Jupiter: A Modular and Extensible
Java Virtual Machine Framework

Patrick Doyle

A Thesis submitted in conformity with the requirements
for the Degree of Master of Applied Science,
Graduate Department of Electrical and Computer Engineering,
in the University of Toronto

© Copyright by Patrick Doyle 2002

Jupiter: A Modular and Extensible
Java Virtual Machine Framework

Patrick Doyle
Master of Applied Science, 2002
Graduate Department of Electrical and Computer Engineering
University of Toronto

Abstract

We present and evaluate the design and implementation of a flexible and efficient
Java Virtual Machine (JVM) framework called Jupiter. This framework employs a
modular, object-oriented building-block architecture to provide the flexibility required
to explore a wide variety of design ideas with relatively little effort. In addition, the
Jupiter framework is designed to provide the performance necessary to properly eval-
uate the impact of various implementations and combinations of ideas. Evaluation of
Jupiter’s modular structure through modification experiments indicate that it is highly
flexible and extensible. Evaluation of the Jupiter interpreter’s performance using the
standard SPECjvm98 benchmark suite shows that it provides good performance: it
is 2.65 times faster than Kaffe, a freely available JVM, and 2.20 times slower than
Sun’s highly-optimized JDK interpreter. We believe that Jupiter’s unique flexibility
and good performance make it an excellent vehicle for research into JVM scalability

issues for high-performance computing on large multiprocessors.

i

Acknowledgments

I extend my sincerest thanks to all who provided the inspiration, advice, and as-
sistance I needed to make Jupiter work. To Tarek Abdelrahman, for his invaluable
feedback and high standards. If they are not reflected in this document, the fault is
entirely mine. To Carlos Cavanna, for his help with multithreading issues, for guiding
Jupiter on its first steps toward scalability, and for the many painful hours he has spent
finding and fixing my mistakes. And to Mathew Zaleski, for giving me the insights only
Mathew can give.

Thanks also to those who have worked on the projects that laid the foundations
upon which Jupiter was built. To the Classpath team and to Hans Boehm, for writing
90% of the code in the system I blithely refer to simply as “Jupiter.” And to the Kaffe
team, for proof by example when I needed it most, that a JVM can indeed be written.

Thanks most of all to my family and friends who have provided continuing love and
support. To my parents, for their innumerable words of wisdom, and their continuing
enthusiasm for documents with my name on them. Finally, to my wife Trixie, for
periodically placing food in front of me to keep me alive; and for her inexhaustible
patience, kindness, and devotion. This document represents as much work of hers as of

mine.

i

Contents

1 Introduction

1.1 'The Jupiter Java Virtual Machine Framework
1.2 Contributionso
1.3 Thesis Organization oo
2 Architecture
2.1 System Structure
2.2 BaselInterfaces Lo
2.2.1 MemorySource
2.2.2 Class Metadata
2.2.3 Object and ObjectSource
2.2.4 Context, Frame, and FrameSource
2.2.5 ExecutionEngine00 000000
2.2.6 Thread and Monitor
2.2.7 Native and NativeSource
2.2.8 OpcodeSpec
2.3 Configuration Examples 00000
2.3.1 In-place Substitution
23.2 Stacking
2.3.3 Reconfiguration Lo o oo
2.3.4 Efficiency Issueso
24 Related Work
2.4.1 JVM Implementations
2.4.2 Modularity Research 000000
2.5 Conclusion e

3 Implementation

3.1 Overview of Diagrams L.
3.2 Memory Allocation
3.3 Classfile Parsing Lo
3.4 Bytecode Interpretation,
3.5 Stack Layout
3.6 Object Layout
3.7 Method Lookupo
3.8 Conclusion

v

s

4 Design for Flexibility

4.1 Interface coding conventions
4.2 Design by Contract Lo
4.2.1 Local variable/operand stack access
4.2.2 Array element access
4.3 Splitting over-constrained interfaces o000
4.3.1 Context versus FrameSource
4.3.2 Threading Interfaces L.
4.3.3 ObjectSource versus MemorySource

4.4 Modularizing

by maintenance characteristics

4.4.1 Frame and FrameSource
4.4.2 Native versus NativeSource

4.5 Pervasive error handlingo o000
4.6 Conclusion L

5 Design for Performance

5.1 Interface Design Techniques
5.1.1 Design by Contract L.
5.1.2 Lazy computation o000
5.1.3 Reducing implied arithmetic

5.2 Implementation Techniques
5.2.1 Promoting Function Inlining
5.2.1.1 Minimizing common-case code size

5.2.1.2 IncludeGen L.

5.2.2 Exploiting Immutabilityo 00000
5221 Value o

5222 Type.o

5.2.2.3 MemorySourceo

5.3 Conclusion

6 Experimental Evaluation

6.1 Flexibility .

6.1.1 Stackreversal

6.1.2 Scalar
6.1.3 Quick
6.2 Performance

Array Allocation
Opcodes

6.2.1 The Implementation
6.2.2 The Compiler Lo
6.2.3 Conclusion.

7 Conclusions
7.1 Future Work

Bibliography

49
ol
o4
26
26
o7
60
62
64
65
66
66
67
70

71
71
72
74
76
7
78
79
80
83
84
85
87
88

89
90
91
93
96
98
102
105
109

110
111

112

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

4.1
4.2
4.3
4.4
4.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Jupiter’s conceptual structure L. 7
A typical building-block structure 8
Simple object allocation building-block structure 14
Interposition of a stackable module 15
Reconfiguration to allow atomic memory allocation 17
Locality decisions at the MemorySource level 19
Locality decisions at the ObjectSource level 19
Locality decisions at the ExecutionEngine level 20
Object diagram legend L 29
Module diagram legendo Lo 30
Module directory dependency hierarchy 30
Memory allocation objects 31
Memory allocation modules 33
Classfile parsing objects 34
Classfile parsing modules oo, 36
Bytecode execution modules L. 37
Stack layouto 39
Stack-related modules Lo 41
Object layout objects 41
Object layout modules oo oo 43
Method lookup objectso oL 45
Method lookup modules 47
Constraints on the interface design space 58
An over-constrained design space 59
An over-constrained interface split intotwo 59
Design constraints after interface splitting 60
Multithreading modules and interfaces 63
Using a separate MemorySource to allocate scalar data 95
Scalar data allocated from the original MemorySource 96
Execution profile before applying optimizations 102
Effect of each optimization on benchmark execution times 104
Execution profile after applying optimizations 105
Poorly-optimized assembly code to implement qgetfield 107
Hand-optimized qgetfield code 108

vi

List of Tables

6.1 Execution time of each benchmark using each JVM

vil

Chapter 1

Introduction

The use of the Java programming language has steadily increased over the past few
years, in large part because of its portability. A Java program is first compiled into
bytecode and stored in a classfile, a portable executable format targeted to an abstract
platform specification known as the Java Virtual Machine, or JVM. The compiled
program is then executed by a run-time system that emulates the JVM!. This approach
allows programs written in Java to execute on a wide variety of platforms, wherever a
JVM run-time system has been implemented.

However, in spite of its popularity, the use of Java remains limited in high-
performance computing, mainly because of the performance degradation caused by
the need to emulate a machine different from the host architecture. To address this
issue, a wide variety of technologies have been developed to improve virtual machine
performance. The most significant such technology is just-in-time (or “JIT”) compi-
lation [AAB100, IKY 199, MOS*98, Mar01], which translates bytecode into equivalent
code native to the host machine immediately prior to execution, allowing that code to
execute without the performance penalty of emulation.

An independent and complementary approach to improving the performance of Java
programs is to execute the JVM in parallel on a large number of processors. Ideally, a

JVM that takes this approach should be scalable; that is, it should not impede the Java

!The run-time system itself it commonly referred to simply as a “JVM;” hence, we adopt this

terminology throughout this document.

program’s ability to make use of all the processing resources available. JVM scalability
is a difficult problem, even for a small number of processors, and a great deal of work
has been done on the use of small-scale multiprocessors [AAB100, DAKO00], and even
small clusters of workstations [AWCT01, MWLX99, PZ97, AFT99, ABH*01, YC97,
KHBBO01], to improve the performance of Java programs.

The goal of the Jupiter project at the University of Toronto [Jup02] is to develop
a JVM that scales to a large number of processors?. It is envisioned that, for the
project to achieve this goal, it will be necessary for the JVM to examine several design
issues, including locality-enhancing memory allocation, exploitation of relaxed mem-
ory consistency models, parallel garbage collection, and efficient threads and synchro-
nization [DAO1]. To examine alternative approaches to addressing these issues, it is
necessary to have a flexible JVM framework that facilitates the exploration of differ-
ent strategies by multiple researchers, and to multiply their individual efforts by easily
combining their contributions.

Regrettably, existing JVMs whose source code is available for research do not offer
the level of flexibility to prototype ideas quickly, and hence tend to impede progress.
Some, such as Sun’s JDK [Sun02] or Kaffe [Wil02] are not designed primarily to be flex-
ible research platforms, making experimentation on these systems difficult. Others are
designed to be flexible only in certain specific areas, such as Jalapefio [AAB*00, Jal02]
and OpenJIT [MOS*98, Mar01], which are designed for research into JIT compila-
tion. In order to pursue the above research goals, a JVM with pervasive, fine-grained
flexibility is needed.

It is this need that motivated our development of the Jupiter Java Virtual Ma-
chine (henceforth referred to simply as “Jupiter”), a modular and extensible framework
designed to support experimentation with a wide variety of techniques for improving

performance and scalability.

2The ultimate target of the current work is a cluster of up to 128 processors.

1.1 The Jupiter Java Virtual Machine Framework

Jupiter is a JVM framework based on a highly flexible building-block architecture that
allows JVM implementations to be assembled out of component parts with a small
investment of effort. The component modules themselves are designed to insulate de-
sign decisions from each other, allowing them to be combined in powerful ways, thus
multiplying the efforts of individual researchers. Furthermore, because the underlying
motivation for Jupiter’s flexibility is to achieve good performance, the module interfaces
have been carefully designed to allow for efficient implementations.

The current implementation of Jupiter is a functional JVM that provides the basic
facilities required to execute Java programs. It has a single-threaded interpreter, with
multithreading capabilities currently under development by other researchers [Cav02].
Jupiter gives Java programs access to the Java standard class libraries via a customized
version of the GNU Classpath library [CP02], and is capable of invoking native code
through the Java Native Interface [JNIO2]. Nonetheless, it currently has no bytecode
verifier, no JIT compiler, and no support for class loaders written in Java, though the
design allows for all these things to be added in a straightforward manner. The perfor-
mance of Jupiter’s interpreter has been tuned to the point that it is comparable with
commercial and research interpreters (as discussed in Section 6.2) while still maintaining
a high degree of flexibility.

Jupiter is written in an object-oriented style, even though it is implemented in C.
Although languages such as Java or C4++ would provide more support for an object-
oriented programming style, with facilities for encapsulation, inheritance, and polymor-
phism, we have chosen C because we did not have confidence in the ability of other
languages to provide the facilities required to achieve good performance. C provides
the trade-off between ease of use and performance that we feel is most conducive to
future JVM research. It is a proven tool for writing high-performance systems, and by
the use of design techniques covered later in this thesis, we have achieved the level of
flexibility. Despite the lack of object-oriented features in the implementation language,
we still refer to Jupiter using object-oriented terminology throughout this document.

Such Jupiter concepts as “object,” “class,” and “interface” are all analogous to their

Java counterparts.
The use of flexible, efficient building-blocks to construct a high-performance scalable
system is a technique that has proven successful on other systems [K4201, FSUZS8S,

Gam99, KS97], and we expect the same benefits to emerge from its use in Jupiter.

1.2 Contributions

Our contribution is the design and implementation of a flexible JVM framework that
delivers acceptable performance. Jupiter’s building-block architecture and careful mod-
ule design allow modifications to be made with relatively little effort, supporting the
rapid exploration of design alternatives. Experimentation with our framework demon-
strates this flexibility, by easily implementing a number of sophisticated modifications,
some of which are difficult to accomplish using Kaffe [Wil02], another freely-available
JVM.

This flexible architecture comes with a small enough performance cost that future
experimental results acquired from Jupiter can be expected to be applicable even to
JVMs with cutting-edge performance. Performance measurements using the single-
threaded SPECjvm98 benchmarks [SPE02] show that the performance of Jupiter’s in-
terpreter exceeds that of Kaffe by a factor of 2.65, and is comparable with that of Sun’s
JDK [Sun02]—a highly optimized commercial JVM-—within a factor of 2.20.

1.3 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 presents an overview
of Jupiter’s architecture, along with its design philosophy, and a survey of the ma-
jor system components. Chapter 3 discusses implementation, describing the contents
of the components with the goal of clarifying their purpose, as well as describing the
work that has gone into achieving Jupiter’s current level of functionality. Chapter 4
discusses flexibility, presenting a number of design techniques that have allowed us to
achieve flexibility within Jupiter. Chapter 5 discusses performance, presenting the de-

sign considerations that have given Jupiter its current level of performance despite its

flexibility. Chapter 6 demonstrates the impact of all these design decisions by present-
ing evidence of Jupiter’s flexibility and performance. Chapter 7 presents concluding

remarks, and discusses opportunities for future work.

Chapter 2

Architecture

Before the design of a system can be addressed, it needs to have an architectural vision
that supports the underlying philosophy of the system. For Jupiter, the requirement
of flexibility led us to choose a building-block architecture, viewing the system as an
assemblage of building-block facilities managing the resources of the running Java pro-
gram. In this chapter, we present these concepts, and provide a series of examples that
demonstrate how our goals can be achieved by this choice of architecture. Afterward,

we finish the chapter with a brief review of related work.

2.1 System Structure

It is indicative of a clear, unified, cohesive system that its purpose can be described
by single short sentence. For Jupiter, this sentence reads as follows: “A JVM is a
device to manipulate computational resources on behalf of a Java program.” This
philosophy is depicted in Figure 2.1, which gives a highly simplified view of Jupiter’s
conceptual structure. In the center is the ExecutionEngine, the control center of the
JVM which decodes the Java program’s instructions and determines how to manipulate
the program’s resources to implement those instructions. The resources themselves are
shown as ovals, and include Java classes, fields, methods, attributes, objects, monitors,
threads, stacks and stack frames (not all of which are shown in the diagram).

The responsibility for managing each resource is delegated by the ExecutionEngine

Class Loader Memory Allocator

\ /
ClassSource \ MemorySource / ObjectSource
\ /

CEPRCED R CED R ERCTEPNCIED

——————— ExecutionEngine - - - - = = =

! \
onitoDy, (oniody ; (Tread, (Thread | (ative , (Native)
/ \
MonitorSource / ThreadSource \ NativeSource

/ \

Thread Library Native Libraries

Figure 2.1: Jupiter’s conceptual structure. Resource management responsibility is di-
vided and delegated to number of Source modules, leaving the ExecutionEngine with a

“pure,” simplified view of the system’s resources.

to a particular Source class, each shown as a rectangle within the pie slice that surrounds
the resource it manages. The Sources insulate the ExecutionEngine from the details
of how resources are managed. Sources share a simple, uniform interface: every Source
class has one or more get methods which return an instance of the appropriate resource.
Each get method has arguments specifying any information needed by the Source to
choose or allocate that resource, and the Source is responsible for deciding how the
resource should be created, reused, or recycled.

An incarnation of Jupiter, then, is constructed by assembling a number of Source
objects in such a way as to achieve the desired JVM characteristics, a scheme referred
to as a building-block architecture [KS97]. As each Source is instantiated, its constructor
takes references to other Sources it needs in order to function. For instance, as shown
in Figure 2.1, the ObjectSource makes use of a MemorySource, so the ObjectSource
constructor would be passed a reference to the particular MemorySource object to which
it should be connected. The particular Source objects chosen, and the manner in which

they are interconnected, determines the behaviour of the system.

ExecutionEngine

[NativeSource opcodeSpec]
ClassSource [ObjectSource] ThreadSource
TMonitorSource]
<

MemorySource FrameSource

MethodBody

ConstantPool
MethodDecl

Figure 2.2: A typical building-block structure. Sources are shown above the dashed
line, and resources below. The Context object acts as a link between the two when the

Java program first begins to execute.

The assembly of a JVM our of Jupiter’s Source objects is much like the manner
in which Unix command pipelines allow complex commands to be constructed from
discrete programs. Each program is “instantiated” into a process, and each process is
connected to other processes, via pipes, as described by the command syntax. Once
the process and pipe structure has been assembled, data begins to flow through the
structure, and the resulting behaviour is determined by the particular choice of programs
and their interconnections. Likewise, an incarnation of Jupiter is first constructed by
instantiating and assembling Sources; once the JVM is assembled, the Java program
begins to flow through it, like data through the command pipeline. The behaviour of
the JVM is determined by the choice of Source objects and their interconnections.

Figure 2.2 shows part of a typical running incarnation of Jupiter, consisting of inter-
connected Source objects through which the resources of the executing Java program

flow. Also depicted is a typical collection of resource objects. In particular, the Context

object represents the call stack for an executing Java program. To begin execution, a
Context is constructed and passed to an ExecutionEngine, which sets the rest of the
JVM in motion to interpret the program. From the Context object, the MethodBody
object can be reached which possesses the Java instructions themselves. By interpret-
ing these instructions and manipulating the appropriate sources and resources in the
appropriate way, Jupiter is able to perform the indicated operations, thereby executing

the Java program.

2.2 Base Interfaces

In any system, some interfaces are fundamental, while others are artifacts of particular
implementation decisions. Fundamental interfaces are unlikely to change often, while
less fundamental ones may change as new implementation decisions are made. All
interfaces fall into a spectrum, with the most fundamental and stable at one end, and the
most experimental and volatile at the other. Jupiter represents this spectrum explicitly
in its module structures, with the most fundamental modules grouped together in a
package known as the base directory'.

These interfaces are the foundation upon which Jupiter is constructed; together,
they define those aspects of the system that do not change despite Jupiter’s tremendous
flexibility. The base directory includes interfaces to all the facilities that any JVM is
required to possess, no matter what configuration, permutation, or modification might
be employed. Hence, any code that depends only on these interfaces is completely
“portable” in the sense that it can be used within any incarnation of Jupiter.

One central design challenge in Jupiter has been to choose the right interfaces for
inclusion in the base directory. If too much functionality is exposed through these
interfaces, the range of implementation possibilities becomes constrained by the need
to provide the required semantics. If too little, then implementors will be forced to de-
pend on non-base interfaces to access the desired functionality, thus increasing module
interdependencies throughout the system, and defeating the purpose of having base

interfaces in the first place. For each interface, therefore, we must as the question “does

!The package hierarchy arising from the interface stability spectrum is depicted in Figure 3.3.

10

every JVM possess this functionality?” If the answer is “no,” the interface must be
redesigned to eliminate constraints on its implementation.

The remainder of this section gives brief tour of the base interfaces of Jupiter.

2.2.1 MemorySource

MemorySource can be considered one of the most fundamental of the base interfaces,
since it does not depend on any other interface, and practically every module in the
system makes use of memory in one way or another. It is deliberately as simple as
possible, in order to accommodate many different implementations. It provides just
one function, called “getMemory,” which takes the size of the memory block required,
and returns the resulting block.

Jupiter provides no interface between the memory allocator and the garbage col-
lector. Both of these facilities, and all their interactions, are hidden behind the
MemorySource interface. See Section 7.1 for a discussion of the limitations of this

interface.

2.2.2 Class Metadata

Jupiter creates metadata resource objects to represent the Java program itself. These
objects take the form of Classes, MethodDecls, MethodBodies?, and Fields. Jupiter
accesses classes by name through the ClassSource interface, using a function called
getClass. Omnce a Class has been acquired, its Fields and MethodDecls and
MethodBodies can be accessed in order to perform the operations required by the
running Java program.

In accordance with Java semantics, ClassSource keeps track of the Class returned

for each name, so that future references to the same name return the same Class object.

2For more information on the relation between MethodDecl and MethodBody, see Section 3.7.

11

2.2.3 Object and ObjectSource

The Object interface represents the objects in a running Java program, hiding their
internal representation from the rest of Jupiter. There are two kinds of objects: ar-
rays, and instances of non-array classes. In Jupiter, these are referred to as Arrays
and Instances, respectively. Both are descended from a common “superclass” called
Object, and both can be allocated by ObjectSource through the getInstance and
getArray functions. Each function takes the Class being instantiated, plus any other
necessary information (such as the dimensions for an array), and returns the new

Object.

2.2.4 Context, Frame, and FrameSource

Each Java thread has a number of data items associated with it, aside from the shared
object heap. These items are known collectively as a Context, and are accessible through
the Context interface. A Context is simply the call stack for a thread; specifically, it is
a collection of individual stack frames for the methods in progress within that thread.
The frames themselves are represented by the Frame interface, which provides access to
the components of each Java stack frame, including the local variables, operand stack,
program counter, etc.

When a method is invoked, a new Frame is needed. The Frame is acquired by the
Context from the FrameSource interface, through the getFrame function.

Representing the Java context entirely as a data structure allows Java threads to be
migrated, simply by executing a given Context on a different native thread. This stands
in contrast to the more straightforward scheme that implements method invocation by
recursion within the execution engine [Wil02|, causing context information to be stored

on the native stack, and precluding this kind of migration.

2.2.5 ExecutionEngine

The ExecutionEngine class decodes the bytecodes and performs the actions neces-

sary to implement each instruction. Its interface is quite simple, consisting of a single

12

function called ee_executeTo that takes a Context as an argument, and executes the
method whose frame is on top of the Context’s call stack.

This interface is intended to be as flexible as possible, to allow for a variety of
execution scenarios. For ideal flexibility, the function would execute a single instruction
and then return, giving the caller complete control over the execution process. However,
this would add enormous overhead to the cost of executing each instruction, and is thus
impractical. Another possibility would be to execute until a method is invoked or
returned; however, again, this would add considerable overhead to programs that make
many short-lived method invocations.

To provide the desired degree of control, the ee_executeTo function takes an addi-
tional argument called the stop frame; execution proceeds until the stop frame is found
to be at the top of the call stack. This allows for large quantities of code to be executed
with a single function call, yet still permits the desired control over execution.

For example, there are situations in which the JVM needs to invoke Java methods
“spontaneously,” without being instructed to do so by the Java program itself, such as
when a newly-loaded class is initialized. In such cases, the stop-frame technique allows
an existing Context to be re-used: a new frame is pushed onto the call stack for the
class initializer, and then ee_executeTo is called with the previous top frame as the
stop frame. When that frame is eventually found to be the topmost frame on the call
stack, that means the class initializer has terminated (either by returning normally or
throwing an exception). At that time, ee_executeTo will return, which is exactly the

desired effect.

2.2.6 Thread and Monitor

Jupiter provides two resources that cooperate to implement Java’s multithreading capa-
bilities: Thread and Monitor. The Thread interface provides the means for executing a
Context concurrently with others, and the Monitor interface provides the functionality
required to implement Java’s synchronization semantics [LY99]. These resources are
created and managed through the ThreadSource and MonitorSource interfaces.

Our initial implementation of Jupiter is single-threaded. Others are pursing a mul-

13

tithreaded implementation [Cav02], and although it is largely functional at the time of
writing, multithreading is outside the scope of our own work, and so we do not discuss

the Thread and Monitor interfaces in detail in this document.

2.2.7 Native and NativeSource

A Native represents the body of a single native method, and embodies everything
needed to call that method, including the calling conventions and any extra implicit
arguments required. The NativeSource interface provides a getNative function that
provides the appropriate Native for a given native method. Typically, it looks up the
Native in a shared library or DLL using whatever introspective capabilities are provided
by the system. However, NativeSource could also be used to model a JIT compiler,

which could fabricate a Native for each method as needed.

2.2.8 OpcodeSpec

Assuming that Jupiter’s base interfaces achieve their goal of providing access to all the
essential JVM functionality in a very general way, it becomes possible to describe the
actions performed by each Java opcode entirely in terms of those base interfaces. This
is the role of the opcodeSpec module, which specifies each opcode in a manner that
is independent of the implementation decisions made by any particular incarnation of
the Jupiter system. The task of building a JVM is largely reduced to that of providing
implementations for each base interface. Once the base interfaces are implemented,
opcodeSpec ensures that the JVM will have the correct behaviour according to the

Java specification.

2.3 Configuration Examples

In this section, we demonstrate Jupiter’s flexibility by examining several configurations
of the system’s building-block modules. We focus mainly on a recurring example—the
object creation subsystem—though some other examples are also provided to illustrate

how the same kind flexibility can be found throughout the system. Through examples,

14

[Execution Engine]

{

[ObjectSource]

S

[MonitorSource]

&
[MemorySource]

Figure 2.3: A simple object allocation building-block structure.

we present several ways in which Jupiter can be modified (which we refer to as “modes
of extension”).

Object creation begins with ObjectSource, whose getObject method takes a Class
to instantiate, and returns a new instance of that class. At the implementation level,
Java objects are composed of two resources: memory to store field data, and a monitor to
synchronize accesses to this data. In order to allocate the memory and monitor for a new
Object, the ObjectSource uses a MemorySource and a MonitorSource, respectively.
The MemorySource may be as simple as a call to a garbage collected allocator such as
the Boehm conservative collector [BW88, Boe02]. Typically, the MonitorSource uses
that same MemorySource to allocate a small amount of memory for the monitor.

The objects employed by such a simple scheme are shown in Figure 2.3, where
arrows indicate the uses relation between the objects. The ExecutionEngine at the
top is responsible for executing the bytecode instructions, and calls upon various facility
classes, of which only ObjectSource is shown. The remainder of this section will explore
the system modifications that can be implemented by reconfiguring the building blocks

of this archetypal object allocation scheme.

2.3.1 In-place Substitution

Having established the basic structure of the object allocation subsystem, there are
many modifications that can be explored. To begin with, suppose an alternative lay-
out for the object fields is desired [GHO1]. Such a modification simply substitutes a

new ObjectSource which computes the proper size of the object based on the new

15

[ExecutionEngine]

[(stackable module)]

[ObjectSource]

S

[MonitorSource]

&
[MemorySource]

Figure 2.4: Interposition of a stackable ObjectSource module.

layout?, and uses the same MemorySource and MonitorSource. Conversely, using a
different garbage collector means substituting the MemorySource while using the same
ObjectSource and MonitorSource. Hence, this structure allows different modifications
to be used orthogonally: a new object layout can easily be used with or without a new
garbage collector since each modification is confined to a single module.

This represents the simplest mode of extension to the Jupiter system: in-place
substitution of a single module. A great many modifications can be implemented this
way. It is the most desirable kind of extension, since it has the least impact on the
rest of the system. However, there are more advanced modifications which cannot be

implemented this way.

2.3.2 Stacking

A second mode of extension involves stacking new modules on an already-working
building-block structure. The enabling characteristic is that the stacking module must
import and export the same interface. Anywhere that interface is used, a stackable
module can be interposed transparently between caller and callee, thus extending the
functionality of that interface in some specific way.

One application for module stacking is profiling: by interposing a data-collecting

30f course there is more to changing the object layout than simply computing the proper object

size, but this is not pertinent to our example.

16

layer between caller and callee, information can be gathered regarding the usage of
that interface. For example, this technique allows us to do memory profiling using the
configuration shown in Figure 2.4. The Tracer object can record information in the
memory chunks it allocates, by requesting slightly larger chunks from the underlying
MemorySource. Then, when the garbage collector does its traversal of the memory
contents, it can also report statistics on memory usage.

Module stacking can also be used to assist the testing process. To be effective,
tests should cover as much of the code as possible. Ideally, the test suite should cover
every line of code, but this is difficult because of error-handling code which only exe-
cutes under unusual circumstances. It is sometimes difficult to reproduce circumstances
such as out-of-memory conditions, especially on modern virtual-memory operating sys-
tems, whose performance becomes unacceptably poor long before virtual memory is
exhausted. Further, even if such conditions could be synthesized by limiting the mem-
ory available to the JVM, it may still be difficult to cause error conditions to occur at
all the appropriate places to exercise all error-handling code.

This problem can be addressed by interposing a module whose only purpose is to
cause errors to occur at predictable “error injection sites” in the code. For exam-
ple, an ErrorMemorySource can be added to check the source code coordinates of the
getMemory call, again using the configuration shown in Figure 2.4. Most calls are for-
warded to the underlying MemorySource. However, when the coordinates match that
of an error injection site, getMemory will report an error, causing the appropriate error-
handling code to be exercised*. This same technique could be applied to any interface

in the system, to check the system’s handling of errors encountered by that interface.

2.3.3 Reconfiguration

A third mode of extension involves changing the configuration of the modules. In many

cases, the modules need not be modified at all; only their relations with respect to other

4In Jupiter’s implementation of this scheme, the injections sites are established by calls from the
Java code itself, through native methods provided by a special Util class. This allows all the conditions

required for the test to be controlled from within the Java code.

17

[ExecutionEngine]

{

[ObjectSource]

SN
/ [MonitorSource]

&
[AtomicMemorySource] [MemorySource]

Figure 2.5: Reconfiguration to allow atomic memory allocation.

modules change. This mode of extension permits a variety of modifications that are
not possible with stacking and/or in-place substitution alone.

For example, imagine the MemorySource being used by our system is a conservative
garbage collector, such as Boehm’s. This type of collector has difficulty dealing with
large arrays of scalar (non-pointer) data. If the data in the array is sufficiently large, and
its contents are sufficiently random, it becomes likely that there will exist a word-size
sequence of bytes which are indistinguishable from a pointer. Due to the conservative
nature of the garbage collector, such false pointers cause it to retain objects which are
actually unreachable. If more than one large array exists, the problem is compounded,
because the large size of the arrays makes it likely that a false pointer in one array will
point somewhere within another. For instance, on a 32-bit architecture, the existence
of two 300KB arrays of random bytes will result in a 99% chance that each will have a
false pointer to the other®. If either array is reachable, both will be retained, which is
all the more harmful precisely because the arrays are large.

To prevent a breakdown of the garbage collector in such cases—and to avoid the
unnecessary scanning of large scalar arrays in the first place—it is desirable to inform the
collector that certain areas of memory contain no pointers, and need not be scanned; i.e.

that they are atomic®. It may appear at first that the simplistic MemorySource interface

5This assumes arrays of uniformly distributed 4-byte pointers, covering a 4-gigabyte address space.
6The distinction between “scalar” and “atomic” is the distinction between policy and mechanism:

“scalar” describes data that contains no pointers, while “atomic” refers to memory blocks that are not
scanned for pointers by the garbage collector. Note that scalar data can be stored in memory which is

not atomic.

18

provides no mechanism for passing this kind of information to the underlying memory
manager; however, the building-block structure can be reconfigured to accomplish this.
The result is shown in Figure 2.5. Two MemorySources are provided: a new one (the
AtomicMemorySource) for allocating only memory which will not contain pointers, and
the original one with conservative semantics. The ObjectSource now makes use of
the AtomicMemorySource to allocate scalar arrays, and the regular MemorySource for
everything else. Thus, a modification that appears not to be feasible using Jupiter’s
interfaces can be implemented easily by reconfiguring the building blocks.

A similar mode of extension is useful to address Jupiter’s scalability on a multipro-
cessor system with non-uniform memory accesses (NUMA). In such a system, accessing
local memory is less time-consuming than accessing remote memory. Hence, it is desir-
able to take advantage of local memory whenever possible.

Suppose the memory allocator on a NUMA system takes a node number as an
argument and allocates memory in the physical memory module associated with that

node:

void *nodeAlloc(int nodeNumber, int size);

We can make use of this interface, even though our getMemory function does not
directly utilize a nodeNumber argument. We do so by having one MemorySource object
for each node in the system. We then choose the memory module in which to allocate
an object by calling upon that node’s MemorySource.

There are a number of ways the ExecutionEngine can make use of these multi-
ple MemorySources. One way would be to use a “facade” MuxMemorySource mod-
ule that chooses which subordinate node-specific MemorySource to use, in effect mul-
tiplexing several MemorySources into one interface. This is shown in Figure 2.6.
MuxMemorySource uses appropriate heuristics (such as first-hit or round robin) to dele-
gate the request to the appropriate subordinate MemorySource. The advantage of such
a configuration is that it hides the locality decisions inside MuxMemorySource, allowing
the rest of the system to be used without any modification.

A second possibility is to manage locality at the ObjectSource level, as shown in

Figure 2.7. MuxObjectSource is similar to MuxMemorySource, in that it uses some

19

[ExecutionEngine]

{

ObjectSource

N
[MonitorSource]
K

[MuxMemorySource J

MemorySource1 MemorySourceN

Figure 2.6: Locality decisions made at the MemorySource level.

[Execution Engine]

i

[MuxObjectSource]

/ mEEn

[ObjectSource] ObjectSource

S S

[MonitorSource] [MonitorSource]

& &

[MemorySource1] [MemorySourceN]

Figure 2.7: Locality decisions made at the ObjectSource level.

heuristics to determine the memory module in which to allocate an object. We can
use the same node-specific MemorySource code as in the previous configuration from
Figure 2.6. We can also use the same ObjectSource and LockSource classes as in the
original configuration (Figure 2.3); we simply use multiple instances of each one. Very
little code needs to change in order to implement this configuration.

Yet a third possibility is to allow the ExecutionEngine itself to determine the
location of the object to be created. Since the ExecutionEngine has a great deal of in-
formation about the Java program being executed, it is likely to be in a position to make
good locality decisions. In this configuration, shown in Figure 2.8, the ObjectSource
and MemorySource remain the same as in the original configuration. The execution

engine chooses where to allocate its objects by calling the appropriate ObjectSource.

20

[Execution Engine]

/ mEEn

[ObjectSource] ObjectSource

S S

[MonitorSource] [MonitorSource]

& &

[MemorySource1] [MemorySourceN]

Figure 2.8: Locality decisions made by the ExecutionEngine itself.

Again, we have not changed ObjectSource or LockSource classes, and the node-specific
MemorySource class is the same one from the previous configurations.
These examples illustrate the rich variety of system configurations which can be

implemented with minimal effort due to the flexibility of the building-block architecture.

2.3.4 Efficiency Issues

At first glance, it would appear that our flexible structure results in much object dupli-
cation within the JVM. All the proposed memory allocator structures have portions that
are duplicated, one for each node. In a system with many nodes, this could amount to
hundreds of small objects. A JVM that does not provide the flexibility or modularity of
Jupiter could make calls to the nodeAlloc interface directly from the ExecutionEngine
with no need to create and maintain additional objects. Hence, it would appear that our
system incurs overhead to maintain these objects, resulting in extra CPU and memory
usage, and poor cache locality. For a researcher interested in performance, it would be
tempting to bypass the module structure entirely, thereby degrading the extensibility
of the system.

However, this overhead can be eliminated by exploiting the immutability of the data
contained in these objects. Immutable data can be freely replicated, unlike mutable
data which needs careful coordination to ensure consistency among the various copies.
In the present situation, because the data is immutable, it is possible to avoid creating
and manipulating hundreds of small objects. Instead, they can be constructed on

demand, perhaps on the stack or even in registers; passed around the system by value;

21

and discarded when they are no longer needed. This allows us to regain a high level of
performance while still enjoying the benefits of Jupiter’s modular design.

Consider for example the Jupiter configuration with the locality management in
MuxMemorySource, which was shown in Figure 2.6. For each MemorySource, the node
number is fixed. The header file MemorySource.h defines the MemorySource class, using

the following definitions:

typedef struct ms_struct *MemorySource;
void *ms_getMemory(MemorySource this, int size);

However, a developer could provide a new implementation of this header file (thus
overriding the base implementation) by substituting the above definitions with the

following:

typedef struct ms_struct {
int nodeNumber;
} MemorySource;

static inline MemorySource ms_forNode(int nodeNumber) {
/* Returns the MemorySource for the given node */
MemorySource result = { nodeNumber };
return result;

}

Since the node number of any given MemorySource is fixed, it can be passed by
value. The result is that there is no need to create all the MemorySources ahead of
time; instead, they are created as temporaries whenever they are needed. The effect
is much like currying [CHS72|, whereby a function call with multiple arguments is
transformed into a series of function calls with one argument. In our case, recall that

memory allocation on our cluster system looks like this:

void *ptr = nodeAlloc(nodeNumber, size);

With currying, code in Jupiter can achieve the same semantics with a call like this:

void *ptr = ms_getMemory(ms_forNode(nodeNumber), size);

Notice that we have “sneaked” an extra parameter (the node number) into the

ms_getMemory call by packing it into the this object. Any number of extra arguments

22

could be passed this way. Such code has the advantage that it still conforms to Jupiter’s
Base class interface for MemorySource, and so it can still be used by other parts of the
system which are unaware of this scheme of memory allocation. Thus, the information
hiding properties of the modules are preserved.

We cannot overlook the fact that our example in Figure 2.6 also uses a sec-
ond type of MemorySource: the MuxMemorySource. To be treated as a true
MemorySource by the rest of the system, the MuxMemorySource must use the inter-
face defined in MemorySource.h. This could be achieved in our case by representing
the MuxMemorySource by an invalid node number, say -1, and treating it specially us-
ing an if statement. It is reasonable to expect the if statement to be optimized away
whenever the node number is known at compile time, which should almost always be
the case.

If the C compiler cannot put structs in registers, making our MemorySource imple-
mentation too slow, we could go the final step and simply declare MemorySource to
be an int. (We then lose some type safety, because C’s type system will not distin-
guish a MemorySource from any other integer, but we gain performance.) Our final

MemorySource.h would look like this:

typedef int MemorySource;
static inline MemorySource ms_forNode(int nodeNumber){ return nodeNumber; 32
static inline MemorySource ms_mux(){ return -1; } /* The MuxMemorySource */

static inline void *ms_getMemory(MemorySource this, int size){
if (this == ms_mux())
return nodeAlloc(/* The appropriate node */, size);
else
return nodeAlloc(this, size);

At this level there is no performance penalty for using Jupiter’s MemorySource
interface: the MemorySources are just integers, and as far as the compiler is concerned,
the signature for ms_getMemory looks exactly like that of nodeAlloc. Further, as wildly
different as they are, these definitions are source-code compatible with the original base
version of MemorySource.h: code recompiled with these new definitions will work as it

always did. That we can produce an implementation which is source-code compatible

23

with the existing module, yet which suffers no performance penalty from the module

interface, demonstrates the remarkable flexibility of the Jupiter system.

2.4 Related Work

Previous work in a number of areas has influenced the design and implementation of
Jupiter. We have strived to combine the best existing theory and practice with a few
original ideas on how to create flexible systems, and apply them to the construction of
a highly flexible JVM. Therefore, Jupiter’s influences stem from two different sources:

JVM implementations, and modularity research.

2.4.1 JVM Implementations

There are a number of JVM framework projects designed for flexibility. However, they
all address a particular dimension of JVM design. In contrast, Jupiter’s flexibility is
intended to be pervasive and fine-grained, allowing straightforward modification of any
aspect of the system.

The original JVM, Sun’s JDK [Sun02], is available in source-code form for research
purposes. It is modular in a way that permits experimentation in certain dimensions,
with certain portions of the system designed to be interchangeable. In contrast, Jupiter
has taken on modularity as a fundamental architectural feature, and is intended to
provide flexibility in many more dimensions, at a smaller level of granularity. Rather
than view the system as a unit with certain interchangeable parts, Jupiter views the
system as composed of nothing but interchangeable parts. Instead of prescribing that
certain parts of the system be flexible, Jupiter’s flexibility emerges from its pervasive,
fine-grained module structure.

The Kaffe project [Wil02] is an freely available JVM which claims modularity as
one of its features. Like the JDK, Kaffe’s modularity provides flexibility in certain
dimensions, specifically: threading, memory management, native method interfacing,
and native system calls. However, much like the JDK, Kaffe does not share Jupiter’s

pervasive, fine-grained approach toward flexibility.

24

In addition, there are a number of other JVM projects that are intended for research.

IBM’s Jalapefio JVM[AAB*00, Jal02] (now part of the Jikes Research Virtual Ma-
chine project[Jik02]), is designed to explore the implementation of an industrial-grade
server JVM written in Java. Though its object-oriented design undoubtedly possesses
some degree of inherent flexibility, it appears to embody certain implementation deci-
sions, such as object layout, stack layout, method dispatch, etc. It is not clear whether
these aspects of the system can be easily changed in Jalapefio, while Jupiter allows
them to be changed with minimal effort.

Perhaps the closest relative to Jupiter is the Joeq JVM [Wha02] developed during
the same time period as Jupiter by John Whaley, one of the original designers of the
Jalapetio project. Like Jupiter, Joeq is designed to be flexible to facilitate research into
JVM implementation techniques. It is written in Java in an object-oriented style, so
it is likely to be inherently flexible. However, it does not arrange its facilities into the
building-block architecture that Jupiter exploits to achieve its high degree of modularity.

The OpenJIT project [MOST98, Mar(01] is an object-oriented framework for ex-
perimenting with JI'T compiler designs, written in Java. It is implemented as a JIT-
compiler plug-in to Sun’s JDK. Hence, it limited to JIT compiler research specifically,
while Jupiter is intended to facilitate all aspects of JVM research.

The SableVM project [GHO1] is a framework for research into efficient bytecode
interpretation. It does not possess the flexibility of Jupiter’s building-block architecture.
While SableVM'’s primary focus is on performance, Jupiter’s focus on modularity has
led to a strict partitioning of design decisions into separately-modifiable modules; this
concern is not reflected in SableVM’s structure, which has roughly same quantity of
code as Jupiter in 1/3 as many files. Also, despite its performance goals, it is not clear
what work would be needed to incorporate a JIT compiler into SableVM, while Jupiter’s
separation of opcode specification from interpretation provides a clear road-map for JI'T
compiler implementation.

A number of projects such as c¢JVM [AFT99], Hyperion [ABH'01],
Java/DSM [YC97], Kaffemik [AWCT01], and Jessica [MWLX99| provide a single

JVM image on a cluster. It is our ultimate goal that Jupiter will likewise be extended

25

to operate on a cluster. While these other projects have chosen a particular approach
to provide a single system image, our intent is for Jupiter to be flexible enough to

experiment with any number of approaches.

2.4.2 Modularity Research

There are numerous modularity-related works that have affected Jupiter’s design, and
their application to the construction of a JVM is believed to be original.

The continuing research into modular operating systems at the University of
Toronto, from Hurricane [FSUZ88] to Tornado [Gam99] to K42 [K4202], have inspired
the building-block structure of Jupiter. The K42 publications make the point that
building-block operating system composition allows customizations to be realized sim-
ply by rearranging the blocks [K4201], making system-level customizations as easy as
application-level programming. While Jupiter has no division between application- and
system-level per se, we believe the increased ease with which powerful customizations
can be implemented is comparable.

Orran Krieger’s Hurricane File System [Kri94, KS97] is exemplary of the kind of
building-block flexibility that Jupiter has strived for. In particular, its stackable building
blocks are the direct ancestor of Jupiter’s own stackable modules, such as the Tracer
and ErrorMemorySource (described in Section 3.2).

A number of other writings on coding practices have combined to enhance Jupiter’s
flexibility greatly, in a multitude of subtle ways, whose combined effect is as important
as that of the building-block architecture itself.

At the design level, the building blocks themselves been crafted with careful atten-
tion to Design by Contract, along with its corollary, Command-Query Separation, both
of which feature prominently in Bertrand Meyer’s Eiffel programming language [Mey97].
The naming conventions were influenced both by Meyer’s work, and by Tim Ottinger’s
naming rules [Ott02]. The assignment of functionality to modules were strongly in-
fluenced by careful consideration of information hiding, as prescribed by David Par-
nas [Par72]. Altogether, these influences have given to Jupiter’s interfaces clear, pre-

dictable semantics, which are a precondition for flexibility, and a required property of

26

a successful component-based system.

At the implementation level, the greatest single influence is from John Lakos’ work
on the practical issues involved in writing large systems [Lak96]. Though Jupiter is not
as large as the systems for which Lakos’ disciplines were developed, nonetheless they
have contributed significantly to its success. His admonition against circular depen-
dencies greatly contributed to Jupiter’s hierarchical coarse-grained module dependence
structure (shown in Figure 3.3), though Jupiter’s provision of a highly stable lowest-
level “base” package, upon which other any module may freely depend, is believed to
be original. In addition, Lakos’ disciplined use of module prefixes has been employed,
with some modifications, to great effect in Jupiter.

Java’s scheme of exception handling [GJSBO00], which is among the best-conceived
to be found in object-oriented languages, greatly influenced the design of Jupiter’s error
handling system. This is not because, as one might assume, that being a JVM, Jupiter
is in fact required to implement Java exceptions. Rather, we found certain properties of
Java’s exceptions (described in Section 4.5) to be desirable for robust systems, regardless
of their functionality. The resulting error-handling idioms employed in Jupiter, which

translate the benefits of Java’s exception handling to C code, are original.

2.5 Conclusion

In this chapter, we have presented the building-block philosophy behind Jupiter’s archi-
tecture, introduced the cast of modules that participate in the execution of the system,
and demonstrated the resulting flexibility with a number of sample building-block con-
figurations. We have briefly touched on the themes addressed by Jupiter’s design: first
dealing with the flexibility of its design, then with the organization of its modules
(particularly the base directory), and finally in the performance of its implementation.
Having established the direction in which the remainder of this document will proceed,
we shall use the subsequent chapters to elaborate on each of these themes in an effort

to convey Jupiter’s contribution to JVM design.

Chapter 3

Implementation

Jupiter’s primary goal is flexibility, and its flexible architecture allows for a wide variety
of implementations. The particular implementation chosen for each module is not, in
itself, the central concern of this thesis. However, it is helpful to take a tour of Jupiter’s
implementation in order to clarify the role of each module, and to present the work
that has gone into achieving Jupiter’s current level of functionality and performance.
Further, the implementations described here may serve to explain why certain design
decisions were made.

The data structures and algorithms presented in this chapter are not the only (nor
even the best) possible. For expediency, our implementations generally use the simplest
schemes that achieve the desired qualities in the final system (particularly performance).
Being relatively simple, these schemes should provide clear examples of how the modules
can be implemented.

Each implementation is first presented as though modularity were not a concern;
afterward, we take a step back to examine how each implementation fits into Jupiter’s
module structure, focusing on the degree of coupling required between the modules.

Diagrams are used heavily to depict the modules and data structures being discussed.
Thus, we begin by describing the nature of the diagrams we will be using. Afterward, we
present Jupiter’s implementation in a quasi-chronological order, roughly corresponding
to the sequence in which they are first executed. At the topmost level, Jupiter’s main

function does the following things:

27

28

1. Build the JVM’s infrastructure from instances of the Source modules.

2. Invoke ClassSource to load the main class.

3. Create a Context for the main thread.

4. Push the initial stack frame for executing the main method onto a Context.

5. Pass the Context to the ExecutionEngine to run until the main method termi-

nates.

Accordingly, this chapter presents the implementation of the activities in Jupiter in

the following sequence:

e Memory Allocation.

Classfile Parsing.

Stack Layout.

Object Layout.

Method Lookup.

3.1 Overview of Diagrams

The implementation’s data structures are described with the aid of object diagrams,
whose format is shown in Figure 3.1. These diagrams show the entities that exist at
runtime within the Jupiter system. Sometimes, objects alone do not convey the most
significant aspects of the runtime behaviour, and so the object diagrams are supple-
mented with symbols representing the interfaces through which certain structures are
accessed. (The interface symbol is also shown in Figure 3.1.) Since interfaces are not
really entities that exist at runtime, and are more relevant to modularity than to ob-
ject interactions, they are included only when the intended behaviour would be unclear

without them.

29

/ Interface \

Implemented by N \Returns
N\
Object Object
field field
field Reference
field

Array

Interface

Figure 3.1: Object diagram legend. Arrows point in the direction of data reachability.

The implementations of some modules may use small amounts of special knowl-
edge of other modules, leading to increased coupling. For example, an implementation
of ObjectSource needs access to the constructor for Object; no such constructor is
provided by the base interface of Object, so the ObjectSource must make use of ad-
ditional interfaces in order to access this special functionality. This situation is much
like using a subtype of a particular base interface, rather than restricting oneself to the
use of the base interface alone.

We describe the coupling required by each implementation with the help of module
diagrams, whose format is shown in Figure 3.2. These diagrams depict modules as
ovals, with arrows indicating module dependencies. Each module consists of a .h file
and possibly a .c file. The nature of each dependency arrow is discussed, and the
impact on the modularity of the system is evaluated.

Every module in Jupiter resides in a certain directory, and the directories are ar-
ranged in a dependency hierarchy shown in Figure 3.3. Modules in the upper directories
tend to depend on those in the lower directories, but never vice-versa. Most of the code
in the system resides in the “Main Sequence” directories, which have a straightforward
linear dependency hierarchy. The other peripheral directories contain modules that do
not fit neatly into this sequence; they tend to be grouped by function (e.g. parsing,
native methods, etc.).

The peripheral directories are not fundamental to the JVM’s structure; for exam-

30

directory

Uses @

Uses/

directory {i

Figure 3.2: Module diagram legend. Arrows point in the direction of module depen-

dence.
r—-—=—=—7 |
I [top I
l |
native I I
common |
l |
jni I | parsert
|
std ‘/I/

base

Figure 3.3: The module directory dependency hierarchy.

ple, while most JVMs would have a classfile parser, the particular implementation pro-
vided by the parser1 directory could be entirely replaced by another parser (perhaps
“parser2”), or by a completely new scheme that builds metadata by some mechanism
other than parsing classfiles. Likewise, while Jupiter currently supports JNI (the Java
Native Interface [JNI02]), other native interfacing schemes could be used instead, such
as the older NMI (Native Method Interface), or the CNI (Cygnus Native Interface) used
by gcj, the GNU Java compiler [CNI02, GCJ02]. Such modifications would involve re-

31

/ MemorySource \

Tracer
bytesAllocated ErrorMemorySource
bytesFound fileTraps
stackStart functionTraps
heapStart target
heapSize
target
MemorySource
ArenaMemorySource MallocMemorySource |
bottom
bytesLeft BoehmMemorySource |

[BoehmAtomicMemorySource |

Figure 3.4: The memory allocation objects. The stackable building blocks are shown

between two MemorySource interfaces.

placing the entire jni directory, indicating that this directory is not fundamental to
the JVM’s structure.

Every module has numerous dependencies on the base modules. Since those modules
are so fundamental (and hence stable), such dependencies are quite benign, and they
are often omitted to avoid cluttering the diagram with gray arrows. Arrows that are
not gray indicate dependencies on module features that are not fundamental to Jupiter;

they represent extra coupling between implementation modules.

3.2 Memory Allocation

Memory allocation in Jupiter is achieved by the MemorySource interface (introduced in
Section 2.2.1). The MemorySource interface currently has more implementations than
any other interface in the system. Because MemorySource is so highly polymorphic, and
because its performance is usually not critical, a generic implementation is provided
that uses a full-blown jump table system, much like the virtual method tables of C++,
to achieve the utmost flexibility. This way, other modules can implement additional

MemorySources simply by supplying the appropriate function pointers.

32

Figure 3.4 shows the objects involved in memory allocation. A real running incar-
nation of Jupiter would not necessarily use all these objects, though there is nothing
preventing it. The system’s view of the memory allocator is through the MemorySource
interface shown at the top of the diagram, while the actual memory allocators are at
the bottom.

Starting at the bottom-right, three MemorySources are provided which make use of

external memory allocators:

e MallocMemorySource calls the standard C malloc function to allocate memory.
This was used during early development, before the Boehm garbage collector was
added. It is also used by some regression test programs that do not need or want

garbage collection.

e BoehmMemorySource calls the Boehm conservative garbage collector [BW88,

Boe02].

e BoehmAtomicMemorySource also calls the Boehm collector, but it marks the result-
ing memory chunks as being pointer-free (i.e. atomic). This is used for allocating
arrays of non-pointer data. With the data marked as pointer-free, the garbage
collector can avoid wasting time scanning potentially large areas of memory for

pointers that do not exist, as described in Section 2.3.3.

The fourth allocator, shown on the bottom-left, is the ArenaMemorySource. It doles
out chunks of memory from a given contiguous block, called an arena. It can be used to
alleviate the load on the garbage collector for short-lived memory chunks by allocating
them from a block that is managed by other means; e.g. by explicit freeing, or by
placement on the stack.

Besides the allocators themselves, two additional MemorySources appear in the dia-
gram. They are shown between two MemorySource interfaces, since they both use and
implement this interface: they are stackable building blocks that can be added to an ex-
isting memory source to provide additional functionality (as described in Section 2.3.2).

The first stackable MemorySource is the ErrorMemorySource, which reports a allo-

cation error when called from specified points within the Jupiter source code. This is

33

top

BoehmMemorySource
ErrorMemorySource

st

(§

d

base

MemorySource

Figure 3.5: The memory allocation modules.

useful for regression-testing Jupiter’s error handlers, by injecting errors into Jupiter that
are otherwise difficult to reproduce. Error injection points can be specified with file-
name/line-number pairs, or with function-name/line-number pairs. These are stored in
hash tables that are consulted on every memory allocation to determine whether an error
should be reported; if not, the request is simply delegated to the target MemorySource
upon which the ErrorMemorySource is stacked.

Finally, the second stackable MemorySource is the Tracer, which annotates each
memory block with information that allows for memory profiling. This is useful to
diagnose cases when memory is not being garbage-collected properly, to find out why
memory is being retained. At desired points in the execution of a program, the Tracer
does a conservative sweep of reachable memory, collecting statistics on memory usage
that can aid diagnosis of memory leaks. The nature of the conservative sweep requires
that the location of the heap is known, in order to determine whether a potential pointer
is valid. Tracer achieves this by mandating the use of an ArenaMemorySource, which
places the heap entirely within a known contiguous block of memory.

The MemorySource modules are shown in Figure 3.5. All the MemorySource modules
have a dependency on the std/MemorySource module, which defines the generic jump

table dispatch mechanism upon which they are all implemented.

34

SemanticFactory
/ memorySource
g scalarSource
ClassfileParser E zlc?:;iﬁgce
semanticFactory L Constant Table
| byteCount | é \
} g;ftseest }] \ ConstantPool
ffileiiiii\ \ Class / constants
ffffff constantPool
attributes
fields
methodDecls
Attribute
name
value

Figure 3.6: The classfile parsing objects. The metadata objects being constructed are

shown underneath the SemanticFactory object.
3.3 Classfile Parsing

The ClassfileParser is a recursive-descent parser, generated automatically from a
machine-readable classfile format specification by a tool called “Codegen” which pro-
duces C code [Doy02]. During the parsing process, a Jupiter metadata object is created
to represent each construct parsed. The objects are created in postorder; that is, the
object for each construct is created after the objects for its constituent parts. This
guarantees that the parser always has a complete set of parts to pass to the object’s
constructor’.

The objects involved in parsing a classfile are shown in Figure 3.6. At the left of
the diagram is the ClassfileParser itself, which is used by the system whenever a
new class is to be loaded. The ClassfileParser directs the construction of Jupiter’s
metadata according to the contents of a classfile, which may be located in memory or
in a file.

To build each metadata object, the ClassfileParser calls upon the

LA few constructs have a back-pointer to their containing construct. Those are added after the

containing construct is built.

35

SemanticFactory interface. While the ClassfileParser is responsible for deciding
which objects to build, the SemanticFactory is responsible for how they are built. It
provides a collection of Fuctory Methods [GHJV94] that the ClassfileParser calls to
build an object for each construct found in the classfile. The SemanticFactory object
that implements this interface is shown at the top of the diagram, and the metadata
objects being constructed are shown underneath it. While the ClassfileParser is
machine-generated from a classfile format specification to handle the complex, tedious,
and error-prone aspects of parsing, the SemanticFactory is hand-coded and quite sim-
ple.

The SemanticFactory object has references to all the facility classes required to
allocate the resources it needs to build the metadata. It has two MemorySources:
one for scalar (non-pointer) data such as strings and arrays of bytes, and another for
regular mixed data. This allows it, if desired, to take advantage of specialized facilities
(such as the BoehmAtomicMemorySource) to allocate pointer-free data. It also has a
ClassSource which is used to resolve superclasses and superinterfaces.

In addition, the SemanticFactory contains a reference to a constant pool in the
form of an array of Constant objects we refer to as a constant table (shown on the far
right of the diagram). When parsing first begins, the table is empty, and it gradually
fills as the classfile’s constant pool is parsed. Once the constant pool has been parsed,
the constant table is used to assist with the remainder of the parsing process. Constant
pool indices found in the classfile for things like field and method names are resolved
by the SemanticFactory itself. This way, instead of passing a constant pool index to
the Field or MethodDecl constructor, it can provide the resolved name string instead,
which is generally much more useful. Note also that the ConstantPool metadata object
that is eventually created to represent the constant pool itself is constructed rather
economically from the same constant table used during the parsing process, as shown
in the diagram.

When the classfile is parsed, its attributes are represented in metadata as Attribute
objects, and no attempt is made to parse the data inside each attribute. This is because

the structure of each attribute depends on the attribute’s name. Checking the name

36

common
parseri
Field SemanticFactory ClassSource
ClassfileParser
Attribute Class

SemanticFactory

MethodDecl MethodBody

std

@ ConstantPool

Figure 3.7: The classfile parsing modules.

of each attribute as it is parsed would complicate the parser, and would waste time in-
specting attributes that may never be used by the JVM. Instead, the ClassfileParser
interface simply provides functions for parsing attributes whose structure is known to
the parser. After the parsing of the classfile is complete, individual attributes can be
parsed as needed.

The modules that implement classfile parsing are shown in Figure 3.7. The most
important thing to note regarding this diagram is that ClassfileParser has no depen-
dencies outside the parser1 directory, meaning that it is insulated from implementation
decisions made in the rest of the system. It makes use of the SemanticFactory inter-
face, which is implemented by a similarly named module in the common directory. This
arrangement allows the parser to construct all the data structures that describe a class-
file’s contents without having any dependence on the data structures themselves: it is
dependent only on the format of the classfile.

At the center of the common directory is a SemanticFactory implementation module
which depends on most of the other modules in the diagram. It uses constructors from
each of these modules to build the objects specified by the ClassfileParser.

Since ClassSource is the base interface responsible for managing classes, it is the
primary client of the ClassfileParser interface. However, the MethodBody module
also uses the parser’s functionality to parse the Code attribute associated with each

method. (The Code attribute is the one that contains the bytecodes for a method.)

37

top
std
Interpreter
InterpreterSupport
base
ExecutionEngine opcodeSpec

Figure 3.8: The bytecode execution modules.

This illustrates the value of a parser that can read both from files and from memory:
while classfiles are usually read from files, attributes are parsed after they have already

been read into memory by the classfile parsing process.

3.4 Bytecode Interpretation

The execution of the Java program is choreographed by the ExecutionEngine. It is
the ExecutionEngine that determines the overall execution paradigm of the JVM,
whether it be a simple interpreter loop, a threaded interpreter (described below), or a
just-in-time (JIT) compiler.

Since Jupiter’s design delegates much of the execution responsibility to other parts
of the system, not much remains to be done by the ExecutionEngine itself. The
current interpreter implementation divides the functionality into three modules, which
are shown along with the ExecutionEngine interface in Figure 3.8. These modules are

each responsible for implementing a portion of the ExecutionEngine functionality:

e The opcodeSpec module defines each of the Java opcodes in terms of Jupiter’s
base interfaces. It takes the form of a header file that is “#included” into the
interpreter module. Since it depends only on the base interfaces, it is a very
stable module, so it too resides in the base directory. It is designed to be used

by any ExecutionEngine, be it an interpreter or a JIT compiler.

e The InterpreterSupport module provides functionality that is independent of

the particular interpreter implementation, such as the stack unwinding algorithm

38

for exception handling. Being stable, though not truly fundamental, it resides in

the std directory.

e The Interpreter module implements the ExecutionEngine interface, making
use of the opcodeSpec and InterpreterSupport modules as necessary. This
module changes relatively often—mainly to add or change mechanisms for debug-
ging Java code, such as tracing facilities or statistics gathering—so it resides in

the top directory.

The opcodeSpec.h header contains a piece of code for each Java opcode, describing
how that opcode is implemented. Each piece of code is surrounded by macros, which can
be defined by the including module to expand to whatever control structure is required.
For instance, a typical interpreter would cause these macros to expand to case and
break statements for inclusion inside a switch statement. This way, as each opcode is
encountered, the switch statement will branch to the appropriate implementation code.

The current ExecutionEngine implementation is a threaded interpreter, meaning
that, after executing one opcode, it branches directly to the code for executing the next
opcode [GHO1]. This stands in contrast to the typical scheme which uses a switch state-
ment inside a loop to jump to the appropriate code. The threaded scheme eliminates
the branch to the top of the loop, whose overhead can be substantial in an optimized
interpreter like Jupiter’s.

Since the target of each branch depends upon the opcode to be executed, the static
goto facility provided by the C language is not sufficient. Hence, the direct branch is
implemented using gcc’s computed goto facility, which allows branch labels to be treated
as first-class objects. During initialization, the interpreter builds an array of the branch
targets indexed by opcode number. To dispatch an opcode, the interpreter looks up
the corresponding branch target from the array, and then performs a computed goto
to jump to that branch target.

Having opcodes dispatched through a branch target table also allows them to be
overridden to provide additional functionality. For instance, the current implementation
makes use of this capability to help with bytecode substitution, modifying a method’s

bytecodes to contain new opcodes defined by Jupiter to perform the same task in a more

39

Frame X | Frame X+1
| :
1 header
" local N-1
FrameSource i
=1 ,__local N-2
top !
(empty) . local N-3
bottom ‘
. operand | local N-4
Context capacity : 1 :
frameSource - i -
operand | local 1
currentFrame ‘
operand | local O
operand 1
Frame : \
: ‘ @
\ operand a
t depth 1 %
header 1 2
header 1 o
. i =
.) %
header | e
header 1 £
local M—1 1
local M—2 1
T \
local 1 1
local O 1
\
|
Stack Slots

Figure 3.9: The stack layout. Each stack slot is labelled twice, for its role in the two
overlapping frames. The slot marked “(empty)” is the portion of the operand stack

space which does not currently contain data.

efficient manner. The details of the implementation are presented in Section 6.1.3.

3.5 Stack Layout

The Java execution stack consists of a number of frames, each of which holds data for
use by a single executing method. The top frame is for the method currently executing,
while the rest are for methods which are in progress, waiting for an invoke opcode to
finish executing. This situation is modeled in Jupiter by the Context interface, which
represents the execution stack as a whole, and provides access to Frame objects that

represent individual stack frames.

40

The objects representing the execution stack are shown in Figure 3.9. The system’s
view of the stack is provided by the Context object on the left, which encapsulates
a large array of word-sized slots in which the stack contents are stored. Each slot is
capable of holding up to 32 bits of data; 64-bit datatypes require two adjacent slots, as
prescribed by the Java specification [LY99].

One object that is notably absent from this picture is the Frame object. The reason
is that Frames are not self-contained objects in the usual sense. A number of interface
design techniques provide the illusion that Frames are just like any other objects (see
Section 4.1), but in reality, each Frame is stored in a contiguous group of slots within the
slot array. A particular frame’s slots contain the frame’s operand stack, local variables,
and a header that includes such things as the frame’s class and method, its program
counter, and its current operand stack depth. A Frame pointer actually points to the
operand stack depth, which resides at the end of the frame’s header. Knowing the
location of the header, the locations of the rest of the frame’s data can be computed.
The operand stack depth was chosen as the target of the Frame pointer because, among
other reasons, it is the most frequently accessed element of the frame. With the Frame
pointer pointing directly to it, the stack depth can be accessed efficiently, with no
pointer arithmetic.

When a Java method is called, a new frame is created, and the method’s arguments
are transferred from the caller’s operand stack to the callee’s local variables. Storing
frames as contiguous groups of slots allows an important optimization to be imple-
mented: the slots used by two adjacent frames can be overlapped. Specifically, the
caller’s operand stack is overlapped with the callee’s local variables. This has the effect
of transferring the argument values without the need to copy any data. The resulting
layout of two adjacent stack frames is shown in the diagram, with overlapping slots
labelled twice to indicate their role in each of the frames.

The FrameSource is responsible for allocating frames. It tracks the location of the
first unused stack slot, so the location of the next allocated frame can be computed.
The diagram depicts the state of the FrameSource after frame X has been allocated,

but before frame X+1, with the top pointer pointing to the first available slot beyond

41

common std

Frame

base
Context
FrameSource

Frame

Figure 3.10: The stack-related modules.

ConstantPool >< Class \ Object

class constantPool class
constants fieldsByName monitor
cacheSlots instanceSize data

Field
name
type

offset Object Data

Figure 3.11: The Jupiter objects responsible for the layout of Java objects.

frame X’s operand stack.

The modules that manage the execution stack are shown in Figure 3.10. The Frame
and FrameSource implementations are both located in the Frame module (for reasons
discussed in Section 4.4.1). Note the very low degree of coupling: both the Frame and
Context modules depend only on base headers. Note, in particular, that Context
depends only on the interface of FrameSource, not on its implementation. This makes

Context a highly stable module, hence its placement in the std directory.

3.6 Object Layout

Jupiter’s object implementation is shown in Figure 3.11. Accessing the fields of an
object proceeds in two stages: first, a Field is acquired that represents the desired

field; second, the Field is used to look up the field’s value within the target object.

42

The structures for the first stage are shown on the left of the diagram, while those for
the second stage is shown on the right.

At the outset, the system has only the object reference and the constant pool in-
dex. The index is passed to the ConstantPool, whose job is to find the Field which
corresponds to that index. The first time a given field is accessed, the ConstantPool
calls upon the Class to find a Field with the given name, using its fieldsByName hash
table. The ConstantPool then caches the Field so subsequent accesses need not use
the hash table.

Having found the desired Field, it is a simple matter to extract the value of that
field from the target object. Every object has an associated data area containing the
values of each field, and every Field stores the offset of that field within the data area.
Knowing the field’s offset, the value of that field can be extracted from the object’s
data area is a simple matter of array indexing.

Jupiter assigns offsets to the fields of each class when that class is loaded. Fields
are arranged in such a way that the start of every object’s data area is laid out as an
instance of its superclass. This allows an object to be treated as an instance of any of
its ancestor classes, as required by the Java specification [GJSB00]. When a class is
loaded, its first field is assigned an offset equal to the instanceSize of the superclass,
and subsequent fields are placed afterward at an offset determined by the preceding
fields’ sizes.

The current layout scheme is a simplistic one. Fields in the object are laid out in
the same order in which they appear in the classfile. To ensure that each field is aligned
as it should be, Jupiter simply aligns all fields to word boundaries, thus wasting some
space within each object. More efficient schemes are possible; for instance, if fields
were sorted in descending order of size, no padding would be necessary between fields
to achieve the desired alignment. However, some padding would be needed between
the between the last field of the superclass and the first of the subclass. Since this
complicates the algorithm somewhat, and since object size has not been a problem thus
far, we have chosen to keep the simpler scheme for the time being.

For arrays, the elements are not padded. Since they are all of the same size, aligning

43

common
ObjectSource ClassSource
Class Object Field
base
MonitorSource
MemorySource

Figure 3.12: The object layout modules.

the first element automatically aligns the rest.
The modules involved in object management are shown in Figure 3.12. There are a

number of relatively minor dependencies among the common modules:

e ObjectSource uses a constructor from Object, for obvious reasons.

e ObjectSource queries Class to find its instanceSize, in order to determine how

much memory to allocate for a new object’s data area.

e ClassSource calls upon the Object module to layout the fields of each new class
as it is loaded. This encapsulates all field layout decisions within the Object

module.

e Object uses Field to store its own offset.

None of these dependencies represents a serious breach of information hiding, since
the leaked information is applicable to any scheme which allocates object data in a
single contiguous block of memory. Given this relatively minor constraint, object layout
decisions are completely encapsulated by the Object module. Even if a non-contiguous
layout scheme were desired, only a handful of modules would be affected, and all but

Object would require only trivial changes.

44

3.7 Method Lookup

To invoke a method, Java code issues one of the four invoke opcodes, all of which
operate in a similar fashion: the instruction specifies a location within the constant pool
that contains the name and type signature of the desired method. This information
(collectively called the method selector) is used to locate the appropriate method body,
which is then executed.

The method name and type signature are specified as strings. If every invoke
instruction needed string manipulation to locate the appropriate method body, method
invocation would be very slow indeed. In order to achieve acceptable performance,
Java’s method lookup rules are carefully designed to allow for much more efficient
implementations: the string manipulation can be pre-computed, and the results can be
stored efficiently in the constant pool, and in the class itself.

Jupiter’s approach to dispatching a method is conceptually quite similar to looking
up a field value (described in Section 3.6), though the implementation is more complex.
Recall that field lookup first acquires a Field object from the ConstantPool, and then
uses the Field to locate the field value. The two-stage process allows the Field object to
be cached to avoid processing the field name on every access. Similarly, method dispatch
first acquires a MethodDecl from the ConstantPool, and then uses the MethodDecl to
locate the appropriate MethodBody. As with field lookup, this two-stage process allows
the MethodDecl object to be cached to avoid processing the method selector on every
invocation.

Jupiter’s implementation is fairly typical: jump tables are built for each class, with
one entry corresponding to each method selector, indicating which MethodBody is to be
used for that selector. In the first stage, the constant pool maps the given selector to
the corresponding MethodDecl, which contains the index of that selector’s jump table
entry?. In the second stage, the Class’ jump table is accessed using the MethodDec1’s
index to locate the desired MethodBody. After the first invocation of a particular selec-

tor, subsequent invocations no longer need to do any string manipulations: a method

2The MethodDecl also contains enough information to determine which jump table to use. This is

important for interface methods, each of which has its own jump table.

45

Obiject

/ class
ConstantPool E z Class Jump table
class constantPool
constants methodsByNameAndType
cacheSlots vtable

itables
MethodDecl > MethodBody

code
class
offset
Interface meta-table

Jump table

Figure 3.13: The method lookup objects. Lookup proceeds first as shown on the left to
acquire a MethodDecl, then on the right to acquire a MethodBody. Note the similarity
of the left side with that of Figure 3.11.

lookup is reduced to a pair of array lookups, first to get the MethodDecl from the
ConstantPool, and then to get the MethodBody from the jump table.

The first stage is independent of the position of the target object’s class within the
inheritance hierarchy: it depends only on the declared type of the variable through
which the method was invoked. The second stage is the one responsible for dynamic
dispatch: it returns the MethodBody appropriate for particular run-time class of the
target object.

The data structures involved in this process are shown in Figure 3.13. The struc-
tures for acquiring the MethodDecl are shown on the left, while those for acquiring the
MethodBody are on the right.

The first step toward invoking a method on an object is to retrieve the ConstantPool
for its class. Next, the constant pool index supplied by the invoke instruction is passed
to the ConstantPool, whose job is to return the appropriate MethodDecl for that index.
The ConstantPool already has the name and type signature for each index, since that
information was supplied during the classfile parsing process. However, the task remains
to find which MethodDecl corresponds to that name and type signature.

The first time a particular index is used, the ConstantPool consults the Class,

which uses its methodsByNameAndType hash table to find the appropriate MethodDecl.

46

That MethodDecl is then cached by the ConstantPool so that it can subsequently
return the MethodDecl directly given only the constant pool index.

Acquiring the MethodDecl marks the end of the first stage of the method invocation.
The operation of the second phase depends on whether or not the method is being
invoked through an interface class (by invokeinterface) or a regular class. For regular
classes, Java supports only single inheritance, so all method lookup can be achieved by
using a single jump table for each class, known as the wvtable. As with field layout,
Java’s single inheritance makes vtable layout simple: each vtable starts with a copy
of the vtable of the superclass (with the appropriate entries overridden), allowing any
class to be substituted for any of its ancestor classes.

In contrast, Java supports multiple inheritance for interfaces, so a more elaborate
scheme is required. Jupiter’s scheme uses a two-level table system which we refer to as
the itables. The first level is the interface meta-table, which contains one entry for each
interface class in the system3. This is a sparse table, since each class implements only a
subset of all the interfaces in the system; however, the total memory occupied by these
tables is still not very large, though certain optimizations are possible if the sparseness
is found to be problematic [SWO01]|. Entries corresponding to interfaces that are not
implemented are left null, while the other entries point to the second-level tables. The
second level tables are much like vtables: they have one entry for each method selector
in the corresponding interface.

It is interesting to note that the the itables scheme allows for a very fast interface
conformance test. It is only necessary to check the itables entry corresponding to
the interface in question; that entry will be non-null if and only if the class conforms
to that interface. In contrast, regular class conformance is achieved by walking up the
inheritance hierarchy and checking whether the given class is encountered. This leads to
the somewhat ironic situation that the conformance test is actually faster for interfaces
than for regular classes, despite the difficulties introduced by multiple inheritance.

The Jupiter modules involved in method lookup are shown in Figure 3.14.

Most of the dependencies are harmless base dependencies. Note in particular that

3 Actually, it contains one entry for each interface that was loaded at the time the class was created.

The itables are not needlessly enlarged every time new interface classes are loaded.

47

common
MethodBody
std
Class MethodDecl
base
ConstantPool MethodDecl

Figure 3.14: The method lookup modules.

ConstantPool and Class are completely independent. This allows programmers to
modify or rewrite Class without concern for the implementation of ConstantPool,
which is well-defined by the Java standard and relatively stable—hence its placement
in the std directory.

The Class module is dependent on the common implementations of MethodDecl and
MethodBody, though these dependencies are not particularly strong ones. Class requires
each MethodDecl to store its own jump table offset; this reveals only that jump tables
are being used, and is not a very worrisome breach of information hiding. Class also
needs special access to MethodBody because it is the Class module which creates the
MethodBodies. The classfile parser creates only MethodDecls, and the Class then takes
every MethodDecl without the ACC_ABSTRACT attribute and constructs a MethodBody
from it. This reveals only that MethodBodies can be constructed from non-abstract
MethodDecls, which again is not a worrisome breach of information hiding. Thus, the

coupling in this scheme is fairly low.

3.8 Conclusion

This chapter has provided a tour of Jupiter’s implementation, describing the data struc-
tures and algorithms, as well as the modules and their dependencies. These implemen-
tations are by no means the only ones possible; on the contrary, the purpose of Jupiter’s
design is to facilitate future research aimed at improving the state of the art of JVM

implementation. However, by describing a typical implementation of each module and

48

interface, we hope to have clarified their role in the system, to provide a backdrop for

the discussions in the remainder of this document.

Chapter 4

Design for Flexibility

Flexibility is the ease with which a system can be adapted to a variety of requirements
with a relatively small investment of effort. A programmer should have the ability to
conceive an idea, and then implement it with an amount of effort commensurate with the
perception of the complexity of the modifications involved. Jupiter uses a building-block
architecture that has the potential for tremendous flexibility, but a flexible architecture
alone does not make for a flexible system. In this section, we present a number of
techniques used in the design of Jupiter’'s modules which allow the flexibility of the
building-block architecture to reach its full potential.

It is too much to ask that a system could be so flexible as to make every possible
modification simple. A more realistic goal is that the programmer should not be taken
by surprise by the amount of effort required to implement an idea. In order to achieve

this goal, a design should possess the following properties:

o Simplicity. The modules of the system should have the simplest possible design,
to allow the programmer to construct an accurate mental model of the system

with which to estimate the effort involved in performing a modification.

e Orthogonality and information hiding. System functionality should be partitioned
and encapsulated behind independent interfaces. This reduces the chances that
modifying one part of the system would necessitate further unexpected modifica-

tions to seemingly unrelated parts.

49

a0

o Reliability and robustness. Though it may appear to work properly, a system of
unreliable components has the potential to fail under novel conditions in which
they have not been tested, requiring additional unexpected effort to make a new

idea work.

The desire to provide Jupiter with these properties has affected its design in innu-
merable ways, both dramatic and subtle. While it would be impossible to describe every
design decision that has contributed to Jupiter’s flexibility, this section presents a sam-
pling of five techniques which have been used with great success repeatedly throughout

the system. The techniques are the following:

o Interface coding conventions. Careful consideration of what information to hide

and provide makes Jupiter’s interfaces flexible and understandable.

e Design by Contract. The focus on the clear delineation of responsibilities among

modules makes the system more robust and simpler to comprehend.

o Splitting over-constrained interfaces. A single problematic interface is replaced by
two, each of which concentrates on fewer criteria, thus making it easier to achieve

a good design.

e Modularizing by maintenance characteristics. Code is divided into modules based
on the circumstances under which it may need to be changed, thus focusing the

effort of modification on a well-delineated set of modules.

e Pervasive error handling. Jupiter’s error handling idiom makes robust error han-

dling simple, thus encouraging its disciplined use throughout the system.

Some of these techniques achieve flexibility by simplicity, some by orthogonality,
some by reliability, and so on. Most techniques simultaneously provide several of these
properties, and so we have not attempted to subdivide the section by property. Instead,
we present each technique, describe its effects, and provide a number of examples.

One example which recurs throughout this chapter is that of the Java execution

stack, modeled by the Context, Frame, FrameSource interfaces. The stack is accessed

o1

by almost every opcode executed, sometimes several times. Hence, any inefficiency will
be multiplied enormously during the execution of a program. Furthermore, because the
stack’s efficiency is so important, the interfaces must allow for a variety of implementa-
tions in order to explore alternative trade-offs. Thus, of all the interfaces in the system,
the execution stack epitomizes the design tension between flexibility and performance.

Being “soft” requirements, such qualities as flexibility and simplicity are difficult to
quantify, unlike “hard” requirements like performance and efficiency. However, we shall

present arguments that each technique provides a substantial, tangible benefit.

4.1 Interface coding conventions

Interfaces form the skeleton of any modular system, so their design is crucial to the
system’s flexibility: they must be crafted carefully to avoid placing unnecessary lim-
itations on implementors. To address this concern, a number of coding idioms have
been employed in the construction of Jupiter’s header files, in order to present the least
possible impediment to flexibility. In this section, we begin by presenting a typical C
interface coding style, and discuss its shortcomings. We then proceed to modify the
style incrementally to address the shortcomings as we encounter them, until ultimately
we arrive at the style used by Jupiter.

In C, object references are implemented using pointers: references are passed from
one function to another as pointers, and they are stored inside other objects as pointers.
The common C idiom for achieving this uses syntax like the following:

/** (Something.h) *x/
struct something{
int a, b, c;

};

/** (Caller) xx*/
void some_function(struct something *s){
s—->a = s->b + s->c;
}
The lack of encapsulation associated with this idiom makes reasoning about the

program’s correctness difficult, since any structure could be easily modified (perhaps

accidentally) by any part of the system.

52

To provide the required encapsulation, we make use of an idiom known as opaque
data structures by which the contents of the struct are not declared in the header
file. Instead, the header file provides only accessor function declarations. The struct
definition is placed inside the module that defines the accessor functions, so only that
module can access the struct directly. All other code must make use of the accessor
functions.

The resulting header file appears as follows, along with a sample caller:

/** (Something.h) *x/

struct something_struct;

int something_a(struct something_struct *s);

int something_b(struct something_struct *s);

int something_c(struct something_struct *s);

void something_set_a(struct something_struct *s, int new_value);

/** (Caller) xx/
void some_function(struct something *s){
something_set_a(s, something b(s) + something c(s));

}

This provides better encapsulation, and has the additional benefit that all struct
accesses use C’s function call syntax. Since the function call syntax is identical to macro
call syntax, we can rest assured that, if necessary, we could replace one of the function
declarations with a macro definition. Thus, there is nothing fundamentally standing in
the way of eventually making this interface as efficient as necessary, without altering
the call sites.

This idiom, however, is quite verbose. To begin with, it is helpful to define a
typedef for the struct declaration. In addition, the Jupiter coding style assigns a prefix
abbreviation to each kind of object. Specially-formatted comments are added to the
header file in which the corresponding typedef appears, so that utility scripts can keep
track of the prefixes that have been assigned. In the case of the Something example,
we might assign the prefix “st” to the Something struct. The code that results from

the incorporation of these idioms looks like this:

/**% (Something.h) *x/

/* Prefix: st=Something */

typedef struct st_struct Something;
int st_a(Something *st);

23

int st_b(Something *st);
int st_c(Something *st);
void st_set_a(Something *st, int new_value);

/** (Caller) xx*/

void some_function(Something *st){
st_set_a(st, st_b(st) + st_c(st));

}

At this point, we have achieved an idiom which provides good encapsulation with-
out being overly verbose. However, there are still some flexibility problems with this
approach. Note that every reference to a Something must explicitly be declared as a
pointer. This makes it impossible to implement schemes in which an object reference
is not a pointer, without altering the interface. For example, following modifications
to the system may prove to be desirable, but would be difficult to implement using the

above interface idiom:

e If the object is immutable, we may choose to pass it by value. If explicit pointer
syntax is used throughout the system, this change would be impossible without

altering all the code that manipulates that object type.

e If a system were designed in which Jupiter objects were permitted to reside in
different address spaces (say, on different nodes in a cluster), then references to
these objects would need to be something other than a simple pointer to the

struct.

To address these issues, the pointer declarations are “hidden” inside the typedefs.
All code that manipulates objects is written with pass-by-value syntax, but with pass-
by-reference semantics'. This results in the final interface coding idiom—the one actu-

ally used by Jupiter—which would appear as follows:

/** (Something.h) *x*/

/* Prefix: st=Something */

typedef struct st_struct *Something;
int st_a(Something st);

int st_b(Something st);

int st_c(Something st);

'In this respect, the code looks and behaves more like Java than like traditional C.

o4

void st_set_a(Something st);

/*x (Caller) xx/

void some_function(Something st){
st_set_a(st, st_b(st) + st_c(st));

}

Having hidden the pointer declaration inside the typedef, all code that uses an
object need not be aware of the mechanism by which references to that object are
passed around the system. The mechanism can be changed (for instance, from pointers
to some sort of handle) without rewriting all the code that manipulates the object.

These coding conventions are designed to provide the utmost flexibility, not only
for the implementation of each interface, but also for the interfacing mechanisms them-
selves. The choice between function and macro, pointer and handle, value and reference,
have all been left to the implementor, due to the high degree of information hiding these

conventions achieve.

4.2 Design by Contract

Jupiter has been influenced heavily by the notion of Design by Contract, a method-
ology developed by Bertrand Meyer and supported directly in his Eiffel programming
language [Mey88|. This approach stands in contrast to defensive programming, a phi-
losophy advocating that robustness be achieved by having each function in the system
check that it has been invoked with legal arguments, and report an error otherwise. In-
stead, Design by Contract prescribes that each function be associated with a contract,
which consists of a precondition and a postcondition?. The semantics of the contract
require that if the caller satisfies the precondition before calling the function, then the
function is responsible for satisfying the postcondition.

If the caller does not satisfy the precondition, then the caller is considered to be

in error, and the callee is absolved of responsibility. Specifically, the callee has no

2Design by Contract also includes other assertions, such as class and loop invariants, plus rules that
apply the appropriate contracts in the presence of polymorphism. Since Jupiter has shallow inheritance

hierarchies and simple loops, these facilities were not needed.

95

responsibility to detect or report the error condition: rather, the behavior of the callee
is undefined.

Allowing undefined behavior may seem to be contrary to the goal of robustness;
however, just the opposite is true. Since the responsibilities of the caller are stated
quite clearly in the function’s precondition, it is fairly straightforward to make sure that
the precondition is satisfied before calling the function. In addition, having decided to
use contracts as the basis of the system’s interface design paradigm, we then design
functions to have the simplest possible contracts, thus making the preconditions even
easier to obey.

In practice, a broken contract does not wreak undefined havoc in the system. In-
stead, the implementation of each function contains assert statements to check that
its contract has been obeyed. Contract breaches are invariably considered bugs, and
the system is not considered correct until it is written such a way that no contract,
and hence no assert statement, is ever broken. In theory, as the program is debugged,
the number of contract breaches should fall asymptotically toward zero®. Once a suf-
ficient level of confidence in the correctness of the program is achieved, assertions can
be deactivated, and performance is not impeded by unnecessary error checking.

The primary advantage of Design by Contract is that when the program fails, the
responsibility for the error is assigned unambiguously to a single function; namely,
whichever function it was that broke a contract. That function must be repaired by
modifying either its implementation or the contract so that the two match each other.

The main disadvantage of using preconditions instead of error checking is a matter
of convenience: each precondition represents additional responsibilities that have been
delegated to the caller, making the function less convenient to call. For instance, if the
function does not take responsibility for error checking, then error checking logic must
be added at every call site. However, in many cases, even this is not significant, since
the caller had to handle the error condition anyway, even if the detection itself is done

by the callee.

3In the case of Jupiter specifically, it did not take long before contract breaches became extremely
rare; in practice, any contract breaches found in Jupiter in an ongoing basis occur in newly-added

code.

26

The question of whether to use preconditions rather than error checking has no
single answer that applies in all cases: the choice must be made for each function in
the system. This section presents two examples which illustrate the trade-offs involved:
local variable and operand stack access in the Frame interface, and array element access.

In each case, the design has been chosen which maximizes the flexibility of the system.

4.2.1 Local variable/operand stack access

The typical, straightforward use of contracts is exemplified by the functions that provide
access to the local variables and operand stack. Through the Frame interface, the local
variables of each stack frame can be accessed by index, counting from zero up to some
known maximum. Similarly, the operand stack can also be accessed by index, counting
from one up to the current stack depth. In both cases, only valid indices should be
used. The goal is to choose an approach, whether by contract or by error checking, that
ensures that invalid indices are not used.

The choice of approach for this case is fairly straightforward, since valid Java code
never attempts to access an out-of-bounds local variable or operand stack entry: such
code would fail verification. An invalid index is a sign of a bug in Jupiter, for which
an assertion failure is appropriate. Hence, we chose to enforce index bounds using
preconditions. The local variable and operand stack accessor functions simply require
that the index is valid, rather than report an error for invalid indices.

Note that it is simple and efficient to implement an error-checking version of an
accessor function that makes use of the precondition version, but not vice versa. Thus,
the precondition version is flexible enough to allow for both schemes to be implemented
if needed, while the error-checking version is not.

In this example, being simultaneously more flexible and more efficient, the advan-

tages of Design by Contract are clear.

4.2.2 Array element access

Another example of the use of contracts in Jupiter is the array element accessor func-

tions. This example demonstrates that the policy used by Jupiter’s interfaces need not

o7

be dictated by Java semantics: Jupiter’s interfaces can use a precondition even when
Java requires explicit error checking.

Java specifies that a particular exception be thrown if an array index is out of
bounds. The natural way to model this would be for Jupiter’s Array interface to check
array indices and report an error when they are out of bounds. However, Jupiter’s
Array accessor functions take the opposite approach: they have the precondition that
all indexes must be valid. As pointed out in the preceding examples, it is simple
and efficient to implement the exception approach using the precondition approach,
but not vice versa. Thus, Java’s semantic requirements can be easily accommodated.
Furthermore, the JVM’s own internal accesses to array elements are guaranteed never to
be out of bounds, so checking bounds inside the Array interface would be unnecessary
and wasteful.

The use of preconditions in Jupiter’s Array interface allows for an efficient imple-
mentation, while still allowing Java’s specifications to be met with little difficulty. It
achieves both with only one set of accessor functions, thus keeping the interface simple,

and enhancing the system’s flexibility.

4.3 Splitting over-constrained interfaces

An interface is the means by which pairs of modules communicate. Any module which
is on either side of the interface—both clients and implementors—may impose certain
requirements on that interface, and an ideal interface is one which meets all its require-
ments. In some situations, the modules may impose too many requirements on the
interface, and no ideal solution exists. In such cases, the interface is over-constrained,
and an over-constrained interface causes one or more design goals to be compromised.

For instance, the interface for accessing the operand stack presented in Section 5.1.3
describes how bottom-based indexing is more efficient than top-based. However, for
most code that accesses the operand stack, top-based indexing is far more convenient.
Thus, while the efficiency criterion rules out the top-based scheme, ease-of-use rules out
the bottom-based one. In this way, the interface is over-constrained, and no solution

exists which meets all design criteria with a single interface.

o8

I

Ease of implementation Performance Ease of use

Figure 4.1: Constraints on the interface design space. Each coloured area represents

designs that are ruled out by the corresponding constraint.

The solution we present in this section is to split the interface into two. In the case
of the operand stack, two accessor functions are provided: the main function called
fr operand uses bottom-based indexing, and a helper function called fr_topOperand
uses top-based indexing. The fr _topOperand function translates the top-based index
into bottom-based format and passes it on to fr_operand. In this way, both per-
formance and ease-of-use can be achieved: in most cases, the fr_topOperand helper
function would be used, but when performance is important, fr_operand can be called
directly. By splitting one interface into two, we have relieved each interface of one
constraint, allowing solutions to be found for each interface separately.

Figure 4.1 depicts interface constraints graphically. The figure shows three design
criteria: ease of implementation, performance, and ease of use. These three particu-
lar criteria are common ones for many of Jupiter’s interfaces. For each criterion, the
universe of possible interface designs represented as a plane. Each criterion rules out
certain designs, represented by the shaded portions of the plane. When the criteria
are superimposed, as shown in Figure 4.2, it is often the case that there remains no
part of the design space left unshaded, and hence no design can possibly meet all three
criteria simultaneously. Under these conditions, any design decision will necessarily be
a compromise, causing the system to fall short of its design goals.

To address this issue, an over-constrained interface can often be replaced by two
separate interfaces, as shown in Figure 4.3. The two new interfaces are separated by
an additional insulating module that serves to free the interfaces from each other’s con-

straints. In this example, the low-level interface need not be constrained by ease-of-use

29

Figure 4.2: An over-constrained design space. Every possible design breaks at least one

of the constraints.

/ High-level \

/ Overconstrained \ — | Insulating Module

/ Low-level \

Figure 4.3: An over-constrained interface can be replaced by two less-constrained in-

terfaces separated by an insulating layer.

considerations, because the insulating code will act as a wrapper that provides ease-of-
use to the high-level interface. Likewise, the high-level interface need not be constrained
by ease-of-implementation considerations, because insulating code can contain any logic
required to reduce the complexity of the underlying implementation. Having removed
one design constraint from each interface, solutions can now be found that do not com-
promise any of the design goals, as shown in Figure 4.4. Note that both interfaces are
still constrained by performance; hence, interface splitting does not imply performance
degradation.

As a bonus, the insulating code between the two interfaces tends to be very stable,
since it usually depends only on the two Jupiter base interfaces that it splits. Insulat-

ing code often converges asymptotically toward an ideal implementation that seldom

60

Low-level interface High-level interface

Figure 4.4: Design constraints after interface splitting. Each interface is relieved of one

constraint, permitting an uncompromised solution (shown by the “x”).

changes®.

The same splitting technique can be successful with other design trade-offs besides
ease-of-use versus ease-of-implementation, though that is the most common application
of the technique in Jupiter. It is most effective with “soft” requirements, such as
interface simplicity, flexibility, or ease of use, though it is also sometimes helpful with
“hard” requirements like performance and efficiency.

To illustrate the benefits of splitting over-constrained interfaces, we present number

of examples of how this technique has been employed in the design of Jupiter.

4.3.1 Context versus FrameSource

The Context and FrameSource interfaces provide a typical example of the benefits of
interface splitting. Originally, the Context interface was all that stood between the user
and the implementation of the Java call stack, which caused Context to become over-
constrained. Adding the FrameSource interface relieved the constraints and allowed for
an uncompromised solution.

The constraints on the original Context interface are exactly those shown in Fig-
ure 4.1. The simultaneous of ease-of-use and ease-of-implementation could not be satis-
fied simultaneously while still providing acceptable performance. Any design that made

Context easy to use did so by burdening the implementation with responsibilities, while

4This phenomenon has occurred numerous times in the development of Jupiter, and such “conver-
gent” modules are moved into the std directory when they are discovered, in order to indicate their

stability.

61

any design that made Context simple to implement did so by exposing complexity to
the caller. For example, if Context takes responsibility for tracking the topmost stack
frame, that complicates its implementation; if not, that responsibility is left to the
caller, making the interface more complicated to use.

To relieve this design tension, the FrameSource interface was introduced as a low-
level interface to the call stack implementation, while Context became the high-level
interface for clients that use call stack functionality. The Context.c implementation
module acts as the insulating code in this case, implementing the Context semantics in
terms of the FrameSource interface, thus relieving each interface from the constraints
of the other.

The Context and FrameSource interfaces have a number of differences that illustrate

their distinct design constraints:

e Stack manipulation almost always makes reference to the topmost frame, so
Context keeps track of the current topmost frame for ease-of-use. In contrast,
FrameSource does not keep track of the current frame, thus removing this bur-
den from the implementation. Tracking of the topmost frame is handled by the

Context.c module.

e When a frame is removed from the stack, that is usually because a method
has returned, so the return value should be propagated to the caller’s frame.
Context takes responsibility for this operation in order to simplify client code.
FrameSource does not, thus simplifying the implementation code. Copying the

return value to the caller’s frame is done by the Context.c module.

e Frames are added to and removed from the stack when methods start and finish
executing. If the method is synchronized, the appropriate monitor must be locked
and unlocked. The Context interface takes responsibility for this to simplify
the client, while the FrameSource interface does not. The Context.c module

performs the actual monitor operations.

As shown in Figure 4.4, the efficiency constraint applies to both the Context and

62

FrameSource interfaces®. Because of this, the two interfaces have some things in com-
mon; for instance, both take responsibility for copying method arguments when a new
frame is pushed on the stack. It may have simplified the implementation of FrameSource
if this requirement were removed, and the argument copying were performed by the
Context.c module. However, this design would be unable to exploit the efficiency of
the (very common) stack layout technique that causes adjacent frames to overlap to
make argument copying unnecessary (as described in Section 3.5). Such a design would
correspond to a point somewhere in the upper-left area of the design space, being ruled

out by the efficiency constraint.

4.3.2 Threading Interfaces

Jupiter’s interfaces to the threading facilities demonstrate how the demands on an
interface can be especially constraining when they are imposed by forces outside the
control of the system. The threading interface is one place within the JVM that is
constrained by two different external forces: the semantics required of Java threads,
versus the capabilities provided by the underlying thread library.

Using a single interface between these two external forces would cause that interface
to become over-constrained, and finding one interface which cleanly serves both pur-
poses would be difficult if not impossible. Whenever Java’s requirements differ from the
functionality of the underlying library, we are presented with three sub-optimal choices
regarding the design of the interface: it could resemble Java’s design rather than the
library’s, making it harder to implement; it could resemble the library’s design, making
it harder to use to meet the Java specification; or it could be a compromise, making it
harder both to implement and to use.

To address this design tension, Jupiter contains two threading interfaces, shown in
Figure 4.5. The higher-level interface consists of the Thread and Monitor abstractions,
which implement the semantics of Java threads and monitors. The lower-level interface
consists of the ThinThread, Mutex, and Condition abstractions (known collectively as

the “ThinThreads” interface) which encapsulate the underlying thread library. The

5As it does with every interface in Jupiter.

63

Java class libraries
ExecutionEngine
hread+ThreadSource Monitor+MonitorSource

Thread.c Monitor.c

ThinThread Mutex Condition
ThinThreads.c
Underlying thread interface

Figure 4.5: Multithreading modules and interfaces. Modules are shown as blocks di-

vided by horizontal planes representing interfaces.

interfaces are separated by the Thread.c and Monitor.c modules.

These two interfaces are complementary in several ways:

e ThinThreads encapsulates the thread library beneath Jupiter. Thread and
Monitor encapsulate the threading needs of the Java program running on top

of Jupiter.

e ThinThreads provides the minimal requirements to make implementing Java
threads possible. Thread and Monitor provide the maximum support to make

implementing Java threads simple.

e ThinThreads is designed so that the implementation code which connects to the
underlying thread library can be trivial. Thread and Monitor are designed so

that the client code which uses them to implement Java threads can be trivial.

The details of the threading interfaces are still under construction at the time of
writing [Cav02]. However, it is expected that, once finished, they will serve as an ex-
cellent example of the tremendous flexibility benefits afforded by the interface splitting

technique, since it is these interfaces that originally motivated the technique.

64

4.3.3 ObjectSource versus MemorySource

Most interface splitting produces a low-level interface with some desirable characteris-
tics, and a high-level interface designed to be used by the rest of the system. However,
Jupiter’s object allocation system demonstrates how the low-level interface (namely
MemorySource) that arises as a product of interface splitting may itself become as use-
ful and important as the high-level interface.

One of the earliest design tensions to become apparent involved the memory al-
location subsystem. Java programs can only use memory in the form of objects, so
the allocation interface came to be known as ObjectSource. The design tension arose
from the highly formalized view of memory that objects represent. Specifically, mem-
ory in Java is not just an unstructured array of addressable storage locations; rather,
Java objects possess a great deal of additional semantics which are nontrivial to im-
plement, such as field layout, synchronization via monitors, distinguishing arrays from
non-array objects, etc. As a result, the creation of an object involves more than just
the allocation of memory. Thus, the requirement to keep object allocation easy for
the caller, while simultaneously keeping the memory allocator simple, would cause the
single ObjectSource interface to become over-constrained.

The solution is to provide two interfaces, ObjectSource and MemorySource, and
to implement an insulating layer between them, in the form of the Object.c and
ObjectSource.c modules. The ObjectSource and MemorySource interfaces differ in a

number of ways:

e It is convenient to have the quantity of memory required to hold a new object com-
puted automatically, so ObjectSource provides this functionality. In contrast,
MemorySource requires the caller to perform this computation, thus relieving the

memory allocator of the responsibility.

e The fields of a new object instance are required to be initialized with zeros, and
ObjectSource does this. MemorySource provides no guarantees regarding the
contents of the memory blocks it provides, thus allowing implementations to do

whatever is easiest and/or most efficient.

65

e Objects that are arrays are treated differently from objects that are instances of
non-array classes. ObjectSource is aware of these differences, and takes responsi-
bility for allocating and initializing both kinds of objects properly. MemorySource

remains unaware that any such distinction exists.

Normally, having split memory allocation into two interfaces, 0bjectSource would
be the interface used by the system, while MemorySource would be seen only by memory
allocator implementations. However, while the Java code only needs memory in the
form of objects, regular memory allocation is, of course, indispensable for the JVM
itself. Thus, the MemorySource interface is used widely to allocate memory throughout

Jupiter.

4.4 Modularizing by maintenance characteristics

Information hiding has long been established as the most effective basis for decomposing
a system into modules [Par72]. However, this prescription still leaves room for refine-
ment, since it is not always clear what information should be hidden by which modules.
In this section, we supplement this venerable module design criterion by considering
the manner in which the information in each module may change over time, which we
refer to as its maintenance characteristics.

The principle of module cohesion prescribes that a change to the system should
require a small number of modules to be modified; preferably, only one. This suggests
that code which changes under the same circumstances should appear in the same
module. The complementary principle of module independence prescribes that separate
changes should affect separate modules. This suggests that code which changes under
different circumstances should appear in different modules. Together, the effect of
these principles is that module boundaries should largely be determined by the code’s
maintenance characteristics.

In this section, we present two examples of module design based on maintenance
characteristics. By addressing the flexibility criteria (atomicity, independence, and

cohesion), this technique directly contributes to the flexibility of the system.

66

4.4.1 Frame and FrameSource

Jupiter’s interfaces for allocating and manipulating stack frames illustrate how code
with similar maintenance characteristics should appear in the same module.

The Frame interface are designed to insulate the rest of the system from the details of
each frame’s memory layout. Similarly, the FrameSource interface is designed insulate
the rest of the system from the collective layout of all the frames on the stack. The
layout of a single stack frame is very likely to affect and to be affected by the layout of
the stack as a whole. This is especially true because it is common to lay out the stack
in such a way that adjacent frames overlap to make argument passing more efficient;
this trick only works if individual frames are designed to allow for it.

Since the layout of the stack as a whole is so tightly coupled to the layout of the
individual frame, it is unlikely that they could be modified independently. Hence,
combining the implementations of Frame and FrameSource into a single module is
unlikely to harm independence or atomicity, while it greatly improves cohesion. Hence,

the two implementations have been situated in a single module.

4.4.2 Native versus NativeSource

Jupiter’s interfaces for accessing and invoking native methods illustrate how code with
different maintenance characteristics should appear in different modules.

The invocation of native methods proceeds in two steps: first, a NativeSource is
used to acquire the Native which implements a given MethodBody; second, the Native
is invoked using its nv_invoke function. The NativeSource step is implemented by
looking up the native code using whatever introspection capabilities are provided by
the system (e.g. d1sym in Unix, getprocaddress in Windows). The invocation step is
implemented by building a suitable native stack frame, and then branching to the start
address of the native code.

The two steps have very little to do each other, and would tend to be modified under
different circumstances. The NativeSource implementation would need to be changed
to suit different operating systems, while the nv_invoke implementation would need to

be changed to suit different calling conventions. The same operating system can execute

67

with different calling conventions (e.g. Linux running on x86 versus Alpha processors),

and the same calling convention can be used by different operating systems.
Therefore, in contrast to Frame and FrameSource, the implementations of Native

and NativeSource have different maintenance characteristics. They are implemented

in two separate modules to preserve independence and atomicity.

4.5 Pervasive error handling

In order for a system to be robust and reliable, it must employ a good error handling
scheme in a disciplined manner throughout the entire system. If designed properly,
the error handling scheme may also contribute directly to flexibility by decoupling the
module that detects an error from that which determines the appropriate response.
Jupiter employs an error handling strategy that makes robustness relatively easy to
achieve, inspired by Java’s exception mechanism.

The typical C idiom for reporting error conditions is to use the return value of the
function: a return value of zero indicates success, while various nonzero values indicate
failure. This idiom is nearly the worst one possible, for a number of reasons. First, it
is awkward to use, since every error-prone function call must have its own if statement
that checks the return value, causing common-case code to be interleaved with error-
handling code. Second, it is easily (even accidentally) circumvented, since C allows
function return values to be silently ignored. Third, it necessitates the use of global
variables to communicate extra error information, since the function is only capable of
returning an integer error code.

In contrast, the Java error handling scheme is well-suited to writing robust, flexible
software, and possesses a number of desirable features. Our goal is to find a C idiom

that provides the same features, which are as follows:

e Fase of use. Jupiter’s error handling technique must have a minimum of syntacti-
cal overhead, and leave the common-case code readable even when every possible

error is properly detected and handled.

e Precision. The code for a function is greatly simplified if each statement can

68

assume that all the preceding statements have succeeded. Hence, it is desirable
for the error handling technique not to allow any statement to be executed unless

all preceding statements have succeeded.

e Stack unwinding. When an error occurs in a deeply-nested function call, all func-
tions in progress on the call stack must be given an opportunity to do the necessary

cleanup in order to restore the system to a stable state.

e Diagnosis. Being a JVM, Jupiter must implement the proper semantics for the
running Java program. Java requires that failures occurring in the JVM must be
reported to the Java program by throwing an exception object which is an instance
of a specified class. The error handling technique must be capable of causing the
correct exception to be thrown in all cases. In addition, Java exception objects
can provide a textual error description, and so Jupiter’s error handling technique
should take advantage of this in order to provide as much diagnostic information

as possible.

Given the advantages that exceptions provide to Java code, it is natural to try to
duplicate the exception mechanism itself in C. Nonlocal control transfers in C are pro-
vided by means of the longjmp facility, which can pass control from one stack frame
to another. However, this mechanism provides no opportunity for intermediate frames
to recover from the error, making it unsuitable as a general error handling scheme by
itself. While it may be possible to make use of longjmp as part of a suitable error
handling framework, it has the additional drawback that the semantics of code contain-
ing longjmp calls is sometimes surprising. For example, the values of most variables
(specifically, non-volatile automatic variables) are undefined after a longjmp [KR88|.

For these reasons, we have chosen instead to pursue an error handling scheme com-
posed only of well-defined constructs of the C language. The scheme employed by

Jupiter consists of the following three conventions:

1. Each error-prone function takes an Error object as an extra argument, through

which any error that occurs can be described.

69

2. Functions ensure a standard postcondition; namely, that they return zero (or null)
if and only if an error has occurred. Besides this, no error information is contained

in the return value.

3. Sequences of error-prone statements are combined into a conjunction and used as
the condition in an if statement. The “then” clause of the if statement will only
be executed if all the error-prone statements succeed, and the “else” clause will

be executed when one of them fails.

These conventions combine to form an error handling system with all four desired

properties:

e Ease of use is provided by allowing multiple statements to be combined within

one if statement, which handles the cleanup for all of them.

e Precision is provided by the short-circuit semantics of C’s conjunction expressions:
the first statement which returns zero, indicating an error, prevents the remainder
of the statements in the conjunction from being executed, and causes control to

jump immediately to the cleanup code inside the “else” clause.

e Stack unwinding is achieved by placing all cleanup code inside the “else” clauses.
Because no nonlocal control transfer takes place, all stack frames will have their
“else” clauses executed. As a further benefit, simplicity and terseness are pre-

served, since code that does not require cleanup can simply omit the “else” clause.
e Diagnosis is provided by storing a description of the error in the Error object.

We believe that this approach is one that is generally applicable to C programs,
and not just JVMs. Like most error handling schemes, it makes the system flexible by
separating error detection from recovery. However, this scheme differs from others by
providing a number of reliability benefits while remaining easy to use, thus encouraging
its use throughout the system; indeed, it is almost as easy to write robust code with
this scheme as to write careless code that ignores errors. The resulting pervasiveness
of robust error handling throughout Jupiter makes its modules more reliable, and thus

easier to reuse in novel system configurations.

70

4.6 Conclusion

In this chapter, we have presented a number of design techniques which have provided
substantial flexibility benefits to the Jupiter system. The techniques allow program-
mers to determine the modules affected by a given modification, and help to make the
required effort predictable and proportionate to the perceived complexity of the modi-
fication. These properties allow Jupiter to be modified in a straightforward way to suit

the needs of future researchers.

Chapter 5

Design for Performance

Jupiter’s primary design focus is flexibility, rather than performance, and the two goals
are often perceived to be in conflict. However, Jupiter’s design embodies a different
viewpoint: that a useful platform for JVM research must be flexible enough to allow for
efficient implementation. In this chapter, we explore how Jupiter’s design allows these
two goals to coincide, rather than compete.

The chapter is divided into two parts. First, we focus on interfaces, discussing how
they have been designed to permit efficient implementations. Afterward, we focus on
implementation, presenting a number of implementation techniques which further high-
light the manner in which Jupiter’s flexibility can be used to achieve good performance.
In each case, just as with flexibility in previous chapter, the desire to achieve perfor-
mance through flexibility has affected Jupiter’s design innumerable small ways. Rather
than attempt to be exhaustive, we provide a sampling of the more novel and significant

techniques that have been employed in this pursuit.

5.1 Interface Design Techniques

Often, the most natural way to define an interface actually embodies subtle, implicit
assumptions which make it difficult to implement efficiently. To permit efficient im-
plementation, it is important to reason about the minimal computation implied by

each interface. Choosing the interface with the least implied computation provides the

71

72

implementor the flexibility to construct an efficient implementation.

In all, we present three techniques which help to achieve this goal:

e Design by Contract. By reducing the need to check for error conditions, imple-

mentations can be streamlined for the common case.

o Lazy computation. Performing computations only when needed prevents unnec-

essary computation whose results are never used.

e Reducing implied arithmetic. In an efficient system, arithmetic can be costly, and

avoiding unnecessary arithmetic can provide a substantial performance benefit.

We describe each technique, and provide examples of how it has been applied to

Jupiter.

5.1.1 Design by Contract

Design by Contract, described in Section 4.2 allows a function to impose preconditions:
constraints on the conditions under which the function may be called. Functions that
are permitted to impose constraints on their callers are relieved from the burden of
checking for erroneous usage.

In contrast, in the absence of such constraints, the function is forced to detect
and respond to erroneous usage; in a well-functioning program, many such errors will
never occur, and so checking for them is pure overhead. For instance, practically every
function in Jupiter has at least one parameter which is a pointer, and most of them
require those pointers to be non-null. If they were not permitted to make such demands,
the system would be bogged down by huge quantities of null-pointer checks, the vast
majority of which are not necessary.

However, if functions are permitted to prohibit callers from passing null pointers,
then they can assume a priori that those pointers will be valid, placing the onus for
pointer validity on the caller. Then, any caller which can guarantee the validity of a
pointer need not check for it to be null. In such cases, when certain errors are guaranteed
never to happen, no error checking is ever performed. Omitting the error checking code

can improve performance.

73

An important example of the efficiency that can be achieved using Design by Con-
tract is the interface for accessing elements of a Java array. In the absence of Design
by Contract, a function must be prepared to deal with any unusual conditions under
which it may be called, and report errors to the caller. As a result, the function for

accessing array elements might look like the following:

bool ar_getElement(Array ar, int index, Value *result, Error er);

This function would return a flag indicating whether an error had occurred. The
inefficiency of an interface like this arises from the implicit requirement to check for
such conditions as null pointers and out-of-bounds index values in order to preserve the
robustness of the system. This may appear to be benign, since the Java specification
prescribes that all array accesses require null pointer checks and index checks anyway.

However, when the JVM itself manipulates arrays, it is quite common to know
statically that the pointers will never be null, and/or that the index will always be
in bounds. An example of this can be found in the native method arraycopy from
java.lang.System, which is intended to provide an efficient way for a Java program to
make a copy of an array. The implementation of this method can begin by checking that
the arrays are not null and that the indices being copied are in bounds. Afterwards,
the contents of the array can be copied element-by-element with no further checking.

With the ar_getElement interface described above, we have two rather unpleasant

options for implementing arraycopy:

e Use ar_getElement to copy each element. This places the (now superfluous) null
pointer and index checks inside the inner loop, leading to unnecessary performance

degradation.

e Implement arraycopy inside the Array module, making use of “inside knowledge”
of how arrays are laid out in order to perform the copy, thus complicating the

implementation of the Array module.

Design by Contract provides a third alternative. The array element accessor function
can impose a precondition stating that the array reference must not be null, and that

the index must be in bounds. This places the responsibility on the caller to make

74

sure that these conditions never occur. Then, because they never occur, the accessor
function does not need to check for them, and does not need to report error conditions.

The simplified accessor function looks like this:

Value ar_element(Array ar, int index);

With the interface defined in this way, the arraycopy method can call this function
inside its inner loop without the unnecessary overhead imposed by checking for error
conditions that will never occur. This allows arraycopy to be written in a way that is
independent of the Array module’s implementation without compromising performance.

This example demonstrates that a function which fails to impose appropriate pre-
conditions in its caller incurs the overhead required to check for erroneous usage. By

proper application of Design by Contract, unnecessary error checking can be eliminated.

5.1.2 Lazy computation

Lazy computation defers the execution of a function until the results of that function
are actually needed. This stands in contrast to eager computation, which executes code
as soon as it is logically correct and convenient to do so. In this section, we examine
the benefits of lazy computation by describing its use in the FrameSource interface.

Most computation in an imperative language like C is done eagerly, since lazy com-
putation typically requires an explicitly-coded mechanism, necessitating an inconve-
nient amount of additional effort and complexity. However, when cases arise in which
lazy computation is reasonably straightforward to implement, its benefits are worth
considering.

For instance, consider the FrameSource interface, used to allocate stack frames for
executing Java methods. This interface provides a function called frs_getFrame which

is declared as follows:

Frame frs_getFrame (
FrameSource frs,
MethodBody mb,
Frame caller,
Error er

)

75

This function returns a Frame suitable for executing the given MethodBody. In ad-
dition to frame creation, frs_getFrame serves another important purpose: it commu-
nicates to the FrameSource which of the previously-allocated frames may be recycled,
and which must be retained. The “caller” argument is considered to be the last frame
that needs to be preserved; any frames which had been allocated after caller may be
discarded by the FrameSource. When using this interface, frames are not explicitly
discarded when no longer needed; rather, they are discarded implicitly when the next
allocation occurs. This scheme is referred to as lazy frame discarding.

The potential disadvantage of lazy discarding is that frames may remain allocated
after the associated method has finished executing, thus unnecessarily occupying mem-
ory. However, since method invocation is common in Java, we expect that the return of
one method will usually be followed shortly by the invocation of another, causing a new
frame to be allocated. When this occurs, all old frames will be discarded. Therefore,
old frames are not long-lived, even with lazy discarding, meaning there is very little
memory wasted by lazy discarding.

To understand the advantages of lazy discarding, consider the implications
of eager discarding, using another function such as frs discardFrame. First,
frs_discardFrame would need to be called for every discarded frame, while the lazy
scheme can discard several frames with a single call. Second, the lazy scheme relieves
FrameSource of the obligation to keep track of the current top frame, a duty which then
falls unambiguously to the Context interface. Third, all else being equal, an interface
that requires explicit cleanup is harder to use than one that provides automatic cleanup.
One or more of these issues could be addressed by other means, but lazy discarding is
a simple way to achieve all three simultaneously!.

On top of the efficiency advantages provided by this interface’s lazy approach, it
has the unusual property that, far from complicating the interface or implementation

of FrameSource, it actually simplifies them. Obviating the fr_discardFrame function

Tt is conceivable that a future researcher may find it desirable to discard frames more promptly.
In that case, the FrameSource interface could be augmented with a conceptually redundant
frs_discardFrame function. However, frs_getFrame should still be left with the ability to discard

frames lazily, for the reasons mentioned above.

76

means one less function to implement, and one less resource to clean up manually.
This example illustrates that, if the implementation of a lazy computation strategy
doesn’t unduly complicate the code, laziness can be an effective means of preventing

unnecessary computation, thus improving the efficiency of the system.

5.1.3 Reducing implied arithmetic

Some interfaces prescribe a certain amount of unavoidable computation. All else being
equal, such interfaces should be avoided, and interfaces should be chosen that perform
no more computation than required by the caller.

To illustrate, consider the function provided by the Frame interface to access an

element of the operand stack:

Value fr_operand(Frame fr, int offset, Type tp);

Since most of the Java opcodes access data near the top of the stack, it may be
natural to choose a convention whereby offset represents the distance of the desired
item from the top of the stack. The top item itself would be represented by an offset
of zero, and deeper items would correspond to larger offsets.

The trouble with this interface becomes apparent when we note that the top of the
stack is not fixed; rather, it moves every time data is added to or removed from the
stack. Hence, locating a particular item on the operand stack will require the interpreter

to perform a calculation resembling this:

location = stackBottom + stackDepth - offset

Values for stackBottom and offset may be known to the interpreter at compile
time, but stackDepth is not, so a certain amount of run-time arithmetic is unavoidable.
In contrast, consider a different indexing convention which counts elements starting
from the bottom of stack. With such a convention, locating a particular item would

require a calculation like this:

location = stackBottom + offset

7

When the interpreter uses the bottom-based scheme to access an element from the
top of the stack, the bottom-based offset cannot be known statically, so some run-time
arithmetic is still required. In such cases, the bottom-based indexing scheme provides
no benefit. However, the advantage of this scheme becomes apparent in cases when the
interpreter already knows the bottom-based offset. All the quantities required by the
bottom-based scheme—the stackBottom and the offset—are both known statically,
and so no computation is required at runtime. In contrast, the top-based scheme would
still require run-time arithmetic to be performed.

Furthermore, the bottom-based scheme can be beneficial even when a bottom-based
offset is not known statically. For instance, since the stack depth changes very fre-
quently, it may be desirable for the interpreter to cache it in a register. Calls to
fr_operand in a top-based scheme look like the following:

fr_operand(fr, offsetFromTop, tp);

This interface provides no way to take advantage of the cached stack-depth value.
However, with bottom-based offsets, an element of the operand stack could be accessed
like this:

fr_operand(fr, stackDepth-offsetFromTop, tp);

With stackDepth in a register, and offset most often being a compile-time con-
stant, accessing the operand stack becomes very efficient indeed, performing much as it
would if hand-coded in assembly.

Clearly, interfaces which require less computation will be more efficient. Deter-
mining what computation is implied by a given interface, as opposed to a particular
implementation of that interface, can be subtle, as illustrated by the operand stack ex-
ample above. However, by careful consideration of exactly which values can be known
at compile time, and which require run-time arithmetic, an interface can be designed

which minimizes arithmetic across any practical implementations.

5.2 Implementation Techniques

Having considered techniques that make interfaces flexible enough to permit efficient

implementations, the task remains to produce the implementation itself, achieving the

78

desired performance for the critical modules. Performance tuning generally requires
careful consideration of each module; however, some techniques apply broadly across
all the modules in the system. In this section, we present two techniques which have
greatly contributed to achieving the performance of the interfaces which we have so

carefully designed:

e Promoting function inlining. The use of careful coding techniques, combined with
Jupiter’s IncludeGen tool (described in Section 5.2.1.2), allows the compiler to

inline many functions automatically, avoiding the cost of a function call.

e FExploiting immutability. Immutable data can be freely shared or replicated with-
out concern for consistency among the various copies, allowing a wide selection

of low-overhead implementation options.

5.2.1 Promoting Function Inlining

With function calls as pervasive as they are because of Jupiter’s fine-grained modularity,
is important to make them as efficient as possible. The option always exists to replace a
function declaration with a macro to achieve good performance; however, if acceptable
performance can be achieved without macros, the resulting code is cleaner and easier
to understand. To achieve the performance of macros while using function calls, it is
necessary to make heavy use of function inlining.

Inlining can reduce the overhead of function calls, first by eliminating the overhead
introduced by the branch instructions, and then by enabling a host of optimizations
to occur across what used to be a function call boundary. As a general rule, function
inlining is hard for compilers to do, and it is not desirable to depend entirely on cutting-
edge compilers to achieve good performance. Hence, we have developed techniques that
give an average compiler the help it needs to recognize and exploit as many inlining
opportunities as possible.

This section presents the two implementation techniques that allow substantial func-
tion inlining to occur, even when a compiler (gcc) is used that does not have cutting-

edge inlining capabilities:

79

e Minimizing common-case code size allows the most frequently called functions to

be inlined.

e The use of a preprocessing tool called IncludeGen enables function inlining across

module boundaries.

The availability of pervasive function inlining relieves the programmer from concerns
of performance penalties for cross-module function calls, allowing module boundaries

to be based on uncompromised software engineering principles.

5.2.1.1 Minimizing common-case code size

When a function is inlined, its body is replicated in each call site. Thus, inlining large
functions can dramatically increase the size of the executable, leading to a number of
problems including increased paging and increased instruction cache pressure. To ad-
dress these problems, compilers typically have a size threshold, beyond which a function
will not be inlined. However, there are cases within Jupiter where this kind of inlining
threshold might cause the compiler to miss important optimization opportunities, re-
sulting in significant performance degradation. To address this issue, Jupiter functions
are written in a manner which produces small functions to handle common cases, thus
making sure that they can be inlined when it matters most.

An example of this technique can be found in Jupiter’s ConstantPool implementa-
tion. In a JVM, a constant pool acts as a cache of information used by the methods of
its class, and may be accessed very frequently. The body of the function for accessing

a METHODREF constant pool entry might look something like this:

MethodDecl ctp_method(ConstantPool ctp, int index){
if (ctp->cache[index] == EMPTY){
/* Lengthy, complex code to resolve a METHODREF */
}

return = ctp->cache[index];

3

In the common case, when a constant pool entry has already been resolved, the
desired value is simply read from the cache. This operation is fast, making the overhead

of a function call significant. Hence, we would like these accessor functions to be inlined.

80

The difficulty occurs when the resolving code inside the if statement is so long that
it prevents the surrounding function from being inlined. The function could be marked
explicitly as inline, but that would cause the exact code-bloating problems that the
compiler was trying to avoid by not inlining the function in the first place.

To get the benefits of inlining without the code bloat, we split this code into two

separate functions as follows:

static void ctp_fillMethod(ConstantPool ctp, int index){
/* Lengthy, complex code to resolve a METHODREF */
X

MethodDecl ctp_method(ConstantPool ctp, int index){
if (ctp->cache[index] == EMPTY){
ctp_fillMethod(ctp, index);
}

return = ctp->cache[index];

}

The ctp_method function now has a small, fixed-size body, and can be inlined.
Meanwhile, the lengthy, complex resolution code is in a separate function, for which
the compiler can make an independent inlining decision. This technique avoids the
function call overhead in the common case, while simultaneously preventing undesirable

code expansion.

5.2.1.2 IncludeGen

Unless function inlining is performed by the linker?, C’s separate compilation model
prevents inlining across compilation-unit boundaries. With the typical coding style
having each module in a separate compilation unit, inlining across module boundaries
does not occur, resulting in high system overhead due only to modularity. To address
this issue, we have developed a tool called “IncludeGen” which preprocesses C code
to place all modules in a single compilation unit, thus enabling cross-module function
inlining.

IncludeGen facilitates inlining by generating a .c file containing one #include

directive for each module in the system, which puts all the code into a single compilation

20r by equivalent capabilities in the compiler.

81

unit. This allows the compiler to “see” all the function definitions in the entire system
during its optimization phase, and enables implicit inlining of cross-module function
calls, plus all the additional optimizations that are possible after inlining occurs.

One minor drawback to this technique is that all identifiers in the system must be
globally unique, because they will all be visible in the same compilation unit. This is
not a big problem for Jupiter, because all public names (and most private ones) make
use of module prefixes, as described in Section 4.1, automatically making them globally
unique. The handful of name clashes that occur between private names from separate
modules are easily fixed by renaming the offending identifiers, usually just by adding
the appropriate module prefix.

A more significant drawback is the difficulty of maintaining the proper ordering of
the #include statements. In our testing, we used the gcc compiler, and discovered
that it requires a function definition to appear before its first use if it is to be inlined.
Thus, the ordering of the #include directives is crucial to performance.

Unfortunately, as important as they are, the ordering constraints identified by the
programmer do not appear explicitly in the file; instead, they are implicit in the final
ordering of the #include directives. This makes maintenance problematic. When new
modules are added to the system, the programmer may discover that certain important
functions are not being inlined, and may choose to remedy the problem by rearranging
the #include directives. In doing so, the desirable properties of the existing ordering
may be lost, and the system may perform very poorly as a result. Hence, despite the
attractiveness of the #include file for allowing inter-module inlining and optimizations,
maintaining such a file would be prohibitively problematic.

Therefore, Jupiter does not leave the maintenance of the #include file up to the
programmer. Instead, a utility called IncludeGen is provided, which automatically gen-
erates the file based on a list of module names passed in on the command line®. To get
the ordering right, each source file is scanned for specially-formatted comments which
specify ordering constraints on that module. The resulting dependence graph is first

checked for circularities, which are reported as errors, alerting the programmer to con-

3The module names usually come from the Makefile, which has a complete list of all modules in

the system.

82

flicts in the ordering requirements. (This stands in contrast to the manually-maintained
#include file, which would simply produce an executable with poor performance.) Fi-
nally, the graph is traversed in topological order to generate the #include directives.

The IncludeGen utility recognizes two directives for specifying the dependency edges
for a module: the Uses directive indicates that the containing module should appear
after another; and the UsedBy directive indicates that the containing module should
appear before another. Though the system would be conceptually complete with only
one of these two directives, both are provided so that lower-level modules never need
to refer to higher-level ones. For instance, Context.c is a low-level standard module
which is independent of the implementation of any other module (as described in Sec-
tion 4.3.1). However, Context.c makes use of “callback” functions implemented in
Frame.c, a high-level module, and these functions should be inlined. Placing a “Uses
Frame.c” directive in Context.c would introduce a reverse dependency by making a
low-level module refer to a higher-level one. Instead, we place a “UsedBy Context.c”
directive in Frame.c, preserving the module hierarchy.

In addition to Uses and UsedBy, IncludeGen provides two more directives called
UsesAll and UsedByAll. UsesAll is for top-level modules such as the main interpreter
loop. It saves the programmer from having to name all the modules in the system
explicitly with a long list of Uses directives: a scheme that would lead to maintenance
problems when modules are added, removed, or renamed. UsedByAl1l is for fundamental
modules like MemorySource.c and Error.c which are used heavily throughout the
system. It saves the programmer from having to add Uses directives to almost every
module.

Modules that employ UsedByAll and UsesAll directives still belong to the de-
pendence graph, meaning that they can still have ordering constraints relative to one
another. For instance, one module in the UsesAll subset can have a Uses directive to
make sure it appears after another module which is also in the UsesAll subset.

The IncludeGen utility allows ordering dependencies to be given explicitly and be
checked for inconsistencies, greatly simplifying the task of producing a good module

ordering. This degree of control over the module ordering allows Jupiter to achieve

83

good performance with a standard, commonly-available compiler (namely gcc).

5.2.2 Exploiting Immutability

Data that does not change after it has been constructed is referred to as being im-
mutable. Besides the tremendous ergonomic benefit afforded by the ability to reason

about immutable data, there are a number of additional benefits:

e The data can be freely replicated without concern for consistency among various
copies, because the copies will never change. This allows an implementation to
make use of processor caches (and even registers) as well as other mechanisms

that enhance performance by making extra copies of data.

e Because immutable objects have no state changes through which to reveal their
identity, it is sometimes possible to discard the object, and then re-create it later,
transparently to the users of that object. This may relieve the implementation of

the burden of storing objects when they can easily be recomputed.

e No synchronization is required when accessing the data from multiple threads

because no thread ever changes it.

To illustrate the efficiency benefits of immutable data, this section presents three
examples of Jupiter interfaces whose immutability easily allows for certain efficient
implementations which would be difficult to construct if the system were based on
mutable data abstractions. Each example demonstrates more than merely the ability
to pass data by value instead of by reference, since each has some additional special

feature:

e Value. We have seen that immutable data can be passed by value instead of by
reference; the Value interface demonstrates that the opposite change—passing by

reference instead of by value—can also be beneficial.

e Type. Immutable data can be passed both by value and by reference on a case-

by-case basis, providing the benefits of both approaches simultaneously.

84

e MemorySource. Even when an interface is mutable, the immutable portions can

be isolated, and the benefits of immutable data can still be realized.

Together, these examples illustrate the wide range of situations in which immutable

data may confer some benefit.

5.2.2.1 Value

Immutable data can be beneficial because it allows data to be passed by value when
it would normally be passed by reference. However, the converse is also true: data
normally passed by value can also be passed by reference, as demonstrated by the
Value abstraction.

Value represents a single value of any of the Java types. Since the behaviour of
the Java opcodes is independent of the JVM implementation, it is desirable for both
interpreters and JIT compilers to share the code that specifies the opcode behaviour.
However, JIT compilers are fundamentally different from interpreters in that they do
not have access to the data values, since those values will not exist until the generated
code is executed.

To address this issue, Jupiter treats Values differently depending on whether they
are used by an interpreter or a compiler. Interpreters simply treat a Value as a C union
of all the possible data types, while JIT compilers must treat Values as placeholders
that indicate where the data will be located when the generated code is executed. The
placeholder may be a virtual register number, or a memory location, or anything else
that the JI'T compiler uses to represent a data location.

As the implementor of the JIT compiler, it may be desirable to describe a data
location using a data structure. If the data structure is immutable, then Value may be
defined as a pointer to such a structure. Users of the Value interface may do whatever
they normally would have done with a Value, and the fact that it has been implemented
as a pointer to immutable data, rather than a simple value, will go undetected.

Thus, an immutable structure can be passed by reference, and callers expecting data
to be passed by value will continue to operate as expected. In this way, immutable data

provides yet another degree of freedom for the system implementor.

85

5.2.2.2 Type

Jupiter’s Type abstraction models the information contained in Java’s type descrip-
tor strings. A given descriptor string never changes, and so the Type abstraction is
immutable, and hence amenable to being passed by value. In particular, the Type ex-
ample demonstrates how a single data type can even be passed by value in some cases
and by reference in others. This results in a highly efficient implementation, allowing the
use of the Type abstraction to expand beyond the cases where Java uses type descriptor
strings, to become the ubiquitous way of manipulating type information throughout
the system.

To illustrate the efficiency permitted by the immutability of Types, consider what
happens in a fairly typical opcode, ICONST_0, which pushes an int constant with the
value of zero onto the operand stack. The implementation of this opcode in Jupiter’s

opcodeSpec module looks like the following:

fr_pushValue(curFrame, 0, tp_new(tpc_int));

The call to tp-new constructs a Type object which is used to indicate the type of the
pushed data to the fr_pushValue function. In this case, an int is being pushed, so a
Type representing the int type is passed®. Creating a new Type object every time this
code is executed could pose a significant efficiency problem, since time spent allocating
the Type object could be much greater than that spent actually pushing the value on
the stack. Even caching previously-created Type objects may prove prohibitively costly,
since the actual computation being performed here—the pushing of a value onto the
operand stack—is very small. It may appear that using a Type object for this purpose
would not be practical; however, the immutability of the Type abstraction allows it to be
implemented in a highly efficient manner that eliminates the object-creation overhead.

To begin to address this problem, we divide type descriptors into two categories:
the complez types, and the simple types. Complex types have structure; for instance,
an array type is not complete without specifying the type of the array’s elements.
One cannot simply say that the type of an object is “an array” without providing the

element type as well. Similarly, a method type is not complete without the types of its

4Specifically, it represents a Java type descriptor of "I".

86

arguments and return value, and a class type is not complete without specifying the
name of the class.

In contrast, simple types can be completely described as an element of an enumer-
ation, without any additional data. There is a finite list of simple types that includes
such types as int, long, void, and so on. This enumeration is known as the TypeChar
enumeration, because each type is described by a certain character: >I’ for int, ’J’
for long, ’V’ for void, etc. These are the same character values assigned by the Java
specification.

Having made the distinction between simple and complex types, the solution to
the efficiency problem is to pass simple types by value, while passing complex types
by reference. Simple types are more transient and more prevalent, so the performance
benefit is significant.

To accomplish this, Type’s constructor (called tp_new) looks like this:

Type tp_new(MemorySource ms, String descriptor, Error er){
TypeChar tpc = descriptor[0];
if (tpc_isSimple(tpc)){
result = (Type)typeChar;
Yelsed{
result = tp_newComplex(ms, descriptor, er);
}
}

It begins by extracting the TypeChar from the type descriptor string. When that
TypeChar indicates a complex type, an internal tp newComplex function is called to
construct the appropriate data structure. However, for the case of a simple type, the
type character itself is returned. Type characters can be distinguished from pointers
since the ASCII codes are always between 1 and 255, while pointer values (in most
operating systems) are never in this range: the memory page starting at virtual address
zero is marked invalid by the memory manager to detect null pointer dereferences.

A number of “core” accessor functions for the Type interface are implemented like

this:

TypeChar tp_char(Type tp){
if ((unsigned)tp > OxFF)
return tp->typeChar; /* tp is a struct */
else

87

return (TypeChar)tp; /* tp is the TypeChar itself */

The remainder of the accessor functions call the core functions, and don’t themselves
need to distinguish pointers from TypeChars.

Finally, returning to the ICONST_0 example, we can see how this implementation of
the Type interface makes for highly efficient code. As shown above, the implementation

of ICONST_0 looks like this:

fr_pushValue(curFrame, 0, tp_new(tpc_int));

Once tp-new is inlined, this code becomes the following:

fr_pushValue(curFrame, 0, (Type)tpc_int);

Inside fr_pushValue are a number of cases for handling specific data types. In fact,
the implementation of fr_pushValue can be thought of as a switch statement on the
data type. Since the data type has been resolved to a known compile-time constant,
the switch statement is optimized away, leaving only the specific case appropriate for
pushing an int value on the stack. The resulting code is exactly the same as if the
type-specific code were called directly, while at the source-code level, the clean object-
oriented interface remains intact.

This example demonstrates how immutability can permit a given data type to be
passed by value in some cases and by reference in others. This occurs with no impact
on the source code, which may continue to be written under the assumption that all

data is passed by reference.

5.2.2.3 MemorySource

Section 2.3.4 describes a scheme in which MemorySources are passed by value rather
than by reference, permitting the code to be optimized substantially. An interesting
thing to note regarding this example is that, on first glance, the MemorySource interface
does not appear to be immutable. In particular, ms_getMemory is not referentially
transparent: every time ms_getMemory is invoked, it may return a different value, thus

revealing that some sort of state change must be occurring inside the MemorySource.

88

The reason immutable-data techniques can be applied to MemorySource is that
its functionality can be divided into a mutable and an immutable part. The actual
memory management, process requires mutable data; however, the particular memory
pool associated with a given MemorySource never changes. Keeping track of which
memory pool is associated with which MemorySource involves only immutable data, and
is therefore amenable to immutable-data techniques. This explains why, when applying
these techniques to MemorySource in Section 2.3.4, it was the node number—effectively
the memory pool number—that was passed by value.

Thus, even when dealing with mutable interfaces, it is often possible to isolate

specific immutable data that can be passed by value to improve performance.

5.3 Conclusion

In this chapter, we presented a sampling of the techniques which have helped Jupiter’s
interfaces and implementations to be as efficient as possible. By using these techniques,
we have achieved both performance and flexibility simultaneously, making Jupiter a

good platform for future JVM research.

Chapter 6

Experimental Evaluation

In this chapter, we discuss experiments performed to evaluate the success of Jupiter’s
design. We have employed a number of techniques to ensure both flexibility and good
performance, as was described in Chapters 4 and 5. Regrettably, it is difficult to quan-
tify the effect of each individual technique on the flexibility and performance of the
system. Because these are design techniques, changing them would require redesigning
large parts of the system using inferior techniques, and the nature and degree of the infe-
riority that should be introduced is debatable. Even though some of the techniques are
amenable to a direct comparison—for instance, the same interface could be designed
with and without lazy computation—the benefit of these techniques arises from the
accumulation of small improvements throughout the system, and undoing these tech-
niques would involve modifying large quantities of code. Furthermore, even ignoring
these issues, it is not clear that re-implementing parts of the system with an obviously
inferior design approach, and then benchmarking the result, would provide any useful
insight.

Therefore, rather than try to quantify the impact of these techniques individually,
we attempt to convey the nature of the improvement they produce by demonstrating
the flexibility and performance of the resulting system. Specifically, we first carry out 3
modifications to the Jupiter JVM, and demonstrate the degree of flexibility Jupiter pro-
vides. Afterward, we evaluate the performance of Jupiter using standard benchmarks,

and show that it provides adequate performance.

39

90

6.1 Flexibility

Jupiter’s primary goal as a research platform is flexibility, and although we believe we
have achieved this goal, a system’s flexibility is hard to quantify: a wide variety of
software metrics have been developed in an attempt to do so, but the success of such
metrics is questionable [Pow98]. Instead, we characterize the impact of a number of

modifications according to three criteria:

e Demarcation: the clarity with which Jupiter’s interfaces identify the modules that
will need to be changed. Good demarcation is important before the modification
is performed, to facilitate the estimation of the work required, and to enhance

confidence in the correctness and completeness of the proposed changes.

e Localization: the degree to which Jupiter’s interfaces confine the required changes
to a small quantity of code. Good localization is important during the modifica-
tion process, to reduce the amount of code that must be understood and altered

by the programmer.

o Insulation: the degree to which Jupiter’s interfaces conceal the effects of one
modification from others, allowing them to be combined trivially. Good insulation
is important after the modification is complete, to allow modifications contributed

by multiple programmers to be combined, thus multiplying their individual efforts.
In all, we present three modifications:

e Stack reversal. The original implementation of the Java stack grew downward;
that is, newer frames occupied lower memory addresses than older ones. During
the development of Jupiter, the stack implementation was altered so that the
stack grew upward, toward higher addresses. Such a fundamental change would
be challenging in a JVM that did not encapsulate the stack allocation details from
the rest of the system.

e Scalar array allocation. Large arrays of non-pointer data can lead to performance

problems unless the garbage collector is told that it does not need to scan such

91

arrays for pointers. Hence, it is useful to make use of a MemorySource specially
designed for allocating scalar (i.e. non-pointer) data, which communicates this
fact to the garbage collector. Adding this new MemorySource to Jupiter proved

to be quite straightforward.

e Quick opcodes. Certain Java opcodes are hard to implement efficiently for a variety
of reasons. A well-known solution to this problem is to rewrite the bytecodes upon
the first execution of a given opcode, to replace it with another opcode that has
more efficient semantics. Jupiter’s structure makes such bytecode replacement

straightforward.

This section motivates and describes each modification, and then evaluates the de-
marcation, localization, and insulation of that modification achieved by Jupiter’s mod-
ule structure. The modifications are not the easiest possible ones that fit nicely into
Jupiter’s module structure. Instead, we have strived to choose modifications that might
be difficult in other JVMs, but were relatively simple in Jupiter. Some of the modi-
fications presented are not necessarily well demarcated, localized, and/or isolated by
Jupiter’s design, but maintenance effort is a product of all three of these factors, and
extraordinary success in one can make up for mediocrity in others. For instance, a
modification that is localized to half a dozen lines of code will be reasonably easy to
perform and to combine with others even if, strictly speaking, it is not well demarcated

or isolated.

6.1.1 Stack reversal

The Java call stack can be implemented in a number of different ways, embodying
different trade-offs, entirely hidden behind the Frame and FrameSource interfaces. One
such trade-off is the direction in which the stack grows as new stack frames are added.
The new frames may occupy lower memory addresses than previous frames, in which
case the stack is said to “grow downward;” or else new frames may occupy higher
memory addresses, in which case it is said to “grow upward.”

Either growth direction may be desirable. Downward-growing stacks are the norm

for processes running in many modern operating systems, including x86 Linux and

92

Windows. Having the Java call stack stack grow downward may allow it to exploit
operating system facilities provided especially for downward-growing regions of memory,
such as Linux’s MAP_GROWSDOWN flag for the mmap system call [JT98].

On the other hand, there are reasons to prefer an upward-growing stack. The
semantics of Java make it much simpler and more efficient to have each frame’s operand
stack grow in the same direction as the call stack as a whole, and to lay out the local
variable array in the same direction as the operand stack grows. Therefore, a downward-
growing call stack is heavily biased toward a downward-growing operand stack and
a downward-ordered local variable array'. With all these things oriented downward,
toward lower memory addresses, all operand stack and local variable indexes would
need to be negated on every access, harming the efficiency of these operations.

During the development of Jupiter, we switched from the downward-growing scheme
to the upward-growing one. The call stack implementation is clearly demarcated by
the Frame and FrameSource interfaces, whose implementation is localized to a single
Frame.c module (as described in Section 4.4.1). This module consists of 534 lines of
code, of which roughly half had to be changed. Aside from this, no other code in the
system needed to be altered, meaning this modification is isolated from any other that
does not impact the stack layout. Therefore, Jupiter’s module structure succeeded in
facilitating the stack reversal modification.

In contrast, a JVM that has not been carefully designed for modularity could easily
make this modification problematic. For example, in Kaffe [Wil02], the main interpreter

function is called runVirtualMachine, and is declared as follows:

void runVirtualMachine(
methods *meth,
slots *1cl,
slots *sp,
uintp npc,
slots *retval,
volatile vmException *mjbuf,
Hjava_lang_Thread *tid
);

Note that the local variables (“1c1”) and stack pointer (“sp”) are passed as a pointer

to an array of slots. Being non-opaque array pointers, there is no way to know what

1 This is due to the way frames can be made to overlap. See Section 3.5 for more details.

93

parts of Kaffe depend on the stack layout. For instance, a cursory search for the word
“slots” revealed the following code from the soft multianewarray function, which
allocates multidimensional arrays:

/* stack grows up, so move to the first dimension */

args -= dims-1;

In addition, the code that calls runVirtualMachine appears as follows:

/* Allocate stack space and locals. */

1cl = alloca(sizeof(slots) * (meth->localsz + meth->stacksz));
;1').;)&101 [meth->localsz - 1];

runVirtualMachine (meth, 1lcl, sp, npc, retval, &mjbuf, tid);

In this code, the stack pointer is initialized to point past the end of the local variables,
before the method execution begins?. Thus, information regarding stack layout has not
been hidden behind any interface, allowing undesirable dependencies to form easily.
Furthermore, soft multianewarray shows that such dependencies are, in fact, found
in a number of places. Hence, the stack reversal modification is not well delineated
within Kaffe.

Jupiter does, of course, contain equivalent code; however, in keeping with Jupiter’s
coding conventions, this code is located inside Frame.c, along with all the other code

in the system which has information regarding stack layout. This serves to demarcate,

localize, and isolate stack layout modifications to a small amount of code.

6.1.2 Scalar Array Allocation

The MemorySource interface is one that lends itself to a wide variety of implemen-
tations for various purposes. Jupiter currently contains no fewer than six different
MemorySources (shown in Section 3.2), and does not yet implement the locality-
enhancing schemes described in Section 2.3.3.

With the MemorySource interface as polymorphic as it is, we found it desirable

early on to write a generic implementation that uses a jump table to dispatch the

2Note that it also allocates Java stack frames on the C stack, which not only precludes the
overlapping-frame optimization discussed in Section 3.5, but also ties the two kinds of stacks together,

precluding certain forms of thread migration as described in Section 2.2.4.

94

ms_getMemory call to the appropriate implementation function, much like C++’s virtual
method tables. Afterward, additional MemorySources could be added without changing
any existing code, except for the one location where the MemorySource is instantiated.
This represents the ultimate demarcation and localization, by confining the modifica-
tions to a single line of existing code in Jupiter’s main function. It also completely
isolates the new MemorySources from any other system modification, since practically
the entire modification occurs in a newly created file—the new MemorySource’s own
implementation file—upon which there can be no prior dependencies because the file
didn’t exist.

This ideal applies only to cases when one MemorySource is to be substituted for
another, for all memory allocation purposes. For instance, it allows us to use the
ErrorMemorySource for regression testing, or the Tracer for memory profiling, by
changing a single line of code. However, in some cases, it is desirable to substitute
another MemorySource for some subset of memory allocation. In those cases, the change
is not quite so ideal, though we believe it still to be very close to minimal.

To illustrate, consider the allocation of large arrays of non-pointer data, and the
problems this causes for conservative garbage collectors (described in detail in Sec-
tion 2.3.3). A new MemorySource is needed to communicate to the garbage collector
the scalar nature of the memory being allocated: this is the BoehmAtomicMemorySource,
described in Section 3.2.

Clearly, it cannot simply be substituted via the ideal one-line change, because that
would cause it to be used for all memory allocation throughout the system. This
would cause pointer-containing memory blocks to be marked as pointer-free, leading
to unpredictable results. Instead, the scope of the modification must be expanded to
include those modules that are responsible for allocating scalar arrays in the first place.

At the time of the modification, Jupiter had two such modules: ObjectSource, re-
sponsible for allocating Java arrays, which (of course) are sometimes arrays of scalars;
and SemanticFactory, used during classfile parsing to allocate arrays for storing
method bytecodes, interface lists and exception lists. Each of these modules was aug-

mented to use two MemorySources instead of one: the first is used for blocks which will

95

(Other Sources)

|/

BoehmMerriorySource

ObjectSource / \ SemanticFactory

memorySource memorySource

scalarSource \ / scalarSource

BoehmAtomicMemorySource

Figure 6.1: Using a separate MemorySource to allocate scalar data.

contain mixed pointer and scalar data, while the other is only used to allocate blocks
that will contain no pointers. This scheme is depicted in Figure 6.1.

This kind of modification is only needed when it is discovered that large scalar
arrays are causing stress on the garbage collector. In such cases, it is simple to use the
Boehm collector’s memory profiling capabilities to find the source of the problematic
arrays. With this knowledge, Jupiter’s interfaces clearly demarcate the code required
to modify the allocation policy at a known call site. The allocation of Java arrays is
clearly hidden behind the ObjectSource interface, while the construction of metadata
for parsed classfiles is hidden behind SemanticFactory.

The modification is localized to the ObjectSource and SemanticFactory imple-
mentation modules, plus the modules that instantiate them. The quantity of code
involved is a dozen lines for ObjectSource and five lines for SemanticFactory, all of
which are trivial modifications that simply add or substitute a scalarMemorySource
pointer for the usual memorySource. This, plus the constructor calls, brings the total
number of affected lines to around twenty.

Despite the small line count, it may appear that this modification has grown
to encompass an unexpectedly large number of modules: not only the new
BoehmAtomicMemorySource module, but ObjectSource and SemanticFactory, and
the modules that construct them. However, all this work is merely refactoring that
does not make these latter modules dependent on the BoehmAtomicMemorySource in

any way. On the contrary, they are only aware that they are using two MemorySource

96

(Other Sources)

|/

BoehmMembrySource
ObjectSource / \ SemanticFactory
memorySource memorySource
scalarSource scalarSource

Figure 6.2: A trivial change reverts to allocating scalar data from the original Memo-

rySource.

references instead of one. The entire modification could be reversed simply by pointing
both references to the original MemorySource, as shown in Figure 6.2; a modification
which would affect only a single line of code in Jupiter’s main function. Therefore, after
the necessary refactoring, the ideal localization has been achieved for this modification.

This modification is isolated from others that do not change the ObjectSource’s
or SemanticFactory’s policy for selecting a MemorySource. It is not surprising that
two changes to a MemorySource selection policy would not be isolated from each other.
However, the extremely small number of lines involved, and the simple nature of the
alterations required, mean that the effort required to combine MemorySource selection
policies is very small indeed.

Therefore, Jupiter’s module structure succeeded in facilitating the special treatment

of scalar array allocation.

6.1.3 Quick Opcodes

Some of Java’s opcodes are hard to execute quickly by their very nature. One remedy for
this is to alter a method’s bytecodes to replace slow instructions with more efficient ones
defined internally by the JVM. In particular, we have used this technique to improve
the performance of the getfield and putfield opcodes, which are inherently slow for

two reasons:

e Querloading. Some instructions can operate under a number of different condi-

tions, forcing the implementation to check the current conditions every time that

97

opcode is encountered, even if the conditions for a given instruction never change.
In particular, getfield and putfield can be called before or after the field is
resolved. The implementation must check whether the field has been resolved ev-
ery time, despite the fact that the field accessed by a given instruction only needs
to be resolved once. Also, the same opcodes are used for both category-1 and
category-2 (4-byte and 8-byte) fields, so the implementation must check the field
type in order to determine the number of bytes to read or write. These checks
could be eliminated by rewriting the instruction, after resolving the field, with a
new one that simply assumes the field has been resolved, and is specialized for

the appropriate field size.

e Data retrieval. Some instructions access data that is stored in structures outside
of the bytecode stream, and traversing these structures reduces performance. In
particular, getfield and putfield need to find the field’s offset within the object,
while the bytecode stream provides only the index of the field reference within the
constant pool. Thus, the constant pool must be accessed, and the field descriptor
must be consulted to find the field’s offset. This overhead can be eliminated by
rewriting the instruction so that the field offset is stored directly in the bytecode

stream, resulting in faster access.

In Jupiter, new “quick” opcodes called qgetfield and qputfield were added which
assume the field has been resolved, and which store the field offset as a parameter
directly within the bytecode stream, thus addressing both of the above issues. The
implementations of getfield and putfield were changed so as to replace themselves
with their respective quick versions the first time they execute. Thereafter, subsequent
executions of the same bytecode will find the quick instructions, and will execute without
the overhead.

The first step in implementing the quick opcodes was to specify their semantics
in the same manner as in the opcodeSpec module (described in Section 3.4), though
the new opcodes were placed in a separate module to keep the standard Java opcodes
separate from those defined by Jupiter. Next, opcode numbers were chosen from among

those left unassigned by the Java spec. This was done by adding the new opcodes to

98

the bytecode.h file that defines all the opcode number assignments.

To minimize overhead, the quick instructions store the field offset directly in the
bytecode stream. Acquiring the offset of a given field, and accessing object contents
by offset, are both operations that are not supported by the base interfaces. Hence,
the common interface headers for Field and Object were augmented with functions
that provide the needed functionality, and these headers were “#included” into the
interpreter?.

Finally, the bytecode substitution mechanism itself was implemented. To replace
the implementations of the original opcodes, the associated entry in the branch target
array (described in Section 3.4) was changed to point to the new bytecode-substituting
code.

In all, the modification was confined to the Interpreter and bytecode modules,
plus the other modules directly involved in the implementation of the new opcode itself
(namely Field and Object). A total of 8 lines of code were added—no existing lines
were changed—plus approximately another 80 to implement the new opcodes and the
bytecode substitution mechanism. Hence, this modification was quite well demarcated
and localized by Jupiter’s module structure.

As for isolation, that depends largely on the requirements of the new opcode being
implemented, though all new opcodes require a modification to the bytecode.h header.
However, this change is exceedingly simple: the name of the new opcode must be added
to a list. Therefore, though the isolation in this case is strictly not ideal, the effort

required to combine multiple new opcodes is trivial, and so they are effectively isolated.

6.2 Performance

To test Jupiter’s functionality and performance, we have used it to run the single-
threaded applications from SPECjvm98 benchmark suite [SPE02]. In this chapter, we

present the execution times consumed by these benchmarks running on Jupiter, and

3Note how even the additional dependencies resulting from breaches of information hiding are
demarcated by Jupiter’s module structure: it is clear from inspecting the #include directives in the

interpreter that it is making use of non-base interfaces.

99

compare them with results from Kaffe 1.0.6, and from Sun’s JDK v1.2.2-L.. We find that
Jupiter is faster than Kaffe and slower than JDK. We believe that Jupiter’s performance
is sufficient to allow JVM research to proceed unimpeded. Afterward, we investigate
the reasons that Jupiter’s performance is slower than that of JDK.

Since multithreading is outside the scope of this work?, we have used the subset of
the SPECjvm98 benchmarks which are single-threaded, which includes the following

programs:

e 201 compress is a modified Lempel-Ziv compression algorithm. It manipulates

large arrays of bytes.

e 202_jess is an expert system that applies rules to a database of facts in order
to solve puzzles. It stresses the memory manager by allocating many short-lived

objects.
e 209_db performs a number of queries on a memory-resident database.

e 213_javac is Sun’s Java compiler. It does a lot of object creation and method

invocation.

e 222 mpegaudio decompresses mp3-encoded data. It performs floating-point mul-

tiplication and addition on large arrays.

e 228 _jack is a parser generator. It stresses the JVM’s exception handling mecha-

nism by throwing large quantities of ArrayIndexOutOfBoundsExceptions.

Table 6.1 compares the execution times of each benchmark run on the various JVMs.
All times were measured on a 533MHz Pentium IIT with 512MB of RAM running Linux,
kernel version 2.2.19. Jupiter was compiled with gcc version 2.95.2 at optimization
level -03, with all source code combined into a single compilation unit—as described
in Section 5.2.1.2—to facilitate function inlining. The times were reported by the Unix

“time” program, and therefore include all JVM initialization. All benchmarks were run

4 Jupiter has, of course, been designed to support multithreading, and a working implementation of
the concurrency mechanism has been added by others. Thus, we believe the benchmark results to be

very close to Jupiter’s actual performance once multithreading is fully debugged and operational.

100

Benchmark JDK Jupiter Kaffe | Jupiter/JDK | Kaffe/Jupiter

1] 209-db 178s 282s 836s 1.59:1 2.96:1
2 | 228_jack 112s 213s 567s 1.91:1 2.66:1
3 | 201 _compress 333s 700s 2314s 2.10:1 3.31:1
4 | 222_mpegaudio | 276s 649s 1561s 2.35:1 2.40:1
5 | 213_javac 114s 313s T733s 2.74:1 2.35:1
6 | 202_jess 93s 257s 608s 2.76:1 2.36:1

Geometric Mean 2.20:1 2.65:1

Table 6.1: Execution time, in seconds, of each benchmark using each JVM. The ratios
on the right compare the JVMs pairwise, showing the slower JVM’s execution time

relative to the faster one’s.

with verification and JIT compilation disabled, since Jupiter did not yet possess either
of these features at the time the tests were run®. The results are sorted in order of
Jupiter’s performance relative to the JDK’s.

Averaged across all benchmarks, Jupiter was 2.20 times slower than JDK, and 2.65
times faster than Kaffe®. Jupiter’s flexibility has allowed us to build a JVM from the
ground up with an interpreter at this level of performance in well under one man-year
of work, presumably orders of magnitude less than has been done on JDK and Kaffe.
This performance is a result of our ability to experiment with a number of different
optimizations quickly, with little effort.

With this foundation in place, a JIT compiler can now be added to Jupiter that
can achieve the level of performance expected of a JIT compiler. The interpreter is
fast enough that we can expect, once the JIT compiler is added, that the time spent in

the interpreter will not affect overall performance. We believe this to be a reasonable

expectation, since experience has shown that runtime systems with both an interpreter

5The effect of verification on performance was less than our experimental error, affecting execution

time by a fraction of one percent. JIT compilation, of course, has a substantial impact.
6We have chosen to present geometric means for the following reason. Kaffe/JDK ratios can be

computed as the product of Kaffe/Jupiter times Jupiter/JDK, and could be placed in a column of
their own. Because the geometric mean of the products equals the product of the geometric means,

such a table would be internally consistent. This would not be the case for other kinds of averages.

101

and a compiler spend a large majority of the execution time running the generated
code; for instance, the Dynamo runtime system [BDBO0O0] typically spends only 1.5%
of its time in the interpreter, with the remainder spent executing generated code. If
Jupiter exhibits a similar execution time ratio to Dynamo, then our interpreter’s 120%
slowdown relative to JDK translates to a mere 1.8% performance penalty for the JVM
overall. Hence, even at its present level, the performance of our current interpreter
implementation is fast enough not to be a factor in Jupiter’s ultimate performance.
Nonetheless, it is interesting to investigate the reasons for the performance difference

between Jupiter and JDK. We can consider three possible causes for this difference:

e Implementation. Jupiter’s interpreter may be slower simply because it uses inferior
implementation techniques. To the degree that this is the problem, continuing

optimization work can bring Jupiter’s performance closer to that of JDK.

e Compiler. Jupiter’s code frequently appears to be beyond the capability of gcc
to optimize well. If Sun has used a superior compiler to build JDK, Jupiter might

benefit immediately from using a similarly powerful compiler.

o Flexibility. The design and implementations decisions that have given Jupiter its

flexibility may directly impede performance.

In the remainder of this section, we investigate the compiler and implementation
issues, and attempt to gauge the magnitude of their performance effect. The third issue,
flexibility, is the most relevant, considering Jupiter’s focus on flexibility; unfortunately,
is also the most difficult to quantify. First, we would need to construct a non-flexible
version of Jupiter for comparison; and since Jupiter’s flexibility is ubiquitous, this
would essentially mean writing an entirely new JVM. Second, even if it were feasible to
construct a non-flexible version, decisions on exactly what design aspects are primarily
due to flexibility are far from clear. Thus, such an experiment is not only infeasible,
but also ill-defined, and there is no reason to believe the resulting conclusions would
have any merit.

Therefore, the following subsections concentrate on the implementation and compiler

issues; flexibility can be inferred to be the cause of any slowdown not attributed to these

102

Normalized Execution Time Before Optimization,
by Opcode Category
4
= 35 - M Invocation/Return
; 3 OConditional Branch
Q W Local Variable Access
o 251 O Allocation
E 2 B Object Access
g 15 4 OArray Access
5 .| — OlInteger
§ . B Floating-point
w 0.5 OOther
0
& & » & 06\0 Q,O\b
S S S A S
00 ¢ Q:\ QQJ Q/q/
N/
P iied

Figure 6.3: Execution profile before applying optimizations.

other two causes.

6.2.1 The Implementation

To help locate performance bottlenecks in Jupiter’s implementation, we have included
a sample-based profiling facility that measures the amount of time consumed executing
each kind of opcode. It is implemented using a Unix signal delivered to the interpreter
at regular intervals (50 times per second) with a signal handler that records which
opcode was being executed at that moment. A sample result is shown in Figure 6.3,

which groups the opcodes into the following categories:

e Invocation/Returnincludes all opcodes that change the call stack: the four invoke

opcodes, the six return opcodes, and Jupiter’s optimized qinvokevirtual.

e Conditional Branch includes the 16 if opcodes, plus lookupswitch and

tableswitch.

103

e Local Variable Access includes the 50 variations of load and store opcodes.

e Allocation includes opcodes that allocate new objects: new, newarray, anewarray,

and multianewarray.

e Object Access includes getfield and putfield, as well as Jupiter’s optimized

qgetfield and gqputfield.
e Array Access includes the 16 array loads and stores.

e Integer includes the 13 32-bit integer mathematical and bitwise operators, such

as imul, ixor, iinc and ineg.

e Floating-point includes the 16 operators for manipulating and comparing float

and double datatypes, such as fmul and dcmpl.

Other includes the other 74 opcodes’.

The times are normalized, with JDK’s execution time on the same benchmark as
1.0. This graph clearly shows the opportunities for optimization; for example, the large
bars representing object access indicate that these opcodes are likely to benefit from
optimization effort.

In response to this profile data and consequent investigation of the code, both at the
C and assembly level, we have implemented a number of optimizations. The impact of
these optimizations is shown in Figure 6.4, which charts the execution-time reduction

due to each optimization:

e bottombased: The Frame interface was changed to use bottom-based operand stack

indexing, as described in Section 5.1.3.

e threaded: The “loop-and-switch” interpreter was replaced by a threaded inter-

preter, as described in Section 3.4.

"The wide prefix opcode is counted separately, in the “other” category, as its own opcode (though

the point is moot, since it did not appear in any of the benchmarks).

104

Normalized Execution Time Reduction
Achieved by Successive Optimizations
4
[]
n 3 4
E o H bottombased
2 251 Othreaded
g 5 Hfieldsize
E O substitution
S 154 Oregister
3 M fastest
Q 1 1
b
L
0.5 -
0 .
Q@éo ~>Q59e q§o Jb@o (&»&o ‘ >{ch\{~
0((\ Q/QQ' Q/Q ;\{b> QQQ (ﬂg)
\5’ v §
P v

Figure 6.4: Effect of each optimization on benchmark execution times.

e fieldsize: The field’s size (either 4 or 8 bytes) was cached inside the Field pointer,
relieving the interpreter from having to traverse Jupiter object references to find

this information.

e substitution: Bytecode substitution was implemented, as described in Sec-
tion 6.1.3, using the Jupiter-defined qgetfield, qputfield, and qinvokevirtual

opcodes.

e register: A CPU register was assigned to storing the location of the currently-

executing instruction.

The resulting execution profile after performing all optimizations is shown in Fig-
ure 6.5, which illustrates the effect of these optimizations by contrast with Figure 6.3.
Some of the optimizations were more beneficial than others, but all were simple to im-
plement, and were largely independent, so evaluating their respective merits was quite

straightforward, further demonstrating the flexibility Jupiter offers.

105

Normalized Execution Time After Optimization,
by Opcode Category

4
= 351 M Invocation/Return
; 3 O Conditional Branch
Q M Local Variable Access
T %% B Allocation
E 2 B Object Access
5 15 - OArray Access
5 .] O Integer
§ Bl Floating-point
w 0.5 E O Other

0

@0? . >Qf.>°" o /60 {gz»o \)6\0 ‘ 5z,c‘;‘*‘
Q S ‘ > 53
N/
P gl

Figure 6.5: Execution profile after applying optimizations.

It is clear from the final profile chart that optimization opportunities remain. For
example, the two slowest benchmarks, 202_jess and 213_javac, have similar profiles,
with large proportions of invocation/return and allocation opcodes. Using this infor-
mation, we could continue the optimization process, and proceed to investigate these
opcodes for optimization opportunities. However, because the interpreter’s performance
is sufficiently fast that we expect it not to affect Jupiter’s ultimate performance once
a JIT compiler is added, the continuation of the optimization process is left as future

work.

6.2.2 The Compiler

Jupiter’s coding style relies heavily on function inlining to achieve good performance,
so any weakness in the compiler’s inlining ability can have a substantial impact. For
example, gcc running at the -03 optimization level translated the implementation of

the qgetfield opcode into the assembly code shown in Figure 6.6. There are a number

106

of simple ways in which this code could have been better optimized:

e Lines 16 and 17 load the operand depth into the %ecx register, even though %ebx

already contains the operand depth from line 2.

e Line 15 computes a value which is always zero, because of line 3. Line 18 then
subtracts this zero from the %ecx register, which has no effect. These three lines

could all be removed.

e Line 20 reads, modifies, and writes a value that is then immediately read again
in line 21, requiring 3 memory accesses. Instead, this value could be saved from
line 12. Modifying it inside the register, and then writing it to memory, requires

only one memory access instead of three.

These improvements require nothing more than common subexpression elimination,
an optimization that is not beyond the capability of modern optimizers [Muc97]|. The
exact reason that gcc did not successfully perform these optimizations is hard to de-
termine, due to the heuristic nature of compiler optimization techniques. However, it
appears that the implementation of qgetfield is too stressful on the inlining facil-
ity of gcc, which causes subsequent optimization steps to produce code that is clearly
sub-optimal.

Making the improvements manually in the assembly code would eliminate 5 instruc-
tions from the common-case path, or 26% of the original total, producing the code
shown in Figure 6.7. Our measurements seem to indicate somewhere between 12%
and 15% improvement to the performance of qgetfield. However, the actual perfor-
mance impact is difficult to measure, since object access accounts for only 11% of the
201 _compress benchmark (and even less of the others). Hence, even a 26% improve-
ment would amount to less than 3% overall decrease in execution time, which is not
much more than experimental error.

The qgetfield instruction is not exceptional: most of the opcode implementations
contain the same kind of sub-optimal code. In fact, qgetfield could be expected to
be easier to optimize than other instructions, since it was specifically designed for this

purpose (as described in Section 6.1.3). Thus, we expect that this kind of optimization

107

/* qgetfield =/

// Get operand depth

1 movl -96 (%ebp) ,%esi
2 movl (%esi),%ebx

// This %edi value is never used
3 movl %ebx,%edi

// Get the "this" pointer
4 movl (%esi,%ebx,4),%eax
5 movl %eax,%esi

// Report error if null
6 testl %eax,%eax
7 jne .L87489

movl 20(%ebp) ,%edi

movl $.LC318, (%edi)

movl $0,4 (%edi)

jmp .L23250

.1L87489:

// Get the field offset from the bytecode stream
8 movl -108(%ebp) ,%eax
9 movzbl 1(%eax),%ecx

// Get the field value
10 movl 8(%ecx,%esi),%eax

// Make %edi=0 (see line 3)
11 subl Y%ebx,%edi

// Get the operand depth (which is already in J%ebx)
12 movl -96 (%ebp) ,%ebx
13 movl (%ebx),%ecx

// No-op, because %edi is zero
14 subl %edi,%ecx

// Store the field value on the operand stack
15 movl %eax, (%ebx,%ecx,4)

// Jump to execute the next instruction
16 addl $3,-108(%ebp)
17 movl -108(%ebp) ,%esi
18 movzbl (%esi),l%eax
19 jmp *g_labels.2986(,%eax,4)

Figure 6.6: Poorly-optimized assembly code originally generated by gcc to implement
the qgetfield opcode. Instructions executed in the common case are numbered. The

comments have been added manually afterward.

-

[e] &)

o ~N

10

11
12
13
14

/* Improved qgetfield */

/*
edi = current frame
ebx = operand depth
esi = "this" pointer
ecx = field offset
edx = code pointer
*/

// Get operand depth
movl -96 (%ebp) ,%edi
movl (%edi) ,%ebx

// Get the "this" pointer
movl (%edi,%ebx,4),%eax
movl %eax,%esi

// Report error if null
testl %eax,%eax

jne .L82022

movl 20(%ebp) ,%edi

movl $.LC318, (%edi)
movl $0,4(%edi)

jmp .L21167

.1L.82022:
// Get the field value
movl -108(%ebp) ,%edx
movzbl 1(%edx),%ecx
movl 8(%ecx,%esi),%eax

// Push it on the operand stack
movl %eax, (%edi,%ebx,4)

// Jump to execute the next instruction
addl $3,%edx

movl %edx,-108(%ebp)

movzbl (%edx) ,%eax

jmp *g_labels.3187(,%eax,4)

108

Figure 6.7: Hand-written code to implement the qgetfield opcode. Instructions executed

in the common case are numbered.

109

would apply widely across Jupiter’s code. Although the impact of each optimization
is small, the individual improvements accumulate, so the performance enhancement
offered by another compiler might be substantial. However, we have left this as future
work, since, as mentioned above, the interpreter’s present performance is sufficient that

it will not be a factor once a JI'T compiler is added.

6.2.3 Conclusion

Jupiter’s flexibility has allowed us to implement, with relatively little effort, an inter-
preter with performance comparable to existing commercial and open-source JVMs.
The present level of performance is sufficient to render the interpreter’s contribution to
overall execution time insignificant, once a JI'T compiler is added.

Opportunities can still be found for further optimization, by profiling and tuning the
code, and by using more advanced optimizing compilers to build the Jupiter executable.
However, because Jupiter’s performance is already sufficient, this optimization work
has reached the point of diminishing returns, and additional optimizations work on the

interpreter is left as future work.

Chapter 7

Conclusions

In this thesis, we have presented the design of a modular, flexible framework intended
to facilitate research into JVM scalability. We have described the building-block archi-
tecture employed, as well as the design and implementation of the key modules. We
have presented design techniques that allowed us to achieve the desired flexibility and
performance, which we have shown to be successful in creating a useful platform for
JVM research.

Experimentation with our framework demonstrates that Jupiter’s flexibility has fa-
cilitated a number of sophisticated modifications, some of which are difficult to accom-
plish using Kaffe. Jupiter’s structure served to demarcate, localize, and isolate the code
that needed to be changes, allowing the modifications to be implemented and combined
with relatively little effort.

Measurement of the execution time of the single-threaded SPECjvm98 benchmarks
has shown that Jupiter’s interpreter is, on average, 2.65 times faster than Kaffe, and
2.20 times slower than Sun’s JDK. This level of performance is sufficient that the
interpreter’s performance will have a negligible impact on the performance of the JVM
as a whole, once JIT compilation is implemented.

By providing a flexible JVM framework, we hope to encourage future research
into JVM scalability. A highly scalable JVM would be a tremendous asset for high-
performance computing, combining the portability benefits of Java with the perfor-

mance benefit of scalable multiprocessor computing.

110

111

7.1 Future Work

The primary focus for future work will be on JVM scalability issues. Jupiter has
been carefully designed so it can be made scalable with relatively little effort, but
the work of achieving scalability is ongoing [Cav02]. We anticipate that the object-
oriented nature of Jupiter’s design, combined with its building-block architecture, will
provide the same scalability benefits found in other scalable systems that use the same
techniques [Gam99, Kri94, K4201].

In addition, we anticipate the need for additional design work on Jupiter, since
the current design does not facilitate certain modifications. There are two important
modifications in particular that are not facilitated: precise garbage collection, and JIT
compilation.

Jupiter currently has no facility to describe the location of pointers in memory, thus
necessitating the use of a conservative collector. Adding a precise collector will require
a new memory allocation interface that keeps track of pointers. We believe that such
an interface, written in the same style and spirit as the rest of Jupiter’s interfaces, could
be added without disturbing most of the system.

The second modification that Jupiter does not facilitate is switching from an inter-
preted execution engine to a JIT compiler. An interesting approach to this modification
is to redesign all the base interfaces so that, rather than perform the desired action, they
explicitly generate code in some intermediate representation (or IR). The interpreter
would then interpret the IR instead of the bytecode, while the JIT compiler would, as
usual, translate the IR into native code. This would make the interpreter and the JIT
compiler trivially interchangeable, while providing the additional performance benefit
that optimizations developed for the JIT compiler would also improve the performance
of the interpreter.

One final design consideration for future work is in the handling of metadata. Cur-
rently, Jupiter’s object model spreads the responsibility for storing metadata throughout
the system, requiring each object to be rather heavyweight. If metadata were stored
separately, the objects could be very lightweight, which would enable substantial op-

timizations to be performed, in a fashion similar to the MemorySource optimizations

described in Section 2.3.4.
We expect that these avenues of design research will be the first steps toward an
infrastructure that provides flexibility for the design and implementation of scalable,

high-performance Java virtual machines.

112

Bibliography

[AAB100]

[ABH*01]

[AFT99)

[AWC+01]

[BDBOO]

[Boe02]
[BWSS]
[Cav02]
[CHST72]
[CNI02]
[CPO2]

[DAO1]

B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P.Cheng, J.-D.
Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber,
V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano,
J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley.
The Jalapefio virtual machine. IBM Systems Journal, 39(1):211-238, 2000.

G. Antoniu, L. Bouge, P. Hatcher, M. MacBeth, K. McGuigan, and
R. Namyst. The Hyperion system: Compiling multithreaded Java byte-
code for distributed execution. Parallel Computing, to appear, 2001.

Y. Aridor, M. Factor, and A. Teperman. cJVM: A single system image
of a JVM on a cluster. In Proceedings of the International Conference on
Parallel Processing, pages 21-24, 1999.

J. Andersson, S. Weber, E. Ceccet, C. Jensen, and V. Cahill. Kaffemik —
a distributed JVM featuring a single address space architecture. In Pro-
ceedings of the USENIX JVM Research and Technology Symposium Work-
in-progress Session, 2001.

V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic
optimization system. In SIGPLAN Conference on Programming Language
Design and Implementation, pages 1-12, 2000.

H. Boehm. A garbage collector for C and C++,
http://www.hpl.hp.com/personal /Hans_Boehm/gc, 2002.

H. Boehm and M. Weiser. Garbage collection in an uncooperative environ-
ment. Software Practice and Ezperience, 18(9):807-820, 1988.

C. Cavanna. Scalability of java virtual machines. Master’s thesis, University
of Toronto, in progress, 2002.

H. Curry, J. R. Hindley, and J. Seldin. Combinatory Logic, Volume II.
North-Holland, Amsterdam, 1972.

The Cygnus Native Interface for C++/Java integration,
http://gcc.gnu.org/java/papers/cni/t1.html, 2002.

GNU Classpath, http://www.gnu.org/software/classpath/classpath.html,
2002.

Patrick Doyle and Tarek Abdelrahman. Jupiter: A modular and exten-
sible JVM. 1In Proceedings of the Third Annual Workshop on Java for

113

114

High-Performance Computing, ACM International Conference on Super-
computing, pages 37-48. ACM, June 2001.

[DAKOO] R. Dimpsey, R. Arora, and K. Kuiper. Java server performance: A case
study of building efficient, scalable jvms. IBM Systems Journal, 39(1),
2000.

[Doy02] P. Doyle. Codegen: A code generator for abstract syntax trees,
http://www.eecg.toronto.edu/ doylep/codegen, 2002.

[FSUZ88] G. Feil, M. Stumm, R. Unrau, and S. Zhou. Hurricane operating system —
a preliminary design. Technical report, University of Toronto, September
1988.

[Gam99] B. Gamsa. Tornado: Mazimizing Locality and Concurrency in a Shared-
Memory Multiprocessor Operating System. PhD thesis, University of
Toronto, 1999.

[GCJ02] The GNU compiler for the Java programming language,
http://gec.gnu.org/java, 2002.

[GHO1] E. Gagnon and L. Hendren. SableVM: A research framework for the efficient
execution of Java bytecode. In Proceedings of the USENIX JVM Research
and Technology Symposium, pages 27-39, 2001.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: FEl-
ements of Reusable Object-Oriented Software. Addison Wesley, October
1994.

[GJSB00] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specifi-
cation. Addison-Wesley, 2000.

IKY*99] K. Ishizaki, M. Kawahito, T. Yasue, M. Takeuchi, T. Ogasawara, T. Sug-
anama, T. Onodera, H. Komatsu, and T. Nakatani. Design, implementation
and evaluation of optimizations in a just-in-time compiler. In Java Grande,
pages 119-128, 1999.

[Jal02] Jalapeno project, http://www.research.ibm.com/jalapeno, 2002.

[Jik02] Jikes Research Virtual Machine, http://www-
124.ibm.com/developerworks/oss/jikesrvin, 2002.

[JNI02] Java Native Interface, http://java.sun.com/j2se/1.3/docs/guide/jni/index.html,
2002.

[JT98] M. Johnson and E. Troan. Linuz Application Development. Addison Wes-
ley, 1998.

[Jup02] The jupiter project, http://www.eecg.toronto.edu/jupiter, 2002.
[K4201] The K42 Team. K42 Overview, 2001.

[K4202] The K42 Team. The K42 project,
http://www.research.ibm.com/K42 /index.html, 2002.

[KHBBOL]

[KR88]
[Kri94]
[KS97]
[Lako6]
[LY99]
[Mar01]

[Mey88]
[Mey97]

[MOS*98]

[Muc97]

[MWLX99]

(Ott02]
[Par72]
[Pow98]
[PZ97]

[SPE02]
[Sun02]

115

T. Kielmann, P. Hatcher, L. Bouge, and H. Bal. Enabling Java for high-
performance computing: Exploiting distributed shared memory and remote
method invocation. Communications of the ACM, to appear, 2001.

B. Kernighan and D. Ritchie. The C Programming Language. Prentice
Hall, 2nd edition, 1988.

O. Krieger. HFS: A flexible file system for shared-memory multiprocessors.
PhD thesis, University of Toronto, 1994.

O. Krieger and M. Stumm. HF'S: A performance-oriented flexible file system
based on building-block compositions. ACM Transactions on Computer
Systems, 15(3):286-321, 1997.

J. Lakos. Large-Scale C++ Software Design. Addison-Wesley, 1996.

T. Lindholm and F. Yellin. The Java Virtual Machine Specification, Second
Edition. Addison-Wesley, 1999.

F. Maruyama. OpenJIT 2: The design and implementation of application
framework for JIT compilers. In Proceedings of USENIX JVM’01, 2001.

B. Meyer. Object-oriented Software Construction. Prentice Hall, 1988.

B. Meyer. Object-oriented Software Construction. Prentice Hall, 2nd edi-
tion, 1997.

S. Matsuoka, H. Ogawa, K. Shimura, Y. Kimura, K. Hotta, and H. Takagi.
OpenJIT: A reflective Java JIT compiler. In Proceedings of OOPSLA 98
Workshop on Reflective Programming in C++ and Java, 1998.

S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann, 1997.

M. Ma, C. Wang, F. Lau, and Z. Xu. JESSICA: Java-enabled single system
image computing architecture. In Proceedings of the International Confer-

ence on Parallel and Distributed Processing Techniques and Applications,
pages 2781-2787, 1999.

T. Ottinger. Ottinger’s rules for variable and class naming,
http://www.objectmentor.com/publications/naming.htm, 2002.

D. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 14(1):221-227, 1972.

A. Powell. A literature review on the quantification of software change.
Technical report, University of York, 1998.

M. Philippsen and M. Zenger. JavaParty — transparent remote objects in
Java. Concurrency: Practice and Ezxperience, 9(11):1225-1242, 1997.

SPECjvm98, http://www.specbench.org/osg/jvm98, 2002.

Sun Microsystems, http://www.java.sun.com, 2002.

[SWO1]

[Wha02]
[Wil02]

[YC97]

116

F. Siebert and A. Walter. Deterministic execution of Java’s primitive byte-
code operations. In Proceedings of the USENIX JVM Research and Tech-
nology Symposium, pages 141-152, 2001.

J. Whaley. joeq virtual machine, http://joeq.sourceforge.net/index.htm,
2002.

T. Wilkinson. Kaffe — a virtual machine to run Java code,
http://www.kaffe.org, 2002.

W. Yu and A. Cox. Java/DSM: A platform for heterogeneous computing.
Concurrency: Practice and Experience, 9(11):1213-1224, 1997.

