 425.52 397.34
SOR 581.18 536.72
SparseMatmult 204.36 165.77
RayTracer 13057.39 13046.42
Total 14983.67 14850.64

4 Threads
Benchmark Execution Time Benchmark Time
Series 392.69 362.48
LUFact 265.88 214.73
SOR 360.03 293.87
SparseMatmult 146.61 84.95
RayTracer 6596.79 6566.13
Total 7762.00 7522.16

8 Threads
Benchmark Execution Time Benchmark Time
Series 246.79 190.67
LUFact 188.94 124.84
SOR 239.96 159.20
SparseMatmult 127.11 49.32
RayTracer 3357.52 3311.92
Total 4160.32 3835.95

16 Threads
Benchmark Execution Time Benchmark Time
Series 153.83 101.29
LUFact 154.99 81.62
SOR 186.11 95.76
SparseMatmult 145.61 36.86
RayTracer 1781.02 1722.70
Total 2421.56 2038.23

Table 5.17: Execution and Benchmark Times for the
Cluster-Enabled Jupiter on Two Processors per Node

Using the Java Grande Benchmarks (Size B)
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Processors Execution Time Benchmark Time
1 1.00 1.00
2 1.89 1.93
4 2.90 3.29
8 3.59 4.71
16 3.09 4.29

Table 5.18: Average Speedup for the Cluster-Enabled
Jupiter on Two Processors per Node Using the Java

Grande Benchmarks (Size A)

Processors Execution Time Benchmark Time
1 1.00 1.00
2 1.96 1.97
4 3.78 3.88
8 7.05 7.62
16 12.12 14.33

Table 5.19: Average Speedup for the Cluster-Enabled
Jupiter on Two Processors per Node Using the Java

Grande Benchmarks (Size B)
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1 Thread
Benchmark MTJ Jupiter-SVM Jupiter-SVM/MTJ
Series 153.18 147.75 0.96:1
LUFact 69.16 111.40 1.61:1
SOR 342.04 494.85 1.45:1
SparseMatmult 131.20 182.02 1.39:1
MolDyn 969.68 1583.76 1.63:1
MonteCarlo 266.75 460.67 1.73:1
RayTracer 1523.38 2319.42 1.52:1

Geometric Mean 1.45:1
2 Threads

Benchmark MTJ Jupiter-SVM Jupiter-SVM/MTJ
Series 77.40 81.67 1.06:1
LUFact 36.86 65.83 1.79:1
SOR 177.11 266.37 1.50:1
SparseMatmult 70.07 105.96 1.51:1
MolDyn 490.32 827.16 1.69:1
MonteCarlo 134.38 263.87 1.96:1
RayTracer 763.96 1186.33 1.55:1

Geometric Mean 1.56:1

Table 5.20: Execution Time Overhead Introduced by the
SVM System
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1 Thread
Benchmark MTJ Jupiter-SVM Jupiter-SVM/MTJ
Series 152.08 137.93 0.91:1
LUFact 65.79 97.01 1.47:1
SOR 332.82 469.09 1.41:1
SparseMatmult 123.05 158.87 1.29:1
MolDyn 968.57 1573.61 1.62:1
MonteCarlo 265.64 448.77 1.69:1
RayTracer 1522.23 2308.33 1.52:1

Geometric Mean 1.39:1
2 Threads

Benchmark MTJ Jupiter-SVM Jupiter-SVM/MTJ
Series 76.30 71.35 0.94:1
LUFact 33.50 50.82 1.52:1
SOR 167.94 239.78 1.43:1
SparseMatmult 61.39 81.08 1.32:1
MolDyn 489.22 815.74 1.67:1
MonteCarlo 133.26 251.10 1.88:1
RayTracer 762.82 1175.64 1.54:1

Geometric Mean 1.44:1

Table 5.21: Benchmark Time Overhead Introduced by the
SVM System



CHAPTER 6

Conclusions

6.1 Summary and Conclusions

This thesis presented the design and implementation of a JVM on a cluster of

workstations. For this purpose, two sets of extensions to the single-threaded Jupiter were

implemented. First, Jupiter was enabled to execute multithreaded Java applications.

Then, the multithreaded Jupiter was extended to run on a cluster under a lazy release

memory consistency model.

For the multithreading extensions, it was necessary to develop the infrastructure

to support thread handling, while following the design guidelines of abstract interfaces

defined in the original Jupiter project. This involved the development of the support

for thread behavior and synchronization specified in the JVM Specification [LY99], syn-

chronization of those Jupiter structures that become shared in a multithreading config-

uration, and extensions to the quick opcode optimization to support concurrency.

For the cluster, it was necessary to deal with the lazy release memory consis-

tency model. In most cases, this implied maintaining memory consistency using locks.

Moreover, private memory allocation was used to store components that are not shared

among threads. Finally, it was required to handle the limitations in the use of some

resources.

The performance of both the multithreaded and cluster-enabled Jupiter was eval-

uated using two standard benchmark suites: the SPECjvm98 [SPE03] and the Java

Grande [EPC03, Jav03]. The evaluation indicated that the performance of the multi-

threaded version of Jupiter is comparable to that of the single-threaded version, and that

99
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the addition of multithreaded functionality did not cause a significant overhead (6% on

average). Furthermore, the speed of the multithreaded Jupiter interpreter is midway

between that of Kaffe [Wil02], a näıve implementation of a Java interpreter, and that of

Sun’s JDK [SUN03], a highly optimized state-of-the-art interpreter.

The cluster evaluation showed the scaling of the cluster-enabled Jupiter. In this

case, the system was tested on up to 16 processors. Overall, most of the benchmarks

show scaling performance. Moreover, the speedup of the Size A Java Grande benchmarks

on the cluster is comparable to that of the SMP for up to 4 processors. For example, the

average speedup on the SMP is 3.12, while on the cluster it is 3.36. Furthermore, the

impact of the SVM system was measured, which shows that the performance degradation

introduced by the use of SVM is between 39% and 44%.

This work showed that it is possible and feasible to construct a scalable JVM to

run on a cluster of workstations under an SVM model. There is also a number of lessons

learned from the experience of extending Jupiter with both, multithreading and cluster

support. We briefly touch on these lessons:

• This work affirmed the extensibility and modularity properties of Jupiter. Although

this cannot be quantified, it was inferred from the development of this project.

Jupiter’s properties played a decisive role when enabling it to run on the cluster.

The well designed Jupiter abstraction layers allowed us to limit changes to specific

modules and reduced reliance on functionality from the native thread libraries. For

example, it was straightforward to create new memory allocation modules for the

cluster, and the behavior of the system with respect to memory allocation was

modified easily.

• The use of SVM was challenging in unexpected ways. While it was known in

advance that the release memory consistency model would require extra care in

the placement of locks, it was not known that there would be limitation on the use

of some resources provided by the SVM system. The SVM system assumes that

applications use barriers as their synchronization mechanism, which is common

practice in scientific applications but not in a JVM. Indeed, in the initial process
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of testing the cluster-enabled Jupiter, the experiments ran out of locks while Jupiter

was bootstrapping, this is, even before the Java program could begin to execute!

• Some unexpected problems with the benchmarks were also encountered. In addi-

tion to replacing barriers and the random number generator in some applications,

some of the benchmarks were found to assume sequential memory consistency

[Bul03]. This is probably because most currently available JVMs today run on

SMPs, which provide this consistency model in hardware. We were the first to find

these problems, and they were reported to and acknowledged by the developers at

EPCC [Bul03].

• The heavy load of Jupiter exposed protocol problems on the SVM system, which

were tackled and fixed by the SVM group. This made our experiments difficult to

carry out when crossing node boundaries (i.e., 1 to 2 nodes, 2 to 4 and 4 to 8).

• Finally, there is a noticeable lack of tools (e.g., debuggers) for developing and

debugging applications on the cluster. This added an extra degree of difficulty in

enabling Jupiter to run on the cluster, which increased with the addition of cluster

nodes.

6.2 Future Work

Although this work has successfully implemented a functional JVM on an SVM

cluster, there are still various directions from where this system can be improved.

• JIT compilation is a very effective technique for improving the performance of Java

programs [AAB+00, IKY+99]. At present, Jupiter does not possess the necessary

infrastructure to support it. Thus, in order to gain further acceptance, Jupiter

requires the addition of a framework for JIT compilation, that will also serve as a

tool for further research in this area.

• The cluster-enabled Jupiter does not utilize a garbage collector, because Boehm’s

garbage collector [Boe02b], which was part of the single-threaded and multithreaded

versions of Jupiter, is not suitable for execution on the cluster [Boe02a]. Thus, an
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interesting venue for future work is to explore the design and implementation of a

distributed garbage collector that is also compatible with the memory management

routines in the SVM system.

• The cluster-enabled Jupiter does not currently support single-image I/O. Thus, it

is interesting to incorporate this functionality either in Jupiter or CableS.

• In the cluster-enabled Jupiter, objects are conservatively stored in shared memory.

This creates some performance degradation. If it could be ascertained that an

object is not shared among threads, it would be possible to store it in non-shared

memory, resulting in some performance improvements. Such knowledge can be

obtained through a compilation technique called escape analysis [CGS+99]. Thus,

it is interesting to incorporate support for such technique into Jupiter.

• The SVM system sets some limitations in the use of some of its resources. It is

desirable to alleviate these limitations by releasing such resources at non-barrier

synchronization points, such as locks. Moreover, the SVM system could provide

better tools, or a set of common practices, for sharing parameters between a parent

and a child thread. This would benefit all applications using the SVM libraries,

since it would avoid the development of complex procedures such as those described

in Sections 4.2.5 and 4.2.6.

• Some Java Grande benchmark applications violate the Java Memory Model by as-

suming sequential memory consistency [Bul03]. Thus, it is required to redesign and

implement these applications to make them conform to the Java model. Further-

more, the benchmarks lack an efficient implementation of barriers in Java, which

regrettably, are not semantically correct with respect to the Java Memory Model

[EPC03, Jav03] either. Thus, these barriers should be revised for their use on SMPs

as well as clusters.

• This work uses a page-based DSM system for the implementation of distributed

memory. It is interesting to evaluate if Jupiter can benefit from the use of object-

based DSM, which would allow more control over smaller memory regions (where
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Java objects are stored), thus allowing them to remain consistent as a single unit.

This may also reduce the cost of false sharing usually associated with page-based

systems.
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APPENDIX A

Benchmark Details

Two sets of benchmarks were selected for the experimental evaluation detailed in

Chapter 5, SPECjvm98 [SPE03] and Java Grande [EPC03, Jav03]. This appendix gives

some details on what types of applications they run.

A.1 SPECjvm98

SPEC, which stands for Standard Performance Evaluation Corporation [SPE03],

is an organization that develops a series of benchmarks using a standardized suite of

source code, based upon existing applications. The use of already accepted and ported

source code is advantageous because it reduces the problem of making comparisons

between incompatible implementations.

The following benchmarks comprise this test platform:

• 201 compress implements a modified Lempel-Ziv compression algorithm [Wel84].

It compresses real data from files instead of synthetically generated data, making

several passes through the same input data.

• 202 jess is an expert shell system [JES03], which continuously applies a set of

if-then statements, called rules, to a set of data. The benchmark solves a set of

puzzles, searching through progressively larger rule sets as execution proceeds.
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• 209 db performs multiple functions on a memory-resident database. It reads a

file which contains records with names, addresses and phone numbers of entities

and a file which contains a stream of operations to perform on those records. The

commands performed on the file include add, delete, find and sort operations.

• 213 javac is the commercial version of the Java compiler from the JDK 1.0.2.

• 222 mpegaudio is the commercial version of an application that decompresses ISO

MPEG Layer-3 audio files [MPE03]. The workload consists of about 4 Mb of audio

data.

• 205 raytrace is a raytracer that works on a scene depicting a dinosaur, where

the threads render the scene in the input file, which is 340 Kbytes in size. This

is the only multithreaded benchmark is this suite. 227 mtrt is also part of this

application.

• 228 jack is a commercial Java parser generator. The workload consists of a file

which contains instructions for the generation of jack itself. The results are then

fed to jack, so that the parser generates itself multiple times.

A.2 Java Grande

EPCC stands for Edinburgh Parallel Computing Centre. Located at the Univer-

sity of Edinburgh, its objective is “the effective exploitation of high performance par-

allel computing systems” [EPC03]. EPCC is a participant in the Java Grande Forum1

[Jav03] activities, developing a benchmark suite to measure different Java execution

environments against each other.

EPCC provides several sets of benchmarks, aiming at sequential, multithreaded

and message passing execution. For the purpose of this work, the multithreaded set was

elected, which was designed for parallel execution on shared memory multiprocessors.

The message passing benchmarks were designed for parallel execution on distributed

1The Java Grande Forum is an initiative to promote the use of Java for the so-called “Grande” applications. A
Grande application is an application which has large requirements for memory, bandwidth or processing power.
They include computational science and engineering systems, as well as large scale database applications and
business and financial models.
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memory multiprocessors. The multithreaded suite is divided in three sections, containing

the following benchmarks:

• Section 1. This section measures the performance of low level operations such as

barriers, thread fork/join and synchronized methods/blocks. These benchmarks

are designed to run for a fixed period of time, the number of operations executed

in that time is recorded and the performance reported as operations/second.

– Barrier measures the performance of barrier synchronization. Two types of

barriers are tested: one using signal and notify calls and a lock-free version

using arrays and busy waits. The latter is not formally guaranteed to be

correct under the Java Memory Model. Nevertheless, it is used in Sections

2 and 3 of the benchmark suite. This was replaced with an interface to the

cluster native barriers, as shown in Section 5.1. Performance is measured in

barrier operations per second.

– ForkJoin measures the time spent creating and joining threads. Performance

is measured in fork-join operations per second.

– Sync measures the performance of synchronized methods and synchronized

blocks in the presence of multiple threads, where there is guaranteed to be

contention for the object locks. Performance is measured in synchronization

operations per second.

• Section 2. This section contains short codes with the type of computations likely

to be found in Grande applications. For each benchmark the execution time and

the performance in operations per second (where the units are benchmark-specific)

are reported.

– Series computes the first Fourier coefficients of the function f(x) = (x + 1)x

on the interval [0,2]. Each iteration of the loop over the Fourier coefficients is

independent of every other loop and the work may be distributed between the

threads, which is divided evenly between the threads in a block fashion. Each
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thread is responsible for updating the elements of its own block. Performance

units are coefficients per second.

– LUFact solves a linear system using LU factorization followed by a triangular

solve. This is a Java version of the Linpack benchmark. The factorization is

parallelized, but the remainder is computed in serial. Barrier synchronization

is required before and after the parallel loop. The work is divided between

the threads in a block fashion. It is memory and floating point intensive.

Performance units are Mflops per second.

– Crypt performs IDEA (International Data Encryption Algorithm) encryption

and decryption on an array. It is bit/byte operation intensive. This algorithm

involves two loops, whose iterations are independent and are divided between

the threads in a block fashion. Performance units are bytes per second.

– SOR performs 100 iterations of successive over-relaxation on a grid. This al-

gorithm uses a “red-black” ordering mechanism which allows the loop over

array rows to be parallelized. The outer loop over elements is distributed be-

tween threads in a block manner. Only nearest neighbor synchronization is

required, rather than a full barrier. The performance is reported in iterations

per second.

– SparseMatmult performs a sparse matrix vector multiplication., using a sparse

matrix for 200 iterations. It involves an outer loop over iterations and an inner

loop over the size of the principal arrays. The loop is parallelized by dividing

the iterations into blocks which are approximately equal, but adjusted to en-

sure that no row is access by more than one thread. This benchmark stresses

indirection addressing and non-regular memory references. The performance

is reported in iterations per second.
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• Section 3. This section runs large scale applications, intended to be representative

of Grande applications. They were modified for inclusion in the benchmark suite by

removing any I/O and graphical components. For each benchmark the execution

time and the performance in operations per second (where the units are benchmark-

specific) are reported.

– MolDyn models particle interactions in a cubic spatial volume. The calculation

of the forces applied to each particle involves an outer loop over all particles

and an inner loop ranging from the current particle number to the total number

of particles. The outer loop was parallelized by dividing the range of the

iterations between the threads in a cyclic manner. This avoids load imbalances.

Performance is reported in interactions per second.

– MonteCarlo is a financial simulation using Monte Carlo techniques. It gen-

erates sample time series with the same mean and fluctuation as a series of

historical data. The loop over a number of Monte Carlo runs was parallelized

by dividing the work in a block fashion. Performance is measured in samples

per second.

– RayTracer measures the performance of a 3D raytracer. The outermost loop

(over rows of pixels) was parallelized using a cyclic distribution for load bal-

ance. The performance is measured in pixels per second.





APPENDIX B

Stack Design

In order to give Jupiter more control over the memory allocated for the Java

stack, an alternative stack design was implemented. The goal of this implementation is

to reduce the memory requirements of a running thread (or make them more accurate to

the program’s needs). This goal required a redesign of Jupiter’s fixed-size stack segment

to a more flexible one. In the following sections, the design options for this are explored

and some experimental evaluation results are given.

B.1 Java Stack Overview

The Java stack1 is composed of stack frames, as defined in Section 3.5.2 of the

JVM Specification [LY99]. Each of these frames contains the state of one Java method

invocation. When a thread calls a method, the JVM pushes a new frame onto the

thread’s stack. When the method completes, the JVM pops and discards the frame for

that method.

In its original configuration, Jupiter [Doy02] uses a fixed-size stack segment. This

is a region of memory allocated as part of Jupiter’s initialization process, which is used to

store the Java stack during the execution of the Java program. Since a fixed-size segment

cannot be resized if needed, this creates some problems with the use of memory. If the

stack segment is too small, programs may run out of stack memory; if it is too large,

they waste it. The implementation of a different policy for managing the stack, called

1In this section, the term “stack” will be used to refer to the Java stack.
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Figure B.1: Variable-Size Stack Design

variable-size stack, aims at giving Jupiter more flexibility. It allows Jupiter to make the

stack grow when it is required.

B.2 Variable-Size Stack Segment

Figure B.1 shows the design for the variable-size stack segment. In this design,

several memory segments comprise the stack segment. An array is used to point to

each of these memory segments, which are allocated and used depending on Jupiter

requirements. When one of the segments is full, a new one is allocated and referenced

from the following index location of the array. Access to the upper and lower limits of

each of the segments must then be controlled. When these points are reached, they are

treated as special cases that make the program switch to the previous or the following

segment accordingly.

In order to avoid further performance penalties for the use of extra arithmetic,

every time a different segment is used, the important values used for accessing it, such

as bottom and top memory addresses, and segment size, are stored in a data structure
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that serves as a cache. This way, these values can be accessed from the cache instead

of dereferencing the pointers and performing arithmetic operations on the array. Conse-

quently, the checks performed do not differ much from the original implementation, and

only extra checks were added around the segment boundaries.

Each of the stack segments can be handled individually. They can remain allo-

cated for the life of a Jupiter instance, be garbage collected or even manually deallocated.

It must be noted that the array used for referencing the memory segments can be either

of fixed size or variable size. For simplicity, a fixed-size array is used in the current

design.

An alternative design for the stack is the use of a single memory segment, which

can be resized using the realloc call2 according to the needs of Jupiter. This has

the advantages that it does not require any extra computation derived from the use of

additional data structures, and it allows both to grow and shrink the stack as needed.

The disadvantage is that the POSIX standard allows for realloc to move memory

segments, thus changing their memory addresses and invalidating any pointer that ref-

erences them. This requires a careful implementation of the stack, and the storing of

pointers and cached values. It is necessary that there not be a pointer reference to a

frame in the stack when there is a possibility that the stack be moved.

However, it must be noted that having such a flexible stack implementation, with

no pointer references to it, is the first step toward thread migration.

The advantage of the variable-size stack is that it allows for the creation of poli-

cies on how the segments grow, with less burden on the operating system for finding a

sufficiently large memory segment to expand or move the stack. In the variable-size de-

sign, new stack segments do not need to be contiguous to those previously allocated. The

disadvantage is that it requires some extra arithmetic to handle the memory structures

that hold the individual stack segments.

2Both designs can be used on the cluster without any further modification of Jupiter for using the SVM
system. In the cluster, stacks are allocated in private memory and handled using the libc libraries and not the
cluster memory interface, which currently does not support realloc.
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Benchmark MTJ VSSJ VSSJ/MTJ
201 compress 391.90 381.53 0.97:1
202 jess 135.47 132.80 0.98:1
209 db 191.68 195.93 1.02:1
213 javac 154.40 164.81 1.07:1
222 mpegaudio 301.69 299.73 0.99:1
228 jack 85.86 88.95 1.04:1

Geometric Mean 1.01:1

Table B.1: Benchmark Times for the Multithreaded Jupiter
with a Fixed-Size Stack with Respect to a Variable-Size

Stack (VSSJ) Using the SPECjvm98 Benchmarks

B.3 Experimental Evaluation

A performance comparison was made between the multithreaded Jupiter using

the fixed-size stack and the variable-size stack. In these experiments, the following

configuration was used for the variable-size stack. The main array contains 16 entries,

each single stack segment is the same size as a memory page in Linux (i.e., 4 Kbytes), and

the stack grows uniformly (i.e., all the segments are the same size). All unused fragments

are left for the garbage collector. This configuration with a small stack guarantees that

this module is thoroughly used in its most critical paths in at least one case. Setting a

larger-stack configuration would not provide much information because stack expansions

will not likely be exercised.

Tables B.13, B.2 and B.3 show the performance difference in Jupiter with the

fixed-size and variable-size stacks for the SPECjvm98, Java Grande, and Java Grande

Stress benchmarks, respectively. Although it belongs to the SPECjvm98 benchmark

suite, the results from 205 raytrace are included in Table B.2, with the evaluation of

the multithreaded benchmarks in the Java Grande suite.

This module introduces an average slowdown of about 1% for the singe-threaded

and multithreaded benchmarks, with speed improvements in some cases and a significant

slowdown in one case. For the stress benchmarks, it can be observed that this brings some

improvements, in particular for ForkJoin. The variable-size stack version of Jupiter can

3The acronyms and units used for presenting these results are the same as those used in Chapter 5.
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1 Thread
Benchmark MTJ VSSJ VSSJ/MTJ
205 raytrace 32.52 34.90 1.07:1
Series 72.06 72.91 1.01:1
LUFact 26.14 26.62 1.02:1
Crypt 22.25 22.59 1.02:1
SOR 150.39 149.42 0.99:1
SparseMatmult 52.37 53.01 1.01:1
MolDyn 361.90 349.88 0.97:1
MonteCarlo 134.91 135.53 1.00:1
RayTracer 574.60 575.71 1.00:1

Geometric Mean 1.01:1
2 Threads

Benchmark MTJ VSSJ VSSJ/MTJ
205 raytrace 27.62 29.02 1.05:1
Series 43.04 43.70 1.02:1
LUFact 13.85 14.00 1.01:1
Crypt 12.11 12.58 1.04:1
SOR 77.27 77.28 1.00:1
SparseMatmult 26.60 26.90 1.01:1
MolDyn 182.82 180.44 0.99:1
MonteCarlo 72.67 73.20 1.01:1
RayTracer 290.00 291.35 1.00:1

Geometric Mean 1.01:1
4 Threads

Benchmark MTJ VSSJ VSSJ/MTJ
205 raytrace 29.35 33.90 1.16:1
Series 22.89 22.74 0.99:1
LUFact 7.75 7.74 1.00:1
Crypt 7.07 7.47 1.06:1
SOR 40.71 40.88 1.00:1
SparseMatmult 14.74 14.99 1.02:1
MolDyn 94.89 93.04 0.98:1
MonteCarlo 40.88 41.33 1.01:1
RayTracer 199.62 185.43 0.93:1

Geometric Mean 1.01:1

Table B.2: Benchmark Times for the Multithreaded Jupiter
with a Fixed-Size Stack with Respect to a Variable-Size

Stack (VSSJ) Using the Java Grande Benchmarks (Size A)
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1 Thread
Benchmark MTJ VSSJ VSSJ/MTJ
Barrier:Simple 593708.31 593923.12 1.00:1
Barrier:Tournament 463484.41 464356.84 1.00:1
ForkJoin:Simple 4275599.50 4149112.00 0.97:1
Sync:Method 38569.08 38291.19 0.99:1
Sync:Object 39630.60 39151.63 0.99:1

Geometric Mean 0.99:1
2 Threads

Benchmark MTJ VSSJ VSSJ/MTJ
Barrier:Simple 59084.70 56774.39 0.96:1
Barrier:Tournament 281715.28 251773.20 0.89:1
ForkJoin:Simple 1064.55 2956.97 2.78:1
Sync:Method 25168.76 25528.04 1.01:1
Sync:Object 25161.12 25140.38 1.00:1

Geometric Mean 1.19:1
4 Threads

Benchmark MTJ VSSJ VSSJ/MTJ
Barrier:Simple 11524.10 12479.68 1.08:1
Barrier:Tournament 151095.59 151325.28 1.00:1
ForkJoin:Simple No memory No memory
Sync:Method 14383.81 14376.10 1.00:1
Sync:Object 14575.08 14587.03 1.00:1

Geometric Mean 1.02:1

Table B.3: Stress Tests for the Multithreaded Jupiter with
a Fixed-Size Stack with Respect to a Variable-Size Stack

(VSSJ) Using the Java Grande Benchmarks

create close to 3 times the number of threads as the fixed-size stack version. On early

experimentation, the ForkJoin benchmark ran out of memory when using a fixed-size

stack configuration in some systems, and the variable-size stack enabled this benchmark

to run properly.

The slowdown is introduced when crossing the stack segment boundaries repeat-

edly, which is a case that requires special handling. Another cause is the constant

expansion and shrinking of the stack. The speed improvement is obtained for those

cases where a small stack is sufficient for running the Java application and the stack

needs remain fairly constant.
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