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1 Intr oduction
In recent years Field-Programmable Gate Arrays (FPGAs) have seen explosive market

growth because they offer instant manufacturing and much lower non-recurring engineering costs

than Mask-Programmed Gate Arrays (MPGAs). FPGAs enable fast manufacturing and low devel-

opment costs because all of their logic and routing resources are prefabricated and are customized

in the field by the designer [1].

The prefabrication of routing resources in an FPGA implies that the number of routing

tracks in each channel is set by the manufacturer. It is vital that these routing resources be distrib-

uted in a manner that allows their efficient utilization by the largest class of circuits. If there are

too few tracks in some area of the chip then many circuits will be unroutable, while if there are too

many tracks, they may be wasted.

This paper addresses several questions concerning the distribution of routing tracks across

an FPGA. Essentially we are investigating if the intrinsic properties of circuits lead them to map

most efficiently to a certain routing architecture. The first question addressed is whether or not

there should there be a directional bias to the routing. If so, what amount of bias is best? Figure

1(a) illustrates adirectionally-biased FPGA in which the horizontal channels contain more tracks

than the vertical channels. Commercial FPGAs with both unbiased routing [2, 3] and biased rout-

ing [4, 5] exist, so this question has clear commercial relevance. To ensure our results are applica-

ble to the broadest class of FPGAs, we determine the best directional bias for FPGAs with

different logic block pin positions and aspect ratios.

The second question we address is whether all channels in the same direction in an FPGA

should be the same width or whether some channels should be wider than others to facilitate rout-
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ing in congested regions. We refer to architectures in which the channels in some regions are

wider than the channels in others asnon-uniform routing architectures, as illustrated in Figure

1(b)1. Many in the FPGA community believe that most routing congestion occurs near the center

of an FPGA, and hence channels in this region should be wider than the channels near the edges.

In fact, AT & T has designed an extra-wide channel in the center of their latest device to improve

routability [6]. In addition, board-level constraints often force designers to fix the position of an

FPGA’s I/Os, and some believe that this increases congestion near the chip edges so that the chan-

nel between the pads and the logic should be made extra wide. Xilinx has an FPGA with a wide

channel between the pads and logic, at least partially to improve routability when the I/O loca-

tions are fixed [7]. In this paper, we determine the best distribution of tracks across an FPGA both

when the I/O assignment to pads is unconstrained and when it is fixed in a poor configuration.

We evaluate FPGA architectures experimentally; benchmark circuits are placed and routed

into FPGAs with different global routing architectures to determine the relative area consumed by

the circuit in each architecture. In order to obtain meaningful results, the CAD tools used to place

and route these circuits must understand and take advantage of the biased and non-uniform nature

of these architectures. We have created a new placement and routing tool which reads a parame-

terized description of an FPGA architecture and aggressively seeks to minimize congestion and

fully utilize the channels of the specific architecture during both placement and global routing.

The organization of this paper is as follows. Section 2 outlines the CAD flow used to evalu-

1. Note that any given channel will always have the same number of tracks along its entire length. We did not
consider varying the channel capacity along its length as this leads to a very difficult layout problem.

(a) Directionally-Biased (b) Non-Uniform

Figure 1: Types of Global Routing Architectures.
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ate the different FPGA architectures. Section 3 describes the algorithms and performance of our

placement and routing CAD tools. We evaluate the area-efficiency of FPGAs with differing

amounts of directional routing bias in Section 4. In Section 5 we address the uniform vs. non-uni-

form channel thickness question. Finally, we summarize our results and conclusions.

2 Experimental Methodology
To compare the area-efficiency of the different global routing architectures we technology-

map, place and route 26 of the largest MCNC benchmark circuits [8] into each architecture. In

this section we describe the CAD flow, the area model, and several important architectural details

that were assumed.

2.1 CAD Flow

 Figure 2 provides an overview of the CAD flow. First, the SIS [9] synthesis package is used

to perform technology-independent logic optimization of each circuit.2 Next, Flowmap [10] is

2. The circuit is optimized by both script.rugged and script.algebraic and the smaller result is taken.

Logic Optimization (SIS)
Technology Map (Flowmap)

Placement (VPR)

Global Routing (VPR)
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Pack Flip Flops and LUTs into
logic blocks (Blifmap)
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Figure 2: Overview of Architecture Evaluation Flow.
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used to technology-map each circuit into four-input look-up tables (4-LUTs) and flip flops. The

logic block used in these experiments contains a 4-LUT and a flip-flop, in the configuration illus-

trated in Figure 3. A custom-built program (blifmap) packs the 4-LUTs and flip flops together into

these logic blocks.

The netlist of logic blocks and a description of the FPGA global routing architecture are

then read into the placement and global routing tool, VPR. This program places the circuit, and

then repeatedly routes (or attempts to route) the circuit with different numbers of tracks in each

channel (channel capacities). VPR performs a binary search on the channel capacities, increasing

them after a failed routing and reducing them after a successful one, until it finds the minimum

number of tracks required for the circuit to route successfully on a given global routing architec-

ture. While the absolute number of tracks per channel is adjusted upwards or downwards after

each attempted routing, therelative numbers of tracks in the various channels across the FPGA

are always kept at the values specified by the FPGA architecture. For example, VPR’s first

attempt at routing a circuit in an architecture with a two-to-one directional bias might assume hor-

izontal channel capacities of twelve tracks and vertical channel capacities of six tracks. If this

routing was successful, VPR would then attempt to route the circuit in an FPGA with horizontal

channel capacities of six tracks and vertical channel capacities of three tracks. After a small num-

ber of such attempted routings one can determine the minimum number of tracks required to suc-

cessfully route this circuit in this architecture. Thus the fixed variable in these experiments is the

relative channel capacities, and the free variable is the absolute number of tracks required to route

the circuit successfully.

The benchmark circuits used in this study consist of 14 combinational and 12 sequential

MCNC benchmark circuits [8], which vary in size from 222 to 1878 of our logic blocks.

4-input
LUT D Flip

Flop
clock

OutInputs

Figure 3: Logic Block Structure.
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2.2 Ar ea Model

Our goal is to measure the area-efficiency of different global routing architectures without

reference to the detailed routing (segmentation, switch block, etc.) architecture. At this level, it is

the amount of “global wiring” that changes as we vary the architecture. A simple track count will

not accurately represent the wiring area of rectangular FPGAs, as the tracks in one direction are

longer than those in the other. Accordingly, we define atrack segment to be a prefabricated wire

that spans one logic block; a channel of width W tracks that spans L logic blocks contains W x L

track segments. The total number of track segments an FPGA must contain to globally route a cir-

cuit is a representative metric of the “global wiring” area. In order to average the results from cir-

cuits of differing sizes we use the average number of track segments per tile (i.e. per logic block)

as our area measure. For example, in a square NxN uniform FPGA with W tracks in each channel,

the total number of track segments is 2WN2, and the number of tracks per tile is 2W. Note that the

routing area is given by the total number of track segments the FPGA contains, and not the num-

ber of track segments which are actually used by a circuit.

2.3 Significant FPGA Architectural Details

Several architectural parameters other than the global routing architecture must be specified

in order to define an FPGA. We set these parameters to be as close to those of commercial FPGAs

as possible.

First, the size of the FPGA array used for a given circuit (i.e. the number of logic blocks) is

set to be thesmallest FPGA with the desired aspect ratio (number of columns / number of rows)

with sufficient logic blocks to accommodate the circuit. This situation, in which there is minimal

“spare room” in the FPGA, presents the greatest challenge to routing completion, and is normally

the case that manufacturers wish to optimize, since users want to buy the smallest FPGA with

enough logic to contain their circuit.

 In this study the number of I/O pads that can fit into the height or width of a logic block is

set to two. This number is commensurate with the relative sizes of I/O pads and 4-LUTs in current

FPGAs [2, 3, 5] and ensures that none of the 26 benchmarks is pad-limited.

Finally, we do not route the clock net in sequential circuits, since this net is normally dis-

tributed through a special clocking network in commercial FPGAs.
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3 Tuned Placement and Routing Algorithms
In FPGA architecture explorations of this kind [1] one must ensure that the CAD tools used

are responsive to the architectural parameters being varied. An architectural feature which appears

useful but which CAD tools cannot exploit is of very limited utility. Similarly, a primitive CAD

tool which does not make use of an FPGA feature as aggressively as possible may lead to a false

conclusion about the usefulness of this feature. To ensure a fair comparison between different glo-

bal routing architectures, we created a new placement and routing tool which understands how the

routing resources available vary across the FPGA and tries to make maximal use of the widest

channels in both the placement and routing steps. As this CAD tool is capable of mapping to a

wide variety of FPGA architectures, we named it VPR, short for Versatile Place and Route.

3.1 Global Routing Resource-Aware Placement

We employ the simulated annealing algorithm [11] for placement. The annealing schedule

is based on feedback control of the accepted move rate, which was found to be crucial to obtain-

ing excellent placements in [12, 13]. The key to a routing resource aware placement tool is ensur-

ing that the cost function correctly models the relative difficulty of routing connections in regions

with different channel widths. After significant experimentation with many alternatives, we have

developed alinear congestion cost function which provides the best results in reasonable compu-

tation time. Its functional form is

(1)

The summation in (1) is over the M nets in the circuit. For each net, bbx and bby denote the hori-

zontal and vertical spans of its bounding box, respectively. The q(n) factor compensates for the

fact that the bounding box wire length model underestimates the wiring necessary to connect nets

with more than three terminals, as suggested in [14]. Its value depends on the number of terminals

of net n; q is 1 for nets with 3 or fewer terminals, and slowly increases to 2.79 for nets with 50 ter-

minals. Cav,x(n) and Cav,y(n) are the average channel track capacities in the x and y directions,

respectively, over the bounding box of net n:

Costlinear q n( )
bbx n( )

Cav,x n( )α-----------------------
bby n( )

Cav,y n( )α-----------------------+ .×
n 1=

M

∑=
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(2)

(3)

This cost function penalizes placements which require more routing in areas of the FPGA that

have narrower channels. The exponent,α, in the cost function allows the relative cost of using

narrow and wide channels to be adjusted. Whenα is zero the linear congestion cost function

reverts to the standard bounding box cost function. The larger the value ofα, the more wiring in

narrow channels is penalized relative to wiring in wider channels; we have experimentally found

that settingα to 1 results in the highest quality placements.

Since Cav depends only on the channel capacities, which do not change during a placement,

and on the maximum and minimum coordinates of the bounding box, we can precompute all pos-

sible Cav,x and Cav,y values and store them in two arrays indexed by the minimum and maximum

of the appropriate bounding box coordinate. In fact, we precompute the inverse of Cav,x
α and

Cav,y
α for all possible bounding boxes for further efficiency. Consequently, the time required to

recompute this cost function is virtually the same as that of the traditional bounding box cost

function.

In an FPGA where all channels have the same capacity, Cav is also a constant and hence the

linear congestion cost function reduces to a bounding box cost function. In non-uniform and

directionally-biased FPGAs, however, this cost function results in higher quality placements than

a bounding box cost function. The exact amount of routability improvement depends on the pre-

cise global routing architecture used; as one would expect, those in which there is a large differ-

ence between the widths of channels in different regions show the largest improvement. For the

architectures we study in this paper the linear congestion cost function typically produces place-

ments which require 5 to 10% fewer tracks to route than placements produced with a bounding

box cost function.

We found one cost function which was capable of producing higher-quality placements than

the linear congestion cost function, at the cost of greatly increased CPU time. This cost function is

based on the work in [14], and we call it anon-linear congestion cost function. This cost function

Cav,x n( )
Capacityx j( )

bbymax bbymin– 1+
------------------------------------------------,

j bbymin n( )=

bbymax n( )

∑=

Cav,y n( )
Capacityy i( )

bbxmax bbxmin– 1+
------------------------------------------------.

i bbxmin n( )=

bbxmax n( )

∑=
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divides the FPGA into an array of N x N regions and attempts to model the routing resource

demand and supply in each of these regions. When a placement causes the routing resource

demand to exceed the supply in some regions, the placement is heavily penalized. The exact func-

tional form we use is

(4)

where Dx,ij and Dy,ij are the expected demand for routing resources in region (i,j) in the x and y

directions, respectively, Sx,ij and Sy,ij are the available supply of routing resources in region (i,j) in

the x and y directions, respectively, andσ is an optimization parameter between 0 and 1 that con-

trols what fraction of a region’s routing resources a placement can use before it is heavily penal-

ized. We have found that the best value ofσ is 0.6 -- smaller values do not reduce the solution

quality much, but one should not use values much larger than 0.6 The routing supply is in units of

tracks and is precomputed for each region before the annealing starts via

(5)

(6)

Capacityx(r) and Capacityy(r) are the capacities of the rth channel in the x and y directions,

respectively. The routing resource demand also has units of tracks. The total routing resource

demand is the summation of the routing resource demands of all nets, where the resources used by

one net in region (i,j) are given by

(7)

(8)

In the equations above, the bb factors refer to the span of the net bounding box, the R fac-

tors refer to the dimensions of each of the regions, and the O factors refer to the overlap in each

dimension between the bounding box and the region in which the routing demand is being

Cnonlinear Max
Dx ij,

σ Sx ij,×
--------------------

Dx ij,
σ Sx ij,×
-------------------- 

  2
, 

  Max
Dy ij,

σ Sy ij,×
--------------------

Dy ij,
σ Sy ij,×
-------------------- 

  2
, 

 

j 1=

N

∑
i 1=

N

∑+
j 1=

N

∑
i 1=

N

∑=

Sx ij, Capacityx r( ), and‘
r yminij=

ymaxij

∑=

Sy ij, Capacityy r( ).
r xminij=

xmaxij

∑=

∆Dx ij, q
Ox Oy×
bby Rx×
---------------------×=

∆Dy ij, q
Ox Oy×
bbx Ry×
---------------------×=
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updated. Figure 4 summarizes the various geometric factors.

We found that this non-linear congestion cost function, when computed on a 4 x 4 grid (16

regions), generally produces placements which require 2 to 4% fewer tracks to route than those

produced by the linear congestion cost function. However, keeping track of the routing resource

demand in the various chip regions is computationally expensive, and placement with this cost

function requires five times greater CPU time than the linear congestion function. Dividing the

FPGA into smaller subregions to make localized congestion more visible did not work well; a

non-linear congestion cost function computed on a 16 x 16 grid (256 regions) performs only mar-

ginally better than a cost function computed on a 4 x 4 grid, yet consumes sixteen times the CPU

time.

We also investigated the performance of a second variant of the nonlinear congestion cost

function. The cost is computed as before except that (4) is replaced by

(9)

This cost function is equivalent to adding a bounding-box cost to a quadratic penalty term for

excessive congestion, with the two terms scaled so that both are significant, regardless of problem

size or number of subregions. This cost function gave results that were essentially the same as

thsoe of (4).

We considered the reductions in track count achieved by the non-linear congestion cost

function too small to warrant the additional CPU time, so the results presented in this study all use

Net Bounding

Region (i,j)

bbx

bby

Ry

Rx

Oy

Ox

Figure 4: Routing Resource Demand in Region (i,j).

Cnonlinear Dx ij, Max Dx ij, σSx ij, 0,–( )[ ]2
+

j 1=

N

∑
i 1=

N

∑=

Dy ij, Max Dy ij, σSy ij, 0,–( )[ ]2
+

j 1=

N

∑
i 1=

N

∑+
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the linear congestion cost function. Nonetheless, we did rerun a few of our experiments with the

non-linear congestion cost function and found that its use did not change any of the conclusions

discussed below.

3.2 Congestion-Driven Global Routing

It is crucial for the global router to be capable of leveraging the differences in the capacities

of the various FPGA channels. The global router developed for this study employs a variant of the

PathFinder negotiated congestion algorithm [15]. This algorithm consists of routing each net with

a maze router [16], then ripping up and rerouting each net in sequence several times. In each of

these subsequent routing iterations, the cost of using a node (which iseither a channel segment or

a logic block input pin) is modified, based on both the current and past (in previous iterations)

competition for that node. A channel segment is the length of channel that spans one logic block.

In an FPGA composed of an N x N array of logic blocks each channel contains N segments. We

define the cost of a routing node somewhat differently than [15]; the cost of using routing noden

is

(10)

The pn term is a measure of the present congestion at this node. It is updated every time any

net is ripped-up and rerouted. The value of pn is equal to the overuse of this node that would occur

if one more route were to use it, since the decision we are making during routing is whether

another net should go through this node or not.

(11)

 For example, consider a channel with a capacity of six tracks and a segment of this channel

in which five tracks are currently used. The pn value of this channel segment is zero, since routing

one more net through this channel will not cause any congestion. If, however, all six tracks in this

channel were currently used, its pn value would be one, since routing another net through it would

result in an overuse of one. The hn term accounts for the historical, or past, congestion at this

node. It is updatedonly after an entire routing iteration is completed; i.e. after every net in the cir-

cuit has been ripped up and rerouted. Initially hn is set to 0; at the end of each routing iteration hn

is increased by the amount by which demand for this node outstrips its capacity. That is,

cn 1 hn h fac⋅+( ) 1 pn p fac⋅+( )× bn n 1–, .+=

pn max demandn 1 capacityn–+( ) 0,( )=
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(12)

where the superscripts refer to the routing iteration number.

The bn,n-1 term penalizes bends, since global routes with many bends in them present a

more difficult detailed routing problem in FPGAs with segmented routing, and will generally lead

to detailed routes that are both slower and require more tracks. The value of bn,n-1 is one if making

the connection from node n-1 to node n implies a bend (i.e. node n-1 is a horizontal channel seg-

ment and node n is a vertical channel segment or vice versa), and is zero otherwise. Including this

bend cost in the total cost of using a node produces routes with very few unnecessary bends with

little increase in track count.

The key idea of Pathfinder is that the pfac term is 0 for the first routing iteration, and is grad-

ually increased in successive iterations. Hence, each net is initially routed by the shortest path

found. In successive iterations, the pfac term is gradually made larger so that congestion becomes

more expensive and those nets which have alternate routes move out of the congested areas. The

history term, hfac, allows information from previous routing iterations to affect the current rout-

ing, further improving the router’s ability to find and avoid congestion. By treating both channel

segments and input pins as routing nodes, this algorithm makes use of the functional equivalence

of LUT input pins in a very natural way. Initially, each connection connects to the logic block

input pin which leads to the shortest route. As the cost of congestion increases, nets are gradually

forced to ensure that they are each using an input pin that no other net is using.

In our implementation each channel can have a different capacity. Since the cost of a chan-

nel segment is based on the amount by which routing demand exceeds its capacity, this router will

automatically act to relieve pressure on narrow channels by rerouting nets through wider channels

whenever necessary.

Considerable effort was spent tuning therouting schedule (the values of pfac and hfac over

the course of the iterations) in order to achieve the best results. The best routing schedule we

found set pfac to 0 for the first iteration, 0.5 for the second iteration, and 1.5 times the previous pfac

value for all subsequent iterations. The value of hfac was set to 0.2 for all iterations; the fact that hn

can only increase from iteration to iteration provides enough increase in the historical congestion

hn
i 1+

0 , i 0=

hn
i

max demandn
i

capacityn
i

– 0,( ), i 1≥+
=
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penalty by itself. This routing schedule increases the cost of congestion slowly enough that the net

ordering is not very important -- nets with the most alternate routes move out of congested areas

first. We found that increasing the cost of congestion more slowly than this reduced the number of

tracks required only by 1 - 2% while increasing the CPU time by a factor of 2 to 3. Setting hn to 0

so that the router has no information about past congestion increased the number of tracks

required by 15%.

We also experimented with two different speed optimizations to the PathFinder algorithm.

First, we tried setting the initial cost for routing segments (i.e. the cost for routing iteration 1)

according to the expected demand for each segment as predicted from the final placement by

equations (7) and (8) with the number of regions set equal to the number of logic blocks. The idea

was that the initial routing would therefore try to avoid regions which were expected to have high

congestion, and fewer routing iterations would be needed to find a feasible routing. However, the

results thus obtained are significantly worse than those obtained when the cost of routing

resources during the first iteration is set by (10) with pfac equal to 0. Setting pfac to 0 for the first

routing iteration lets each net initially take a short path because congestion is not penalized; forc-

ing some of the nets out of the highly congested areas is deferred to later routing iterations. This

initial routing in which congestion is not penalized provides a considerably better outline of the

congestion inherent in the placement than equations (7) and (8), and hence leads to higher-quality

final routings.

The second speed optimization was more successful. We constrain the router to route each

net without using any routing segments which are more thanβ logic blocks outside the net bound-

ing box. Settingβ to 0 forces all nets to be routed within their bounding box; this results in a

speedup of 24% at the cost of a 3% increase in track count versus allowing all routes (i.e. theβ =

chip size case). Settingβ to 3 speeds up the router by 12% while increasing the tracks required by

less than 1% over the all routes allowed case. We have found that the congestion-avoidance fea-

tures of our router result in very little increase in the average length of connections, so the fact that

the vast majority of routes can be completed within the bounding box of their terminals is not sur-

prising. The speedups achieved by limiting routings to the net bounding box are fairly modest

because high fanout nets take the greatest amount of time to route with our algorithm, and their
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bounding boxes span essentially the whole chip.

3.3 Validation of Placement and Routing Tool

In order to assess the quality of our new placement and routing tool, we compared the chan-

nel density it achieved on thirteen benchmark circuits to that achieved by the existing University

of Toronto placement and routing suite. This placement and routing suite consists of the ALTOR

[17] placement program, which uses the MinCut placement algorithm [18], and the LocusRoute

global routing program [19].

In order to allow direct comparison with the final routings of ALTOR/LocusRoute, the

experimental methodology described in Section 2 and used throughout the remainder of this work

was altered wherever necessary so that it exactly corresponded to the flow used by

ALTOR/LocusRoute. Specifically, the benchmark circuits were all combinational, and were tech-

nology-mapped to 4-LUTs by the Chortle [20] program. The size of the FPGA and the number of

I/O pads per column were always set to the values used by ALTOR/LocusRoute. Finally, the

FPGA has channels which are all of the same width (i.e. uniform and unbiased), as this is the only

type of FPGA to which ALTOR and LocusRoute can map.

Table 1 compares the performance of VPR and the ALTOR/LocusRoute tool suite. The

channel density for each circuit is the minimum number of tracks each channel must contain for

the circuit to successfully route. There are two columns for VPR. In the “reroute only” column

VPR was allowed only to reroute the circuit; the placement was performed by ALTOR. In the

“replace and reroute” column both the placement and routing were performed by VPR. When

VPR is only allowed to reroute a circuit it reduces the channel density by 37% relative to Locus-

Route; when the circuit is both placed and routed by VPR the channel density is reduced by 57%

compared to that achieved by ALTOR and LocusRoute. Since ALTOR and LocusRoute have been

widely used for FPGA research both inside and outside the University of Toronto, we consider the

large reduction in channel density achieved by VPR to be a convincing demonstration of its qual-

ity.
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4 Experimental Results for FPGAs with Directionally-Biased
Routing Resources
The experimental framework and tools described above were employed to answer the ques-

tions posed in the introduction to this paper: first, is there an area-efficiency advantage to using a

directionally-biased architecture? A directionally-biased FPGA is one in which the numbers of

tracks available for routing in the horizontal and vertical directions are not equal. In essence, we

are investigating if there is an exploitable directional bias in the basic nature of circuits. Figure 5

(b) shows an example FPGA with a 2:1 directional bias; its horizontal channels contain twice as

many routing tracks as its vertical channels. We characterize directionally-biased FPGAs by the

ratio of the width of a horizontal channel to the width of a vertical channel, denoted as Rh.

We need to define an additional architectural feature which markedly affects our conclu-

Table 1: Comparison of VPR to Altor/LocusRoute

Circuit

Channel Density

ALTOR +
LocusRoute

VPR: Reroute
Only

VPR: Replace
and Reroute

C499 10 7 5

C880 12 8 5

C1355 11 7 5

alu4 13 8 6

apex7 12 7 4

term1 9 6 4

example2 16 8 5

too_large 11 8 6

k2fix 15 10 7

vda 13 9 6

9symml 10 5 5

alu2 10 6 5

z03D4 14 8 5

Average 12.0 (100%) 7.5 (63%) 5.2 (43%)
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sions: the positioning of the pins on the logic block. The two main cases of interest are illustrated

in Figure 6. In Figure 6(a), the logic block input and output pins are distributed evenly around the

entire perimeter of each logic block. We call this thefull-perimeter pin positioning, and it is simi-

lar to the pin positioning used in the FPGAs of Xilinx and AT & T [2, 3]. The second alternative,

which we call thetop/bottom pin positioning, restricts the logic block input pin locations to lie

only on the top and bottom of the logic block. The top/bottom pin positioning is illustrated in Fig-

ure 6(b) and it is similar to the pin positioning used in Actel FPGAs [4]. In all the results we show

in this paper, each logic block pin appears (physically) on only one side of a logic block. As dis-

cussed in Section ??, we have found that for the channel connectivity values (Fc [1]) found in

today’s commercial FPGAs this leads to the most area-efficient FPGAs.

Finally, we have also found that the ratio of the number of columns to the number of rows in

an FPGA, which we call the aspect ratio, significantly affect area efficiency. Since most FPGAs

have the same number of rows and columns, we first present the results for square (aspect ratio 1)

FPGAs, before discussing the more general case of rectangular FPGAs in Section 4.2.

4.1 Results for Square FPGAs

The 26 large MCNC circuits were passed through the experimental flow of Figure 2 for val-

ues of Rh varying from 1 to 4. As discussed in Section 2, the result for each circuit is the number

(a) No Directional Bias (Rh = 1) (b) Directional Bias (Rh = 2)

Figure 5: FPGAs With and Without Dir ectional Bias.

in1

outin3

in2 in4

(a) Full-perimeter pin positioning

in1

outin3

(b) Top/bottom pin positioning

in2

in4

Figure 6: Logic Block Pin Position Alternatives.
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of track segmentsper tile3 needed to successfully global route the circuit in an FPGA with the

specified value of Rh. Figure 7 is a plot of area-efficiency versus the degree of routing direction

bias, Rh, for both types of pin positioning. The vertical axis is the average number of tracks per

tile required to successfully route the 26 benchmark circuits.

The data shows that for the full-perimeter logic pin positioning, the best architecture is one

without any directional bias. However, when the pins are restricted to the top and bottom of the

logic block, the most efficient architecture has horizontal channels which are roughly twice as

thick as the vertical channels. An important conclusion is that the best full-perimeter architecture

is better than the best top/bottom pin architecture. The latter requires about 8% more tracks per

tile on average.

The full-perimeter architecture is more area-efficient because there is a greater chance that

the block input pins are closer to their desired connections when they are in the full-perimeter

configuration than when they are in the top/bottom configuration. For example, consider the two

routings of a multi-terminal net shown in Figure 8. The top/bottom pin configuration needs six

track segments to route this net, whereas the full-perimeter configuration requires only five. By

making use of the functional equivalence of LUT input pins during routing, the router is often

able to connect to a logic block pin adjoining a track segment it needs to use for other connec-

3. Track segments are counted whether or not they are actually used, so this is a true representation of the
area that must be devoted to routing in the layout.

Figure 7: Area-Efficiency vs. Directional Bias for Square FPGAs.
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tions, essentially making the connection to this logic block for free. Since the top/bottom pin con-

figuration has input pins bordering on only the horizontal channels, such “free” connections into

logic blocks are less frequent, reducing area-efficiency.

The full-perimeter pins configuration achieves highest area-efficiency when there is no

directional bias to the routing because this makes the difficulty of routing to each of a logic

block’s nearest neighbors roughly equal. Consequently, the placement software can use all the

nearby logic block locations equally to cluster the fanout of a net around its driver. Essentially,

this allows one to cluster tightly coupled portions of logic in the smallest possible area. The

top/bottom pins configuration, on the other hand, prefers a 2:1 directional bias because every con-

nection to a logic block pin must come from a horizontal channel. This extra pressure on the hori-

zontal routing resources is significant, since the typical distance routed between pins is only about

3 track segments.

4.2 Rectangular FPGAs

In order to increase the IO-to-logic ratio, FPGA manufacturers may want to build rectangu-

lar FPGAs, as this increases the die perimeter and hence the number of pads. In this case the chan-

nels in one direction are longer and have more blocks connected to them than the orthogonal

channel, so the best amount of directional bias may change. We refer to the ratio of the number of

columns in an FPGA to the number of rows as its aspect ratio. Figure 9 depicts an FPGA with an

aspect ratio of two.

Figure 10 is a plot of the required tracks per tile versus Rh for various chip aspect ratios for

an FPGA with the full-perimeter logic block pin positioning.

There are two features of interest in Figure 10. First, notice that the minimum of the aspect

(a) Full-Perimeter Pins. (b) Top/Bottom Pins.

Figure 8: Example Routing of a Multi-Terminal Net Using Different Pin Posi-



18

ratio = 1 curve is the lowest of the three, indicating that a square FPGA is most area-efficient. Sec-

ondly, the value of Rh at which the minimum area occursincreases as the aspect ratio increases.

As the aspect ratio increases, the horizontal channels become longer than the vertical channels

and this results in greater demand for horizontal track segments. The best value of Rh increases

from 1 for a square FPGA to 1.33 and 1.59 for aspect ratios of 2 and 3, respectively.

Figure 11 shows how the number of tracks per tile varies with the aspect ratio, again for the

full-perimeter logic block pin positioning. The upper curve keeps Rh fixed at 1, which is the best

value for a square FPGA. The routing resource requirements increase moderately with aspect

ratio; an FPGA with an aspect ratio of 3 requires 18% more tracks per tile than a square FPGA

when Rh is 1. The lower curve plots the tracks per tile required by the FPGA with the best value of

Rh for each aspect ratio. Clearly, when we alter Rh as the aspect ratio increases to compensate for

the greater demand for horizontal routing the increase in tracks per tile with aspect ratio is consid-

m rows

2m columns

Figure 9: An FPGA with an Aspect Ratio of 2.

Figure 10: Area-Efficiency of Rectangular FPGAs with Full-Perimeter Pins.
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erably less pronounced. In this case, an FPGA with an aspect ratio of 3 requires only 4% more

track segments than a square FPGA. Thus we conclude that, as long as the horizontal and vertical

channel widths are appropriately balanced, the chip aspect ratios can be increased with little

impact on the core area, and so I/O counts can be increased.

The variation of core routing area with aspect ratio is similar for FPGAs that use the

top/bottom logic block pin positioning. In this case an FPGA with an aspect ratio of 3 requires

only 5% more tracks per tile than a square FPGA. For FPGAs of this type, however, it is not nec-

essary to increase Rh as the aspect ratio increases; doing so provides only a marginal area-effi-

ciency improvement. This is because the best square FPGA with top/bottom pins has horizontal

channels which are twice as wide as vertical channels; the thicker horizontal channels are better

able to cope with the increased pressure for horizontal tracks as aspect ratio increases.

4.3 Number of Physical Locations for Each Logic Block Pin

Since the demand for routing tracks is so dependent on the location of the logic block pins,

we conducted a study to determine the number of logic block sides on which each pin should

appear. We call an input or output to a logic block alogical pin; in the 4-LUT based logic blocks

we are using there are 4 logical inputs and one logical output. Each logical pin has one or more

associatedphysical pins; for example, if input 1 is accessible from both the left and right sides of

the logic block it has two physical pins. Brown looked at this issue in [21], but he did not consider

Figure 11: Routing Resource Requirements vs. FPGA Aspect Ratio.
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configurations where inputs and outputs had differing numbers of physical pins, and the global

router used in that study did not make use of the fact that the inputs to a LUT are logically equiv-

alent.

Let Ti and To be the number of physical pins for each logical input and output pin, respec-

tively. We will determine the best values of Ti and To by estimating the relative number of

switches per logic block to which various choices of their values lead. In order to estimate switch

counts, we must assume a detailed routing architecture for the FPGA. We will assume that the

number of tracks to which each physical pin connects, Fc, is equal to the number of tracks in a

channel, W. As well, assume that the number of track segments to which each track segment can

connect, Fs, is 3. These values are in line with those in popular FPGAs [2]. Brown [21] found that

such an FPGA could be detail routed using only 7% more tracks, on average, than the global

router required. Hence, the number of tracks required by the detailed router is proportional to the

number required by the global router, and we can use the track count from the global router to

make comparisons between the various Ti and To.

With these assumptions, we can write the following proportionality relation for the number

of switches per logic block, Ns, in an FPGA with no directional bias in its routing

(13)

where W is the number of tracks per channel required by the global router, and the second relation

has made use of the fact that Fc = W and Fs = 3.

Table 2 shows how Ns varies with Ti and To; W in the table is the average over our 26

benchmark circuits. Our values for Ns in Table 2 are really a lower bound, since the W value is

taken from the global router.

N s 4T i T o+( )Fc 2W Fs+∝ 4T i T o 6+ +( )W=
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The most area-efficient FPGA has one physical pin for each logical pin; i.e. Ti = To = 1.

Note that there may be benefits to having more than one physical pin per logical pin when Fc is

less than W; for example, Ti = To = 2 and Fc = W/2 might be a good choice. However, this ques-

tion is beyond the scope of this study.

In the case of an directionally-biased FPGA, we must generalize (13) to account for the fact

that the horizontal and vertical channels have different widths, which we denote as Wh and Wv

respectively. A potential switch block for a directionally-biased FPGA (with Rh = 2) is illustrated

in Figure 12.

The number of switches per logic block when this switch block is used varies as

(14)

where Ti,h (Ti,v) refers to the number of logic block sides bordering on a horizontal (vertical)

channel on which each input pin appears. To,h and To,v are similarly defined for the output pin. By

using the fact that Wv = Wh/Rh, setting Fc,h and Fc,v to Wh and Wv respectively, and setting Fs to

3, we obtain

Table 2: Routing Switches per Logic Block for an Unbiased FPGA.

Ti To W Ns

1 1 6.7 74

1 2 6.3 76

1 4 6.2 87

2 2 5.8 93

4 4 5.6 146

Track segment

Switch

Figure 12: Switch Block for a Directionally-Biased FPGA with Fs = 3

N s 4T i h, T o h,+( )Fc h, 4T i v, T o v,+( )Fc v, W h 2Fs 1–( )W v+ + +∝
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(15)

Table 3 summarizes how the number of switches per logic block varies with the various T

parameters for the best directionally-biased FPGA found in Section 4.1, which has Rh = 2.

Again the best architecture has one physical pin for each logical pin. Clearly, using one

physical pin for each logical pin in the studies of Sections 4.1 and 4.2 was the correct choice.

5 Experimental Results for FPGAs With Non-Uniform Routing
The second key issue we explore concerns the area-efficiency obtained when the channels

in different regions of an FPGA have different capacities. We only investigate FPGAs which use

the full-perimeter pin positioning, as the results of the previous section showed that this pin posi-

tioning is best.

 We define a non-uniform routing architecture to be one in which the number of tracks per

channel changes from channel to channel across an FPGA. For example, Figure 13 illustrates a

non-uniform FPGA in which the channels at the chip center are wider than those near the periph-

ery. If congested regions of a circuit can be localized and placed in the portions of the FPGA with

the widest channels, a non-uniform FPGA could have better area efficiency than a uniform FPGA.

We will investigate three types of non-uniform FPGAs in which we vary the center/edge channel

capacity ratio, the width of only the center channel, and the I/O channel capacity, respectively.

5.1 Center/Edge Capacity Ratio

There is a widespread belief that most congestion occurs in the center of FPGAs, and hence

Table 3: Routing Switches per Logic Block for a Directionally-Biased FPGA with Rh = 2.

Ti,h Ti,v To,h To,v Wh Ns

1 0 1 0 8.8 75

1 0 2 0 8.6 82

1 0 2 2 8.4 88

2 0 2 0 7.9 107

2 2 2 2 7.4 137

N s 4T i h, T o h, 1
4T i v, T o v, 5+ +

Rh
---------------------------------------+ + + 

  W h∝
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having wider channels near the FPGA center and narrower channels near the edges is expected to

improve area-efficiency. To keep the layout problem tractable, we restrict ourselves to FPGAs

which use channels of only two different widths, such as the FPGA in Figure 13. We can describe

global routing architectures of this form with two parameters. Let Rw be the ratio of the widths of

the channels near the center of the FPGA to the widths of the channels near the FPGA edges, i.e.

Wcenter / Wedge. Let Rc be the ratio of the number of channels with width Wcenter to the total num-

ber of channels. With this notation, the FPGA of Figure 13 is described as having Rw = 2 and Rc =

0.5.

Using the flow of Section 2, we again mapped 26 benchmark circuits into several architec-

tures to determine their area-efficiency. We examined FPGAs with Rw equal to 0.75, 1.18, 1.33,

and 2, and with Rc values varying from 0 to 1. The relative effectiveness of FPGAs with Rw =

1.33 and Rw = 2 is summarized in Figure 14. Note that the points at which Rc equals 0 or 1 corre-

spond to a uniform FPGA.

The results show that the less uniform the channel widths, the worse the FPGA area-effi-

ciency. The worst area-efficiency with Rw = 2 occurs when Rc is 0.5, meaning that half the FPGA

channels are twice as wide as the other half. In fact, only two non-uniform FPGAs show even

marginal area-efficiency improvements over a uniform case. Both these FPGAs are very close in

architecture to a uniform FPGA. In one, the 10% of channels nearest the center are 33% wider

than the other channels, while in the other the 90% of channels closest to the center are 33% wider

than the channels nearest the edges. The reduction in tracks per tile over a uniform FPGA is less

Wcenter = 4

Wedge = 2

Figure 13: An FPGA with a Non-Uniform Routing Ar chitecture (Rw = 2, Rc = 0.5)



24

than 1% for both of these FPGAs, so the improvement is not sufficient to justify the extra layout

effort required.

These results are significant because there is a common belief amongst FPGA architects

that there would be significant benefit to these kinds of non-uniform architectures. The fundamen-

tal reason that they do not show any benefit is that there is not much more congestion in the center

of an FPGA than there is near its edges. In order to determine the “natural” routing demand distri-

bution of circuits, we placed and routed the 26 benchmark circuits with all congestion avoidance

features disabled, so that placement minimized wirelength and the router connected each net by

the shortest path. Figure 15 plots the maximum and average number of tracks required by the hor-

izontal channels as a function of the channel position within the FPGA, averaged over the 26

benchmark circuits. Notice that the demand for routing tracks is relatively constant over the mid-

dle 90% of the FPGA, and there is only a moderate decrease as one gets very close to the chip

edges. Figure 16 plots the average and maximum tracks required per channel versus channel posi-

tion for three representative benchmark circuits. There is some high-frequency variation from

channel to channel, since the router is, in this case, not making any effort to route nets around con-

gestion. Nevertheless, it is clear that these circuits closely mirror the behavior of the overall aver-

age of Figure 15.

Figure 17 provides another perspective on this issue. It shows the placement and global

Numberof Channelswith Width Wcenter / Total Numberof Channels(Rc)
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routing (using the usual congestion-driven tools again) of a benchmark circuit on a uniform

FPGA. Notice that while there is somewhat greater congestion in the middle of the FPGA than in

areas very close to the pads, the trend is not very strong. As well, there are numerous local con-

gestion “hotspots” where small regions have filled all the available channels, and some of these

“hotspots” occur quite close to the FPGA edge. Consequently, in order for an FPGA with thicker

channels near its center to use fewer routing resources, the placement software must move all of

these hotspots into the FPGA center. As discussed in Section 3.1, we spent considerable time
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investigating placement cost functions that modelled congestion well. The more advanced, and

computationally expensive, cost functions, however, improved the performance of the uniform

FPGA more than they did the non-uniform FPGA. It is more effective to have CAD tools attempt

to spread out congestion as much as possible, rather than trying to localize it to a designated por-

tion of a chip.

5.2 Single Center Channel

One major FPGA vendor, in an effort to improve routability, has made one channel in the

center of the FPGA in each direction extra wide (called “inter-quad routing” by AT & T) [6]. Fig-

ure 18 depicts an example FPGA of this type. We define Rm to be the ratio of the width of these

center channels to the width of the other channels. Figure 19 is a plot of Tracks/Tile Required ver-

sus Rm for this type of FPGA.

The data shows that the most routable FPGA is one without an extra wide channels in the

middle -- i.e. Rm = 1. There is a sharp dip in the number of tracks/tile required at Rm = 2, indicat-

ing an FPGA with routability almost as good as one with Rm = 1. This dip occurs at the first point

Figure 17: Global Routing of Benchmark Circuit e64.
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at which the linear congestion cost function considers the cost of routing through narrow channels

to connect two adjacent blocks to have the same cost as connecting two blocks separated by one

intervening block through the extra wide channel. Consequently, the placer is able to make better

use of the extra-wide channel at this point. Note that, as with the non-uniform FPGAs of Figure

14, the best results are obtained by spreading extra routing resources over the entire FPGA rather

than by adding them to only one region.

5.3 I/O Channel

We refer to the channel that runs between the I/O pads and the logic array as the I/O chan-

nel; Figure 20 depicts its location. Many in the FPGA community believe that when a circuit’s I/O

locations are fixed by board-level constraints, there is considerable extra pressure on the I/O chan-

Wcenter

Wedge

Figure 18: An FPGA with an Extra-Wide Center Channel.

Figure 19: Effectiveness of an Extra-Wide Center Channel.
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nel and it should therefore be quite wide. In fact, a major FPGA vendor has added routing

resources to this I/O-channel, at least partially to ensure that fixed I/O pad placement does not

impact routability and speed [7]. Therefore, we investigated the best width of the I/O channel both

when the I/O locations of a circuit can be chosen by the placement software, and when they are

locked in a specific configuration.

We investigated FPGAs in which all channels within the logic block array had the same

width, Wlogic, and the I/O channel had a different width, WIO. We describe such FPGAs via a sin-

gle parameter, Rio, which is defined to be WIO / Wlogic. Figure 21 is a plot of the average

tracks/tile required for the 26 benchmarks circuits versus Rio. The solid line in Figure 21 shows

the trend when the I/O locations are chosen by the placement tool, while the dashed line is found

when the I/O pads are “fixed” in a random location, to model the effect of poor (from the FPGA’s

point of view) board-level pin constraints.

There are several features of interest in Figure 21. First notice that fixing the I/O locations

increases the number of routing tracks required by 12% on average. Architects must take this into

account when designing FPGAs. Secondly, the curve where the I/O locations are chosen by the

placement tool has its minimum value when Rio = 1, again showing that it is best to spread routing

resources evenly across the chip. Fixing the I/O pins shifts the minimum in the tracks per tile

curve slightly so that it now occurs when Rio = 1.25.

In order to determine how the “natural” demand for tracks is altered when the I/O locations

of a circuit are fixed in a poor configuration, we repreated the congestion-oblivious placement and

routing experiments described in Section 5.1 with the I/O locations fixed in a random configura-

WIO

WLogic

Figure 20: I/O Channel Location

Logic Block

I/O Pad
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tion. Figure 22 plots the maximum and average number of tracks required by the horizontal chan-

nels as a function of the channel position within the FPGA, averaged over the 26 benchmark

circuits. Comparing with the corresponding curve obtained with movable I/Os (Figure 15), one

sees that the curves have shifted up by approximately half a track, and that the drop off in track

demand near the chip edges is significantly less pronounced. Figure 23 shows how the “natural”

track demand of three typical circuits vary with channel position. By comparing with Figure 16,

one sees that the curve for alu4 has changed little, while the sbc and C6388 curves have each

shifted up by about a track and show significantly more demand for routing tracks near the chip
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Figure 21: Effect of I/O channel width on routability.
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edges than they did when the I/Os were movable. This is due to the different IO to logic ratios of

these three circuits. Alu4 has very few I/Os; it uses only 7% of the I/O pads available in the FPGA

to which it is mapped. C6388 and sbc, on the other hand, have considerably more I/O, and use

35% and 61% of the I/O locations available to them, respectively. As one would expect, then, fix-

ing I/O locations has little effect on circuits with few I/Os. On the other hand, circuits with larger

I/O requirements show an increase in routing track demand across the entire FPGA, with the

greatest increase near the chip edges.

Figure 24 shows the routing (with all the router’s congestion avoidance features enabled

again) of the benchmark circuit e64 on a uniform FPGA when its I/O locations are fixed. Compar-

ing with Figure 17 one sees that 8 tracks per channel are now required instead of 6, and that there

has been some increase in the routing density near the chip edges relative to the routing density

near the center. Overall the amount of congestion is fairly uniform across the entire chip.

In summary, while fixing the I/O pins leads to a significant increase in the number of tracks

required to route a circuit, this increase is, for the most part, spread over the FPGA and not con-

fined to the channels connecting to the IO pads. Consequently, one should not make very wide

channels adjoining the pads in order to improve routability with pin constraints, although a small

increase in the I/O channel capacity is a net benefit.
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Figure 23: Horizontal Track Demand vs. Channel Position with Fixed I/Os.
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6 Conclusions
The most interesting (and unexpected) conclusion of this work is that the most area-efficient

global routing structure is one with completely uniform channel capacities, across the entire chip

and in both horizontal and vertical directions. The basic reason is that most FPGA circuits “natu-

rally” tend to have routing demands which are evenly spread across an FPGA, so they map best to

a uniform routing architecture. The only (slight) exception we found to this “uniform is better”

rule occurred when the I/O locations of circuits were fixed by board-level constraints. In this case

making the I/O channel 25% wider than the other channels was a net benefit.

Of almost equal note is the fact that the area-efficiency is decreased only slightly by many

non-uniform or direction-biased architectures, provided the pin placement on the logic blocks is

well-matched to the channel capacity distribution. This means that if such architectures are desir-

able for other reasons the impact on core area doesn’t preclude their use. For example, one reason

for widening the center channel is to re-use an existing tile layout in a larger FPGA (which needs

more routing), and hence save vendor layout effort.

Figure 24: Global Routing of Benchmark Circuit e64 with Fixed I/Os.
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More specifically, of the FPGA architectures studied, a full-perimeter pin position FPGA

with no directional routing bias and uniform channel widths is most area-efficient. Employing a

logic block with the top/bottom pin position requires approximately 8% more routing resources

than full-perimeter FPGAs, and the most area-efficient top/bottom FPGA has twice as many hori-

zontal routing tracks as vertical ones. We also found that one can construct rectangular FPGAs

which are only slightly less dense than square FPGAs provided one adjusts the degree of direc-

tional bias in the routing resources to best match the chip aspect ratio.

Our experimental results in this paper were gathered with the linear congestion cost func-

tion in the placement tool because we felt the non-linear cost function was too slow to be com-

mercially viable. However, it is interesting to note that while the non-linear function improved the

routability of circuits for all FPGA architectures, it improved routability the most for uniform

routing architectures. Apparently it is easier for advanced CAD tools to spread out congested

regions than it is to localize them to designated portions of a chip that have extra routing

resources. Consequently, we expect that future advancements in CAD tools will tend to slightly

increase the advantages of uniform routing architectures over their non-uniform counterparts.
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Appendix A
Table 4: Benchmark Circuit Statistics.

Circuit Nets 4 LUTs Flip Flops Inputs Outputs

alu4 1536 1522 0 14 8

apex2 1916 1878 0 38 3

apex4 1271 1262 0 9 19

bbrtas 418 406 7 5 2

C6388 559 527 0 32 32

cordic 489 466 0 23 2

cps 781 757 0 24 109

daio-rec 408 311 81 16 46

dalu 575 500 0 75 16

diffeq 1935 1494 377 64 39

e64 339 274 0 65 65

ecc 451 330 109 12 14

ex4p 529 445 0 84 28

ex5p 1072 1064 0 8 63

k2 564 519 0 45 45

misex3 1411 1397 0 14 14

mm30a 591 467 90 34 30

parker 871 660 161 50 9

s1423 313 221 74 18 5

s1488 311 296 6 9 19

s5378 772 576 160 36 49

s9234.1 625 461 135 29 39

sbc 452 384 27 41 56

scf 453 418 7 28 56

seq 1791 1750 0 41 35

table3 494 480 0 14 14


