1096 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 8, AUGUST 1999

Efficient Boolean Division and Substitution
Using Redundancy Addition and Removing

Shih-Chieh Chang and David lhsin Cheng

Abstract—Boolean division, and hence Boolean substitution, and G. As a consequence of the restriction, certain Boolean
produces better result than algebraic division and substitution. jdentities such ag -7 = 0 andz - © = = do not exist. As an
However, due to the lack of an efficient Boolean division algo- example, givenF = abe + be + ac and divisorD = a + b,

rithm, Boolean substitution has rarely been used. We present th h algebraic divisi btaiff — b ab
an efficient Boolean division and Boolean substitution algorithm. through algebraic division we obtaifi = ¢(a + b) + abe.

Our technique is based on the philosophy of redundancy additon Through Boolean division, which can exploit all the properties
and removal. By adding multiple wires/gates in a specialized in Boolean algebra [2], we obtaid” = (@e + c¢)(a + b).
way, we tailor the philosophy onto the Boolean division and Assuming a nodel with function a 4 b exists in the circuit,
substitution problem. From the viewpoint of traditional divi- with algebraic substitution we then hav@ = cd + abe
sion/substitution, our algorithm can perform substitution not only . . N _ ’
in sum-of-product form but also in product-of-sum form. Our Wh'le with Boolean.subst|tut|o.n we hav = (ac + C)_d' .In
algorithm can also naturally take all types of internal don’t cares this example, functior¥” has six literal$ before substitution.
into consideration. As far as substitution is concerned, we also Algebraic substitution reduces the number of literals to five,
discuss the case where we are allowed to decompose not only thgvhile Boolean substitution reduces it to four. Boolean division
dividend but also the divisor. Experiments are presented and the and, hence, Boolean substitution, in theory produces better
result is promising. ’ ’ o -
results. However, there does not exist a general and efficient
Index Terms—Boolean functions, circuit optimization, circuit Boolean division algorithm. In terms of the above example,

synthesis, design automation, division, logic design. this means that the best result of reducifigo four literals
is very difficult to achieve.
|. INTRODUCTION Although there does not exist a general and efficient algo-

. rithm to perform Boolean division, to certain degree a few
N multilevel logic synthesis, an important step in minimiz- : .)
. o - - approaches have been partially successful. The first technique,
ing the area of a circuit isubstitution[6] (or resubstitution .
N . or actually anad-hoc setup, is based on a good two-level

[15]). Substitution refers to the step where a function IS _,. . : -

S Optimizer. Since a good two-level optimizer, such as Espresso
simplified in complexity by using an additional input that wa

not previously in the function’s immediate fanins. Substitutio], is able to take don't cares into consideration, we can

. : ctually force it to achieve the effect of Boolean division.

can reduce the complexity of a function because part of t : . .

L " . or example, given a functio#” and a divisord = a + b,

function is replaced by the additional input that represents .
S .7 o . we can putF through Espresso withl & (a + b) as the
some existing function in the circuit. The expression of the ~ | .
- > on't cares, and furthermore force Espresso to take litéral
existing function is, therefore, shared and reused. To perform

L2 . . . into the final result, thereby achieving the effect of Boolean
substitution, the concept dfivision plays a major role. Given .. . : :
. . ; division. Another technique that is able to perform Boolean
two Boolean functions” and D, if we can expresg in the division is proposed in [9]. By adding two Boolean identities
form FF = Q- D + R, where- and+ , respectively, represent prop - BY 9 '

e Baokea AND and Boolean OR operstors then e sy, o 01 2 = . oo e vadons agenri
that ' can bedividedby D and that functiong? and R are, 9 ' b 9)

respectively, thayuotientand theremainder The coalgebraic division algorithm exploits the two Boolean

L . . identities for possible modification of the quotient obtained
Substitution can be algebraic or Boolean, depending onj . ! . :

- L . through algebraic operations. For a simple example, if we

the underlining division is algebraic or Boolean. In algebraic o . .

division [6], logic expressions are treated as algebraic pol nperform abe divided by ab, algebraic algorithm would return

» 109 P 9 POYNPe quotient as. Adding the Boolean identities, coalgebraic

mials, with some restrictions placed on the manipulations Qlision modifies the possible quotients o, ac, be, abe} and

the polynomials. In particular, the product of two funCtion%ventuall chooses one of them that produces a good result
F - G is algebraic only if no variable appears in both y P 9 '

Another technique, based on the binary decision diagram
d%BDD) data structure, is proposed in [14]. Given a function

Manuscript received April 21, 1998; revised October 7, 1998. This wor] . . .
was supported in part by the Taiwan National Science Council (NSC) undér @nd a divisor D, the method is built on the fact that

Grant 88-2215-E-194-005. This paper was recommended by Associate Edifor= D F'p+D F5, where the subscripts denote the generalized

A. Saldanha. . . .
S.-C. Chang is with the Department of Computer Science and Informaticr?faCtor operator [6] From the viewpoint ot divided byD’

Engineering, National Chung Cheng University, Min-Hsiung, Chia-vi 622tNiS fact means that the quotient 5, and the remainder
Taiwan (e-mail: scchang@cs.ccu.edu.tw). is DFn. All the functions in this method are represented in
D. I. Cheng is with Ultima Interconnect Technology, San Jose, CA 95136
USA (e-mail: ihsin@guitar.ece.ucsb.edu).
Publisher Item Identifier S 0278-0070(99)05680-8. 1in factored form[6], as opposed to sum-of-product form.

0278-0070/99$10.00 1999 IEEE

CHANG AND CHENG: EFFICIENT BOOLEAN DIVISION AND SUBSTITUTION 1097

BDD’s and the cost function of optimization is also based cend so on. As a result, in addition to the traditional sum-of-
some features on BDD's. product type of substitution, our algorithm can also perform
In this paper, we first present a new technique to perforsubstitution in the flavor of product-of-sum form. In other
Boolean division. Our technique is based on the concept wbrds, in two-level form, whether the dividend/divisor are a
redundancy addition and removéRAR) discussed in [4], [5], bunch of AND’s followed by an OR, or a bunch of OR’s
[7], and [12]. The basic philosophy of the RAR technique is tiollowed by an AND are completely symmetric to us. For
first add some redundancy and then remove other redundaneieample, letF = (G + b+ e¢)(b+ ¢)(a + ¢) and D =
elsewhere, with the goal that the removed ones reduce tlag(b) be existing nodes. With our algorithm we can quickly
circuit size more than the added one. With a fixed setup thatbstitute D into £ and obtainF = D + (a + e)e, i.e,
is specially configured, we tailor the RAR philosophy onto thé' = ab+(a+¢)c. Performing substitution in such a manner is
Boolean division problem. Unlike traditional RAR techniqguessompletely not possible in the traditional approaches because
which require redundancy checking on the potential wire @f the strong attachment to the underlining sum-of-product
be added, our algorithm is tailored in a way that we knoexpression, while in our technique performing substitution
a priori that our interested potential wire is redundant. Als¢hrough sum-of-product form or product-of-sum form are
although quite effective on adding one redundancy and thkasically the same.
removing other redundancies, the traditional RAR techniquesAnother feature of our algorithm is the ability to naturally
have little success on trying to add multiple wires/gates. mandle don't cares. Traditional techniques either totally cannot
our algorithm, the traditional RAR philosophy is tailored tdiandle don’t cares or can only handle don’t cares inagn
add multiple wires/gates in a specific way particularly for theocway. Since our algorithm is based on the RAR technique,
Boolean division problem. which performs so calledmplications we can take any

As far as substitution is concerned, knowing how to perforinternal don’t cares into account naturally. Furthermore, since
division is only the first step. The second step is to choosarious types of implication algorithms exist [10], [11], [13],
potential divisors. Traditionally, substitution on a functibh we can in fact adjust the tradeoff between the run time and
is done by going through the existing nodes in the circuit arile amount of don’t cares we take into account.
treating each of them as a potential divisorfof Division is The rest of the paper is organized as follows. Section I
tried on each potential divisor and substitution is carried otgviews the RAR technique. Section Ill provides a fundamen-
when the trial is favorable. Since it is up to the underlinintpl view of our algorithm focusing on basic division only.
division algorithm to conclude whether a divisor is good or no§ection IV presents our complete algorithm. Section V shows
the algorithm may miss some “good” divisors. In the exampkgome experimental results and, finally, Section VI concludes
mentioned earlier, let us say the node with functicAb does this paper.
not exist and, instead, a node with functiéh= o+ b + x
exists. Since functiont” does not depend on variable a
traditional division algorithm would quickly conclude that the Il. REDUNDANCY ADDITION AND REMOVAL
quotient of functionf' divided by D is zero and, therefore, The most related work to our Boolean substitution algorithm
no substitution would occur. However, if we slightly changés the technique of RAR. Here, we provide a detailed review.
the circuit structure by decomposingt- b + x to two nodes In [4], [5], [7], and [12], the technique of RAR is proposed
n1 = a+bandns = ny+x, function £ can then be substitutedand applied to general multilevel logic optimization. The basic
with noden;. We will use the termbasic divisionto refer philosophy in RAR is to add some redundancy first and then
to the scenario where the given divisor is not allowed to hiey to remove other redundancies elsewhere, with the goal that
decomposed, and the terextended divisiorfor the scenario the removed ones reduce the circuit size more than the added
where the divisor is allowed to be decomposed, certainly withihe. We review the technique with an example circuit.
some purpose in mind. In the above example where functionFig. 1(a), without the dotted wire, shows an irredundant
F = abe + be + ac is divided by D = a + b+ «, we would circuit. The dotted wireg5 — ¢9 is a redundant wire, i.e.,
say that under basic division the quotient is zero. For the saamdding the wire does not change the circuit’s functional-
Fand D we would also say that under extended division thiey. However, once this wire is added, the two thick wires,
subexpression + b can be extracted out as a new divisor, angl — g4 and g6 — g7, become redundant. In this case, we
with the new divisore + & the quotient isae + ¢. From this can remove these two redundant wires without changing the
viewpoint, all the traditional division algorithms perform onlycircuit's functionality. After removing these two wires, we
basic division, while our algorithm presented in this papehen have the circuit shown in Fig. 1(b), which is smaller in
performs extended division. size.

Traditional substitution approaches operate on each node’sn general, the RAR technique first decides, based on some
internal sum-of-product data structure and, hence, can owlyst function, some existing irredundant wire that is the target
perform substitution/division in the sum-of-product form. Ino be removed. Then the technique searches for some nonex-
contrast, our algorithm operates on circuit structure directligting wire, sometimes called a candidate connection, that
Given an initial circuit, the first step of our algorithm is toonce added can remove the target wire. Finally, the technique
decompose each node’s internal sum-of-product form intochecks whether the candidate connection is redundant, i.e.,
two-level AND and OR gates. The circuit then, in generalyhether adding the nonexisting wire preserves the circuit's
has a level of AND gates, followed by a level of OR gatedunctionality. Only when the candidate connection is verified

1098 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 8, AUGUST 1999

Q T

g5 o1

O ol

(a) b)
Fig. 1. The RAR technique.

as redundant, we can then add the connection and furtbéoveF', since adding more sum terms f» does not change
remove the target wire. Note that most of the RAR techniqué®e original containment relationship if. On the other hand,
only try to incrementally add one wire at a time. Due to a largenction £ = (a + b)(c) is not a POS off’, since sum term
search space, efforts that try to add multiple wires/gates amé- b 4+ ¢ does not contain any sum term in functiéh
remove even more wires/gates have only little success (e.g.The concepts of SOS and POS play a central role in our
[4]). algorithm, and we now look at some of their simple properties.
Lemma 1: Let function G be a SOS of functior¥'. Then
P =F. .G
Proof: SinceF' - (G is an AND operation, and an AND
Given a function” and a divisorD, we use the terbasic gperation can only reduce, but never increase, the set of
divisionto refer to the scenario where the divisor is not alloweghinterms in #. The lemma holds if we can prove that all
to be decomposed, and use the textended divisioto refer the cubes inF are still in the final sum-of-product of - G.

to the scenario where the divisor can be freely decomposegiace each cube; in F is contained by at least one cubig
with some optimization goal in mind. In this section, we focug & andc; - d; = ¢;, all the cubes inF” must be in the final

I1l. BASIC DIVISION

on basic division. sum-of-product off" - G. O
Lemma 2: Let function G be a POS of functior¥’. Then
A. SOS and POS of a Function F=F+G.
We first need some definitions. product term or cube Proof: By similar arguments of the proof in Lemma 1.
is a set of literals AND’ed together. Aum termis a set of) -
literals OR’ed together. A functiorf, containsa function f. These two lemmas establish the ground where we can

if the on-set off, contains the on-set of,. As an example tailor the technique of RAR onto our substitution problem. To
function (cube)a contains function (cubedb; function (sum illustrate the concept, we take the exampléof: abe+-betac
term) a + b contains function (sum termy). Furthermore, we @nd D = a + b from Section I. SinceD) is a SOS ofF, by

define SOS and POS of a function as follows: Lemma 1, the new functiotyey = (a + b)(abe + be + ac)
SOS Given a function F in two-level sum-of-product must be equivalent to the original functidh From the RAR

. . viewpoint, we have successfully “added” a redundancy into
form, we say a function7, also in sum-of-product o . - T
. . the circuit. Focusing on the original’ part inside Iy,
form, is a sum-of-subproduc{SOS) of F' if every : .
g ; we then try to remove as many redundancies as possible,
cube inF' is contained by at least one cubeGh . . 7 A
. : . and can quickly arrivel’ = (a + b)(ac + ¢). Symmetric to
POS Given a function ' in two-level product-of-sum g .
. . the SOS case, we can perform similar operations on POS.
form, we say a function@, also in product-of-sum

form, is a product-of-subsunfPOS) of I if every Let F' = (a+b+e)b+o)atc) andD = (a)b).
; . Since D is a POS ofF', by Lemma 2, the new function
sum term inF contains at least one sum termah

. Foow = b+(at+bte)(b+ +¢) must be equivalent to
For example,D = a + b is a SOS ofF' = abe + be + ac (a)(b) +(a Ab+c)late) a

'] . the original functionF'. Focusing on removing redundancies
bgcause every cube # is contained by eﬂh_er cubeor cube i the original F part inside Fi,e.,, We then quickly have
bin D. For another exampld)’ = a+b+xisalsoaSOSof p _ . (@+ e)e.
the abovefl’, since adding more cubes 0 does not change
the original containment relationship ii. On the other hand,) .
function E = ab+ ¢ is not a SOS of", since cubeibe is not B- Performing Basic Division
contained in any cube in functiof. Given a functionf” and a divisorD, in this section we

On the POS side, for examplé) = (a)(b) is a POS of present an algorithm that performs basic Boolean division, i.e.,
F=(@+b+e)(b+c)a+ c) because every sumterm i ' = @ - D + R. The best way to explain our algorithm is to
contains either sum term or sum termb in D. For another discuss it with an example. Fig. 2(a) shows two nodes, which
example, functionD’ = (a)(b)(x + y) is also a POS of the correspond tal’ = abe+bc+ac+y and D = a+b. Since

CHANG AND CHENG: EFFICIENT BOOLEAN DIVISION AND SUBSTITUTION 1099

= ’

=

Fig. 2. Basic division.

our central idea is based on the SOS concept, the first stepviewpoint of the RAR technique, we have successfully added
perform £ divided by D is to take out fromZ" all the cubes a redundancy and the circuit still has the same functionality.
that are not contained by any cubefin and such cubes will Now the region marked by the circi,,;; is highly redundant.

be our final remainder terrR. Among the four cubes i#", ¥ The final step is to perform redundancy removal on ¢hg

is the only such cube singe? « andy ¢ b. Fig. 2(b) shows region and we reach the final result shown in Fig. 2(d), which
the circuit structure after we form the remaindgwhere we is of the formF = @ - D + R. To show how redundancy
use dotted circleR to indicate the remainder region adtd 2 removal is done, we duplicate the circuit snapshot shown in
to denote the resulting function with cuhetaken out from Fig. 2(c) to (e) and remark some nodes. Let us illustrate how
F. Since every cube iF\R is now contained by at leastwire b — g, the thick wire in Fig. 2(e), is detected as a
one cube inD, D is a SOS of F\R. By Lemma 1,F\R redundant wire. For wirdd — g» stuck-at-one fault to be
would stay unchanged if AND’ed witl®. This fact is shown testableb must be0 to activate the fault. For the fault effect
in Fig. 2(c) with an extra bold AND gate and the shiftBf 2 to propagate through gate, a must be0 and ¢ must bel.
from before this AND gate to after this AND gate. From thé&or the fault effect to propagate through gate g1 must be

1100 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 8, AUGUST 1999

1. Sincea = 0 andb = 0 impliesa + b = 0, gateg; must a complete new problem whose result is difficult to predict.
be 0, which is a conflict. A conflict during the implication Since conceptually SOS and POS are symmetric, throughout
process means the fault — g, stuck-at-one is untestablethe remaining of this paper we do not go into the details of
and, therefore, wiré — g» can be replaced by a constaint the case for POS.

Our basic division algorithm works as illustrated by the above

example. In summary, our algorithm consists of three steps. IV. EXTENDED DIVISION

The first step of our algorithm is to decompose the dividénd

Section Ill presented our algorithm that performs basic
so that the cubes that make the divigdnot a SOS off’ form I P u gon P !

th inde. Th d step is to AND with F\R division, where a divisor is not allowed to be decomposed.
€ remaindeth. the second step 1S to Wi \A, Given a functiont’ and a divisorD, under basic division we

which does not change the functionality 8f R by Lemma eek to reexpress as F — Q- D+ R. This means we are

1. The third step is to remove all the redundancies inside tgﬁowed to decompose only afi but not onD. In this section
F\,f reglhon. s the RAR o . hniq Ve present an algorithm that performs what we call extended
ote that it 'S.t € step; that make our tec NAY%vision. Given a functiort’ and a divisorD, under extended

Boolean. C_omp_anng o the traditional RAR techmque;, _hOV&'lvision we are allowed to decompose not odlybut also
ever, a major difference lies on the fact that we kr@priori 1, i the purpose of minimizing the number of literals in
that the added wires/gates are redundant because of the titution. In essence, we first want to separate the cubes
property in _Lemma 1. In other words, unlike th_e traditional, 1 into two groups, theore divisor D¢ and theremaining
RAR techniques, we do not need to check if the addeglsqr . Once this separation is determined, we decompose
wire/gate are redundant or not. Furthermore, as mentiongd original divisorD into two nodes such thdd = D+ Dy

in Section Il, there has been little success in works trying Becomposing into a new node for the core divigay: mean's

generalize the RAR technique to adding multiple wires/gate[ﬁat De, a subexpression that was originally embedded in
What our algorithm does is essentially a tailored version %e given divisorD, is now exposed and can be used for

the RAR philosophy onto the substitution problem, with @hjittion. We then apply our basic division algorithm in

fixed configuration of multiple wires/gates addition. Also Not&qtion 111 on functionF and core divisorD¢ to obtain the
that since the added wires/gates are known to be redundal ;i For example, given functiahi = abe+bc+ac+y and

a priori, the most time-consuming step in our algorithm iﬁivisorD — a+ b+ z, we decompose the divisd? into the
only on the redundancy removal step. As mentioned earligy, o divisorDe = a + b and the remaining divisobg = .

with different implication methods we can actually adjust thﬁpplying our basic division algorithm of” and D¢, we then

tradeoff between the run time and the quality of result. Fjytain the same result as illustrated in Section Il. It should
example, we can limit our implication process only insidge clear that the most important thing here is to intelligently

a small region, thef"\R region plus theD region. As far getermine the core divisabc:, since onceDc: is determined
as substitution is concerned, most of the reconvergences apdayiended division reduces to a basic division.

implication conflicts would occur in this small region. Limiting racall that during our basic division algorithm, it is the step

the implication process inside this small region would greatly roqundancy removal that really performs the minimization
reduce the time required as opposed to a traditional redundangcess_ Looking back in Fig. 2(c), whenever we remove a

removal process. On the other hand, we can certainly speitle from the cubes in th€;.:, region, we effectively reduce
more time to perform implications to'gates outside th'?’ small jiteral in the final quotient. What we would like to have
region, and thereby can naturally incorporate any intemal 5 core divisor that is able to remove the most wires. To
don’t cares into consideration. In the extreme case, We CgBiermine the core divisab with a given functionF” and
even adopt some quite exhaustive implication technique sughyiven divisorD, our basic idea is to have each wire in the
as recursive learning [11] to incorporate a large amount gfihes ofF” “vote” for a candidate core divisor. For each wire
internal don’'t cares. We do not discuss the details here Qytin the cubes off. we perform implications to see which
fsimply point out t_he existgnce of such a flexibility on varioug ;pes in diviso are able to remove wire. For example, let
implication algorithms. Finally, as can be seen from thgnctionr = abd+ac+cd-+ae and divisorD = ab-+c+bd+te,

above example, our algorithm operates on circuit structui@ose circuit structure is shown in Fig. 3(a). In Fig. 3(a),
directly, rather than manipulating expressions like traditiongle name divisorD’s four cubesy:, y2,y3, and ys; we also
))) 1

approaches. As mentioned earlier, we are therefore not limitg§e functionz’s four cubesz,, &, 3, and 2, which are
? ? ? L)

to performing substitutions in terms of the traditional SUMegpectively, driven by gates, g», g3, and g.. Consider wire

of-product viewpoint. With the POS concept, we can alsp_, ; stuck-at-one fault. We have the following implications:
perform substitutions on two functions when they are both

in the product-of-sum form. Instead of using the SOS concepf:=C (t0 activate the fault) = wn=0

and Lemma 1, we can use the POS concept and Lemma 2, arfti= 1 @ndd =1 (to allow fault effect thrug,) = yz=1

the same philosophy as illustrated above would apply directi§i2 =0 (to allow fault effect thrug;) anda=0 = ¢ =0

As a simple example, imagine a circuit that is identical to “= = 12=0

the one shown in Fig. 2 with all the AND gates changed Assume that we somehow have determined a core divisor
to OR gates and vice versa. With our algorithm it is a®.. This core divisor, in our specialized configuration for
easy as was illustrated in this section, while in a traditionlhsic division, feeds into a gate similar to the bold AND gate
substitution technique all the sum-of-product expressions fogm in Fig. 2(e) of Section lll. This means that if we want

CHANG AND CHENG: EFFICIENT BOOLEAN DIVISION AND SUBSTITUTION 1101

@
=

UL
@‘f
=

[e]

o
-
p—

c g2

_

X3

[e)—

[=Rye]

@

2)—

(@)

@

Fig. 3. Extended division.

any fault effect in the@;,;; region to propagate through the TABLE |

bold AND gate, this core divisoP must have a value one VOTE TABLE

during the fault's implication process. In the case of extended “wire | ¢y, =0 wire | y; =0
division, if the core divisor that we eventually determine has ~5 =0 ™17 7, a—g1 | Y1, 92
implication value zero for a particular fault, the fault must b1 | 1,92, Y3, Ya bog1 | yi,y2, Y3, ya
be untestable because a conflict will occur with the required g4, | 43, y, d—g1 | ys,va
assignment of one mentioned above. We illustrate this point 4, a—gs

by continuing the example for wire — ¢; stuck-at-one fault. =92 | 1,92 g2 | N, Y2
We focus on the results that appear on this side whose c—g3 | y1,y2 =93 | y1,v2
implication values are zero. In this case, we haye= 0 d—g3 | ys,v4 d—gs

andys = 0. Assuming we eventually choosg + 3. as our a—gs | 1 a—g4

final core divisor, i.e..D¢c = y1 + 42 = ab + ¢, then our e—gs | Y3, ya e—gs | Y3,Ya
basic division algorithm in Section V would change the circuit

structure to the one shown in Fig. 3(b), whdvbg = ab+cis (@ (b)

connected to the bold AND gate. Following the basic division

algorithm in Section Ill, we would try to remove as manyssigned one. In other words, if we do choagety. as
wires as possible in th@n;; region. When we again performour core divisor, we expect wire — ¢; to be removed in
implications for the faulis — ¢, stuck-at-one, shown with athe subsequent basic division. Now, in determining the core
cross in Fig. 3(b), we know thaf; andy., and henceD, divisor, different wires have different implication values on the
all have implication valud. This creates a conflict becausey;’s side in Fig. 3(a). In some sense, this means that each wire
as stated earlier, for the fault effect ef — g¢; stuck-at- “votes” for a candidate core divisor. In the above example,
one to propagate through the bold AND gafe;: must be wire a — ¢; votes for candidate core divisgr + y-. This

1102 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 8, AUGUST 1999

TABLE I
EXPERIMENTAL RESULTS (SCRIPT A)

circuit init sis basic ext. ext.+GDC

lit. lit. cpu lit. cpu lit. cpu lit. cpu
9symml 244 244 | 0.90 234 1.95 234 1.90 231 13.59
C1355 562 562 | 1.31 558 1.99 558 2.06 558 7.28
C1908 678 631 [2.55 597 1.64 597 1.68 595 3.29
C2670 928 843 | 3.09 831 3.20 829 3.31 817 12.83
C3540 1462 1452 | 7.26 1261 | 12.27 1261 | 12.06 1258 | 171.53
C432 260 260 | 0.51 214 1.13 223 1.14 214 1.83
C499 562 562 [0.75 558 2.01 558 2.07 558 6.62
C5315 1995 1961 | 7.67 1910 8.32 1914 8.62 1900 35.85
C6288 4212 4212 | 37.27 3747 | 20.59 3747 | 21.31 3747 21.62
C7552 2605 2522 | 16.13 2413 | 14.33 2410 | 1540 2398 | 123.71
C880 416 416 { 1.08 412 0.76 413 0.77 413 1.44
alu2 448 446 | 19.70 412 5.40 417 5.35 413 56.86
alud 831 829 | 80.96 779 | 16.23 784 | 15.08 790 | 302.55
apex6 807 807 | 1.36 796 3.67 795 3.86 792 40.52
apex7 278 278 1 0.39 263 0.77 263 0.82 259 2.62
dalu 1998 2003 { 19.45 1753 | 53.28 1768 | 52.22 1737 | 1922.85
des 6048 6048 | 80.81 5712 | 168.37 5697 | 190.48 5693 | 6091.68
example2 361 362 | 0.65 336 1.57 339 1.65 336 9.54
frg2 1321 1285 | 8.17 1217 | 22.23 1215 | 24.19 1180 | 666.11
i10 2875 2861 | 13.63 2627 | 46.26 2619 | 46.22 2587 1 594.15
i8 1817 1817 | 13.46 905 | 64.62 915 | 65.78 908 | 1579.56
i9 750 750 | 2.98 729 1 15.13 729 | 17.82 733 | 400.09
rot 733 751 | 1.59 701 1.99 698 1.93 696 5.34
t481 2611 2608 | 78.61 2009 | 32.28 1958 | 28.45 1976 | 406.52
terml 341 325 | 2.87 302 1.73 302 1.60 295 9.39
too_large 1052 1052 | 14.04 999 7.35 1004 7.17 980 66.92
ttt2 261 259 | 0.84 233 1.15 238 1.19 228 6.29
x1 346 346 | 0.91 340 1.47 345 1.53 339 10.80
x3 1013 999 [3.20 980 545 974 6.11 970 77.81
x4 549 526 | 1.54 538 3.34 526 3.83 518 44.40
51196 612 614 | 3.03 577 6.11 573 6.11 569 | 117.55
51238 679 682 | 3.55 599 7.56 607 7.87 602 94.57
513207 3891 3855 | 33.42 2894 | 61.07 2836 | 63.15 2828 | 2746.19
51423 644 644 | 2.31 621 1.88 624 1.95 621 7.22
51488 767 764 | 4.89 722 | 21.25 714 | 19.75 710 | 536.32
51494 77 773 | 4.94 724 | 2231 713 | 20.04 709 | 608.37
515850 4358 4339 | 30.89 3789 | 36.33 3760 | 38.64 3751 | 695.82
Total 50092 || 49688 507 | 44292 677 | 44157 703 | 43909 17500
% 0.81% 11.58% 11.85% 12.34%

should become clear if we look at the complete situation after— ¢, is 4 +y2 = ab+c. The cube that is connected to
each wire performs implications on the example circuit showmire ¢ — ¢; is 1 = abd. Since the candidate core divisor
in Fig. 3(a). Table I(a) lists all the,’s that have implication «b + ¢ is a SOS of cubebd, we know eventually if we add

value zero for each wire. core divisorab + ¢ into the circuit, the added wire will be a

We explain the interpretation of Table I(a) by examples. Thedundant wire and, therefore, the circuit functionality would
meaning of the second row is that we expect wire~ ¢g; not change. In Table I(a), the only candidate core divisors that
to be removed if we choosg; +y2 +v3: +y4 as the core do not hold for this condition are wire$ — g3 anda — gy4.
divisor. For simplicity, we also say that wite— ¢; votesfor The candidate core divisor for wikt— g3 IS y3+y4 = bd+e,
candidate core divisay; +y2+ys+y.. Similarly, the meaning which is not a SOS of the corresponding culie= cd. On
of the fourth row is that we do not expect wite— ¢- to be the case of wires — ¢4, candidate core divisaf; = ab is not
removed, regardless of whatever core divisor we choose. Th&OS of the corresponding cube = ae. We therefore need
remaining entries of Table I(a) can be interpreted in a similéw delete these two entries in Table I(a), and we have our final
way. vote table shown in Table I(b).

The above voting scheme demonstrates our criteria forTo finalize the choice of the core divisor, various heuristics
choosing a good core divisor. However, from the RAR tecltan be used. We reduce the above choice problem to a maximal
nigue’s viewpoint, one more thing we need to make sure is thdique problem [8] in graph theory. First we construct a graph.
a candidate core divisor is indeed a redundant wire which wer each wire we create a vertex; there is an edge between
can eventually “add” to the circuit. This is done by checkingvo verticesv; andws if the intersection of the corresponding
if the candidate core divisor voted by a wite is a SOS of candidate core divisors are not empty. For example, the
the cube that is connected to wite For example, from the intersection of the candidate core divisors between wires
first entry in Table I(a), the candidate core divisor of wire — g; andb — g; is {1,452}, and hence there is an edge

CHANG AND CHENG: EFFICIENT BOOLEAN DIVISION AND SUBSTITUTION 1103

TABLE 11l
EXPERIMENTAL RESULTS (SCRIPT B)

circuit init sis basic ext. ext.+GDC

lit. lit. cpu lit. cpu lit. cpu lit. cpu
9symml 251 2511 0.95 237 1.64 243 1.69 243 12.51
C1355 560 560 { 1.35 560 1.96 558 1.98 558 7.59
C1908 679 632 | 2.61 598 1.65 598 1.70 596 3.32
C2670 939 849 | 3.65 840 2.63 831 2.80 828 10.03
C3540 1635 1618 1 7.86 | 1300 | 17.39 | 1345 | 16.82 1332 | 315.26
C432 261 261 | 0.55 214 1.02 223 1.12 214 1.63
C499 560 560 | 0.82 560 1.94 558 1.96 558 6.50
C5315 1961 1927 | 8.02 1870 5.94 | 1864 6.44 1856 24.11
C6288 4212 4212 | 37.19 | 3747 | 20.64 | 3747 | 21.10 3747 21.71
C7552 2627 2534 | 15.94 | 2382 | 13.13 | 2390 | 14.38 2367 | 113.62
C880 414 414 | 1.10 411 0.70 412 0.74 412 1.30
alu2 466 465 | 19.85 433 5.43 438 5.40 441 58.16
alud 864 857 | 81.63 821 | 16.57 833 | 15.70 829 | 328.24
apex6 817 817 | 1.46 803 3.57 802 3.79 800 24.81
apex7 281 281 | 0.44 261 0.80 263 0.79 259 2.48
dalu 1809 1765 | 17.07 | 1671 | 37.09| 1609 | 38.07 1587 | 895.06
des 4920 4918 | 80.63 | 4728 | 110.30 | 4734 | 115.31 4733 | 3325.34
example2 366 367 | 0.66 344 1.63 343 1.71 344 9.18
frg2 1177 1135 | 6.82 | 1066 | 14.63 | 1071 | 15.04 1058 | 253.36
i10 2772 2757 | 13.23 | 2567 | 44.18 | 2558 | 46.17 2518 | 608.61
i8 1491 1491 | 14.04 | 1211 | 34.82 | 1221 | 39.21 1216 | 850.84
i9 749 749 | 3.07 730 | 10.77 730 | 14.16 687 | 413.90
rot 758 763 | 1.73 710 1.95 706 1.90 703 5.00
1481 1395 1313 | 58.80 | 1114 | 17.37 | 1111 | 15.66 1108 | 195.26
terml 357 349 | 2.93 319 1.40 323 1.31 309 5.45
too_large 1304 1302 | 36.40 | 1183 | 10.11 | 1124 | 10.26 1115 | 149.46
ttt2 260 257 | 0.90 247 1.04 251 1.06 242 4.67
x1 385 384 | 1.11 369 1.59 368 1.45 363 7.41
x3 975 966 | 3.36 932 4.77 946 5.01 930 27.62
x4 522 492 | 1.56 488 2.21 469 2.62 457 16.81
s1196 626 624 { 3.10 577 5.80 573 5.89 569 83.57
51238 696 692 { 3.62 599 7.62 607 7.60 602 | 100.90
513207 3569 3552 | 28.84 | 2894 | 37.57 | 2836 | 36.54 2828 | 931.91
51423 652 652 | 2.58 621 1.87 624 1.88 621 6.55
s1488 762 758 | 4.97 722 | 1848 714 | 17.25 710 | 467.52
$1494 756 754 | 5.05 724 | 16.97 713 | 16.09 709 | 453.01
515850 4306 4269 | 29.81 | 3789 | 34.16 | 3760 | 35.71 3751 | 605.06
Total 47134 || 46547 503 | 42642 511 | 42496 526 | 42200 10347
% 1.25% 9.53% 9.84% 10.47%

between the vertices corresponding to these two wires. For
another example, since the intersection of the candidate core
divisors between wirea — ¢g; andd — g¢; is empty, there

is no edge between the vertices corresponding to these two
wires. The complete graph is shown in Fig 4. Each clique -~
in this graph represents a core divisbg: that, if chosen, is
expected to remove all the wires corresponding to the verticés

in the clique. As we can see from Fig. 4, one clique, markégd
with a dotted circle, consists of four vertices— g1, b — g1,

¢ — g9, and ¢ — g3, with the corresponding intersected
candidate core divisor being + . = ab + ¢. In this case,

we expect to remove the four wireg, — g1, b — g1,

¢ — go, and ¢ — g3, if we choosey; + y2 as the final

core divisor. Another clique, marked by the three bold edges

in Fig. 4, consists of three verticds — ¢;, d — ¢1, and

e — g4, With the corresponding intersected candidate core
divisor beingys + y4 = bd + e. This means we expect to
remove the three wire$, — g;, d — g1, ande — g4, if we
chooseys +1.4 as the final core divisor. The problem of finding

the best core divisor that would potentially remove most wirgdg. 4. Graph that represents the intersection of candidate core divisors.

1104 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 8, AUGUST 1999

TABLE IV
EXPERIMENTAL RESULTS (ScRIPT C)

circuit init sis basic ext. ext.+GDC

lit. lit. cpu lit. cpu lit. cpu lit. cpu
9symnl 258 258 | 0.98 237 2.14 241 2.08 241 16.12
C1355 562 562 | 1.34 558 2.01 558 2.08 558 6.77
C1908 677 628 | 2.65 584 1.76 584 1.83 583 3.86
C2670 934 846 | 3.35 822 3.15 815 3.62 815 12.45
C3540 1519 1499 | 7.85 1261 | 11.09 1261 | 11.05 1258 | 153.52
C432 261 261 | 0.55 214 1.12 223 1.13 215 1.68
C499 562 562 | 0.78 558 1.99 558 2.07 558 6.66
C5315 1996 1962 | 7.95 1910 7.92 1914 8.66 1900 36.07
C6288 4212 4212 | 37.46 3762 | 20.35 3762 | 20.20 3762 21.25
C7552 2605 2522 | 16.54 2413 | 14.34 2410 | 1545 2398 | 125.08
C880 415 415 | 1.15 412 0.73 413 0.77 413 1.41
alu2 468 455 | 19.91 408 5.63 419 5.55 417 61.81
alud 855 842 | 81.96 783 | 16.30 788 | 15.23 789 | 278.46
apex6 810 809 | 1.59 796 3.74 794 4.09 792 27.01
apex? 279 279 | 045 260 0.79 262 0.75 259 2.40
dalu 1774 1734 | 16.91 1581 | 35.08 1584 | 36.49 1536 | 882.73
des 6100 6069 | 91.28 5716 | 153.83 5706 | 172.52 5707 | 5997.51
example2 364 363 | 0.67 336 1.54 338 1.62 336 9.33
frg2 1299 1209 | 8.09 1168 | 19.32 1173 | 21.63 1137 | 545.20
i10 2872 2851 | 13.50 2617 | 46.30 2608 | 46.40 2574 | 610.70
i8 1575 1559 | 14.66 835 | 45.91 839 | 45.88 835 | 1088.36
i9 745 745 | 3.04 724 | 15.98 724 | 17.56 728 | 435.38
rot 747 727 | 1.84 702 1.95 705 1.85 703 5.63
t481 2485 2356 | 75.03 1956 | 21.73 1936 | 20.14 1920 | 244.70
terml 336 304 | 291 272 1.44 268 1.35 270 6.53
toolarge 917 840 | 24.11 872 3.71 848 3.60 847 24.31
ttt2 273 243 | 1.02 232 1.15 236 1.20 235 9.10
x1 351 321 | 1.13 331 1.28 330 1.34 328 9.78
x3 965 887 | 3.79 909 5.57 900 5.94 897 75.50
x4 541 501 | 1.66 513 321 494 3.48 488 42.14
s1196 630 629 | 3.20 577 6.74 573 6.11 569 69.87
51238 693 692 | 3.71 599 7.77 607 7.77 602 91.30
513207 3826 3700 | 34.14 2894 | 41.88 2836 | 42.86 2828 | 1248.70
s1423 644 644 | 2.38 621 1.90 624 1.97 621 7.19
51488 796 791 | 5.06 722 | 21.30 714 | 20.52 710 | 562.94
51494 803 798 | 5.14 724 | 21.01 713 | 19.54 709 | 591.35
515850 4355 4306 | 32.87 3789 | 35.91 3760 | 40.36 3751 | 687.62
Total 49504 || 48381 530 | 43668 587 1 43518 614 | 43289 14000
% 2.27% 11.79% 12.09% 12.55%

is, therefore, reduced to a maximal clique problem. In thike flow is identical to the example shown in this section.
example, since the maximal clique is the one of size four, vieach wire in the cubes ab; and D, votes for a candidate
determine the core divisor to bBe = y1 +y» = ab+ ¢, core divisor and we have an identical vote table as shown in
with which we change the circuit structure to the one showkble I(b). The only slight modification we need is in the final
in F|g 3(b) After performing redundancy removal, the foumaXimal Clique formulation, where we need to model the fact
wiresa — g1, b — g1, ¢ — g2, ande — g3 are removed and, that some cub_es in the seco_nd column of_TabIe I orig_inglly
finally, we haveF = abd+ac+ cd+ae = De(a+d) +ac = COMe from a different node. Since the situation is very similar
(ab+c)(a+d) + ac. to thg situation when we only have one node, we do not go mto
gletails here. Note that, as is also the case for basic division,
e can perform extended division in terms of sum-of-product
m as well as product-of-sum form. Instead of focusing on

Applying our extended division algorithm to the substitutio
problem, we want to point out that we can actually d

more than what the above discussion shows. In the aborz e
the cubes that have implication value zero, we would then

formulat!onz we focus only on one existing node In the case focus on the sum terms that have implication value one. The
of ;ubstltutlon, we gctuglly have freedom to select our COIEt of the algorithm applies similarly.
divisor from many circuit nodes. As an example of how this
generalization works, imagine the given divisor in the above

example,D = ab+ c+ f + bd + ¢, does not exist in our circuit V. EXPERIMENTAL RESULTS

and instead, two nodd3; = ab+c+ f andD, = bd + ¢ exist, We have implemented our algorithm and applied it to the
as shown in Fig. 3(c). When functidfi = abd + ac+ cd+aec substitution problem. Our implementation has three configu-
is given and we want to search for a good divisor betwBgn rations:

and D, with extended division, we can temporarily pretend 1) basic division;

that all the five cubes are from the same node and, therefore2) extended division without global internal don't cares;

CHANG AND CHENG: EFFICIENT BOOLEAN DIVISION AND SUBSTITUTION 1105

TABLE V
ExPERIMENTAL RESULTS (script.algebraic)

circuit sis basic ext. ext.+GDC

lit. cpu lit. cpu lit. cpu lit. cpu
9symm! 267 1.53 268 22.40 256 28.52 256 98.44
C1355 670 3.54 526 32.32 526 31.77 595 80.44
C1908 564 4.95 563 37.03 553 34.67 557 109.72
C2670 840 7.31 767 52.18 753 52.93 755 126.00
C3540 1486 | 16.25 | 1460 | 201.39 1465 | 218.18 | 1514 | 4168.66
C432 252 1.73 203 10.41 220 12.36 214 18.71
C499 558 2.20 550 28.27 550 26.46 550 62.55
C5315 2008 | 22.21 | 1861 | 138.43 1869 | 141.53 | 1851 388.77
C6288 3787 | 35.22 | 3317 | 223.10 | 3316 | 227.13 | 3317 320.58
C7552 2584 | 38.25 | 2356 | 229.58 | 2223 | 22747 2335 | 1400.14
C880 473 3.19 450 21.84 425 22.74 414 32.53
alu2 478 5.46 406 54.38 426 68.53 419 393.79
alu4 917 | 20.60 838 | 157.18 789 | 186.81 824 | 1835.95
apex6 854 5.23 777 55.44 806 56.69 772 275.78
apex? 286 1.65 240 12.17 237 11.66 239 27.56
dalu 1500 | 31.24 | 1417 | 307.81 1201 | 303.83 | 1250 | 8493.04
des 3816 | 119.12 | 3720 | 1062.60 | 3595 | 1006.89 | 3738 | 34068.09
example2 375 2.30 346 22.56 329 24.26 340 93.06
frg2 1118 17.53 1011 160.26 854 155.59 1041 2386.93
i8 1143 | 19.93 [1052 [298.18 1046 | 307.37 | 1039 | 8277.33
i9 623 6.39 606 | 140.93 600 | 122.37 604 | 2714.39
i10 2658 | 44.96 | 2427 | 41245 | 2392 | 44646 | 2375 | 5324.80
rot 803 6.44 680 62.03 690 34.82 694 62.03
t481 1028 | 66.34 961 | 142.42 917 | 104.18 685 | 1229.88
term1l 271 3.05 264 21.17 223 22.75 162 58.47
too_large 491 | 316.66 437 | 174.02 429 | 173.97 413 | 2178.73
ttt2 242 1.62 217 13.57 170 12.75 206 36.26
x1 357 2.97 337 21.46 333 23.81 326 84.48
x3 890 8.75 775 75.82 765 73.05 771 487.81
x4 424 4.22 398 32.05 375 29.14 402 169.09
51196 677 7.60 599 69.29 589 81.90 573 636.54
51238 714 8.18 587 73.48 576 91.11 602 548.91
§13207 2518 | 50.66 | 2244 | 313.61 2144 | 302.72 | 2258 | 10108.98
51423 723 6.04 618 33.67 624 38.07 632 100.85
51488 751 9.58 731 | 146.66 670 | 212.78 707 | 2123.05
51494 762 | 10.45 697 | 149.65 686 | 209.46 704 | 1941.85
515850 4113 | 396.60 | 3764 933.7 | 3702 | 1249.65 | 3661 | 17892.23
Total 42021 1310 | 38470 5943 | 37324 6375 | 37795 108356
% | 8.5% 11.2% 10.1%

3) extended division with global internal don’t cares. above. The columns labeled “sis” is the result of running the
To clarify what we mean by global internal don't cares, w&esub -d” command in SIS, with subcolumns “lit.” and “cpu”
refer to Fig. 3(b) as an example. As explained earlier, aftegporting the number of literals and CPU time, respectively.
adding a redundancy most of the internal don’'t cares wouldhe column labeled “basic” is the result of our basic division
occur within the®;,,;; region, theD,. region, and the bold AND algorithm. The column labeled “ext.” shows the result of our
gate. With the second configuration we limit our implicationextended division without global don't cares (GDC's); while
search within these interested regions, while with the thigblumn “ext+GDC” shows the result with GDC'’s taken into
configuration we allow the implication search to go outsidgonsideration. All literal counts are in factor form. Take the
these regions. circuit C2670as an example, after running the above script,

We performed experiments on MCNC and ISCAS benchitially the circuit had 928 literals, shown in the second
marks within SIS [15] environment. For each benchmark, weumn. After running “resub -d” the circuit reduced to 843
first run the following script to obtain the initial circuit: literals. With our basic division the literal count was reduced

Script A: eliminate0; simplify. to 831. The extended division reduced it to 829, while the

The purpose of “eliminate zero” is to create complex gat(_%(tended division with GDC'’s taken into account brpught
by collapsing gates with single fanout since complex gatésdown to 817. The last two rows show the summation of
are more suitable for substitution. After running the abov@ach column and the percentage of improvement compared
script, we then compare our algorithm with the algebraf® the initial literal count. As the table indicates, all three
resubstitution “resub -d” in SIS. Table Il shows the comparisdgipnfigurations of our division algorithms outperformed the
between SIS and our result. traditional division and substitution. In general, the “resub -
The first column shows the name of the circuit. The seconld command, the basic division, and the extended division
column shows the initial literal count after running Script Avithout GDC’s spent similar CPU times, while the extended

1106

division with GDC'’s, in spite of the best result, spent much
more time. The much larger CPU time was spent in performingl]
implications throughout the whole circuit, as opposed to
restricting the implication only within the interested areal?
discussed earlier. 3]
To further explore the scenario of different initial circuits,
we note that the commands “gex” and “gkx” are also typically[4]
good steps before applying the “resub” commamntle there-
fore repeated the experiment with the following two scripts: 5
Script B: eliminated; simplify; gcx; [
Script C: eliminated; simplify; gkx.
Tables lll and 1V, respectively, show the results, which aréG]
consistent with the observations drawn from Table II. [71
The above three scripts were created so that we may directly
compare the traditional resubstitution with our algorithms ingj
one single run. To test our algorithm in a complete flow, we
have also performed an experiment which replaces all thid!
occurrences of the “resub” commandsoript.algebraié [15]
by our algorithm, keeping the rest of the script intact. Table 120
shows the result. Again we see that our division algorithms
outperformed the traditional division and substitution. Onig1]
anomaly we see in Table V is that “extGDC” on average
underperformed “ext.” We believe this is due to the locally;
greedy nature of our implementation. In other words, since
our implementation takes the first division that has a positi\;é?’]
gain on literal count, which can be marginal, we may have
neglected the other potential better divisors. (14]
In summary, our division and substitution algorithm con-
sistently had about 10% improvement over SIS “resub” on[a5]
variety of script setups and/or starting points. As we discussed
earlier, the better result is due to our consideration of Boolean
substitutions instead of algebraic substitutions. Moreover, we
consider additional POS structure and GDC's during opti-
mization. Among the three configurations we setup for the
experiments, extended divisions (“ext.”) seems to have t
best balance between the run time and the quality of resuli

VI. CONCLUSION

In this paper, we first presented an efficient algorithm, bas %
on the philosophy of RAR, for performing Boolean division
With the concept of SOS and POS, we tailored the RAR pt

losophy to the Boolean division problem. The tailoring enables

l::/f

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 8, AUGUST 1999

REFERENCES

M. Abramovici, M. A. Breuer, and A. D. Friedmamigital Systems
Testing and Testable DesignPiscataway, NJ: IEEE Press, 1994.

R. K. Brayton and C. McMullen, “The decomposition and factorization
of Boolean expressions,” iRroc. IEEE ISCAS-821982, pp. 49-54.

R. K. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis
Norwell, MA: Kluwer Academic, 1984.

S. C. Chang and M. Marek-Sadowska, “Perturb and simplify: Multi-level
Boolean network optimizer,” ifProc. IEEE/ACM Int. Conf. Computer-
Aided Design Nov. 1994, pp. 2-6.

] S. C. Chang, L. VanGinneken, and M. Marek-Sadowska, “Fast Boolean

optimization by rewiring,” inProc. ACM/IEEE Int. Conf. Computer-
Aided Design Nov. 1996, pp. 262—269.

G. De Micheli, Synthesis and Optimization of Digital CircuitsNew
York: McGraw Hill, 1994.

L. A. Entrena and K. T. Cheng, “Combination and sequential logic opti-
mization by redundancy addition and removdEEE Trans. Computer-
Aided Designyol. 14, pp. 909-916, July 1995.

M. R. Garey and D. S. JohnsoGomputers and Intractability San
Francisco, CA: Freeman, 1979.

W. J. Hsu and W. Z. Shen, “Coalgebraic division for multilevel logic
synthesis,” inProc. ACM/IEEE Design Automation Conflune 1992,
pp. 438-442.

T. Kirkand and M. R. Mercer, “A Topological search algorithm for
ATPG,” in Proc. ACM/IEEE Design Automation Conflune 1987, pp.
502-508.

W. Kunz and D. K. Pradhan, “Recursive learning: An attractive alterna-
tive to the decision tree for test generation in digital circuits, Pioc.

Int. Test Conf. 1992, pp. 816-825.

__,“Multi-level logic optimization by implication analysis,” iRroc.
IEEE/ACM Int. Conf. Computer-Aided DesjgNov. 1994, pp. 6-13.

M. Schulz and E. Auth, “Advanced automatic test pattern generation
and redundancy identification techniques,” Rroc. Fault Tolerant
Computing Symp.June 1988, pp. 30-34.

T. Stanion and C. Sechen, “Boolean division and factorization using
binary decision diagrams,[EEE Trans. Computer-Aided Desigwol.

13, pp. 1179-1184, Sept. 1994.

E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli, “SIS:
A system for sequential circuit synthesis,” Univ. California, Berkeley,
memo UCB/ERL M92/41.

Shih-Chieh Changreceived the B.S. degree in elec-
trical engineering from National Taiwan University,
Taiwan, in 1987 and the Ph.D. degree in electrical
engineering from the University of California, Santa
Barbara, in 1994.

He worked at Synopsys, Inc., Mountain View,
CA, from 1995 to 1996. He then joined the faculty
at the Institute of Computer Science and Informa-
tion Engineering, National Chung Cheng University,
Taiwan. His current research interests include VLSI
logic synthesis, layout, and field-programmable gate

us to add multiple wires/gates in a specialized configurati@fay (FPGA) related applications.

Dr

. Chang received a Best Paper Award at the 1994 Design Automation

and remove more wires/gates. Applying our Boolean divisig¥,rerence.

algorithm, our algorithm can perform substitution not only
in the traditional sum-of-product form, but also in product-
of-sum form. We then generalize our basic division to wh
we call extended division. Extended division allows us
decompose not only on the dividend but also on the divis
Furthermore, our technique is able to naturally incorpor
all types of internal don’t cares into consideration. We al
presented some experimental results to verify the effectiven
of our algorithm.

David lhsin Cheng received the B.S. degree in
computer engineering from National Chiao-Tung
University, Taiwan, in 1986 and the Ph.D. degree
in electrical engineering from the University of
California, Santa Barbara, in 1995.

He worked at Mentor Graphics Corporation, San
Jose, CA, and Exemplar Logic Corporation, San
Jose, CA, from 1995 to 1998. He is currently Man-
ager of System Integration at Ultima Interconnect
Technology, Sunnyvale, CA, working on physical
aspects of VLSI design automation. During the sum-

2|n almost all the scripts shipped with the SIS package, “resub” is run aftgfers of his student years he had worked with Daimler-Benz Research Institute
either "simply”, “gex”, or “gkx.” in Ulm, Germany, AT&T Bell Labs in Murray Hill, NJ, and IBM Watson

3We choosescript.algebraichecause it is one of the scripts that contain th&kesearch Center in Yorktown Heights, NY. His research interests include
most “resub”s among the many scripts included in the distribution of SIS. logic synthesis, physical design, formal verification, and error diagnosis.

