
1096 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 8, AUGUST 1999

Efficient Boolean Division and Substitution
Using Redundancy Addition and Removing

Shih-Chieh Chang and David Ihsin Cheng

Abstract—Boolean division, and hence Boolean substitution,
produces better result than algebraic division and substitution.
However, due to the lack of an efficient Boolean division algo-
rithm, Boolean substitution has rarely been used. We present
an efficient Boolean division and Boolean substitution algorithm.
Our technique is based on the philosophy of redundancy addition
and removal. By adding multiple wires/gates in a specialized
way, we tailor the philosophy onto the Boolean division and
substitution problem. From the viewpoint of traditional divi-
sion/substitution, our algorithm can perform substitution not only
in sum-of-product form but also in product-of-sum form. Our
algorithm can also naturally take all types of internal don’t cares
into consideration. As far as substitution is concerned, we also
discuss the case where we are allowed to decompose not only the
dividend but also the divisor. Experiments are presented and the
result is promising.

Index Terms—Boolean functions, circuit optimization, circuit
synthesis, design automation, division, logic design.

I. INTRODUCTION

I N multilevel logic synthesis, an important step in minimiz-
ing the area of a circuit issubstitution[6] (or resubstitution

[15]). Substitution refers to the step where a function is
simplified in complexity by using an additional input that was
not previously in the function’s immediate fanins. Substitution
can reduce the complexity of a function because part of the
function is replaced by the additional input that represents
some existing function in the circuit. The expression of the
existing function is, therefore, shared and reused. To perform
substitution, the concept ofdivision plays a major role. Given
two Boolean functions and , if we can express in the
form , where and , respectively, represent
the Boolean AND and Boolean OR operators, then we say
that can bedivided by and that functions and are,
respectively, thequotientand theremainder.

Substitution can be algebraic or Boolean, depending on if
the underlining division is algebraic or Boolean. In algebraic
division [6], logic expressions are treated as algebraic polyno-
mials, with some restrictions placed on the manipulations of
the polynomials. In particular, the product of two functions

is algebraic only if no variable appears in both

Manuscript received April 21, 1998; revised October 7, 1998. This work
was supported in part by the Taiwan National Science Council (NSC) under
Grant 88-2215-E-194-005. This paper was recommended by Associate Editor
A. Saldanha.

S.-C. Chang is with the Department of Computer Science and Information
Engineering, National Chung Cheng University, Min-Hsiung, Chia-Yi 621,
Taiwan (e-mail: scchang@cs.ccu.edu.tw).

D. I. Cheng is with Ultima Interconnect Technology, San Jose, CA 95136
USA (e-mail: ihsin@guitar.ece.ucsb.edu).

Publisher Item Identifier S 0278-0070(99)05680-8.

and . As a consequence of the restriction, certain Boolean
identities such as and do not exist. As an
example, given and divisor ,
through algebraic division we obtain .
Through Boolean division, which can exploit all the properties
in Boolean algebra [2], we obtain .
Assuming a node with function exists in the circuit,
with algebraic substitution we then have ,
while with Boolean substitution we have . In
this example, function has six literals1 before substitution.
Algebraic substitution reduces the number of literals to five,
while Boolean substitution reduces it to four. Boolean division
and, hence, Boolean substitution, in theory produces better
results. However, there does not exist a general and efficient
Boolean division algorithm. In terms of the above example,
this means that the best result of reducingto four literals
is very difficult to achieve.

Although there does not exist a general and efficient algo-
rithm to perform Boolean division, to certain degree a few
approaches have been partially successful. The first technique,
or actually anad-hoc setup, is based on a good two-level
optimizer. Since a good two-level optimizer, such as Espresso
[3], is able to take don’t cares into consideration, we can
actually force it to achieve the effect of Boolean division.
For example, given a function and a divisor ,
we can put through Espresso with as the
don’t cares, and furthermore force Espresso to take literal
into the final result, thereby achieving the effect of Boolean
division. Another technique that is able to perform Boolean
division is proposed in [9]. By adding two Boolean identities,

and , onto the traditional algebraic
algorithm, the concept ofcoalgebraic divisionis introduced.
The coalgebraic division algorithm exploits the two Boolean
identities for possible modification of the quotient obtained
through algebraic operations. For a simple example, if we
perform divided by , algebraic algorithm would return
the quotient as . Adding the Boolean identities, coalgebraic
division modifies the possible quotients to and
eventually chooses one of them that produces a good result.
Another technique, based on the binary decision diagram
(BDD) data structure, is proposed in [14]. Given a function

and a divisor , the method is built on the fact that
, where the subscripts denote the generalized

cofactor operator [6]. From the viewpoint of divided by ,
this fact means that the quotient is and the remainder
is . All the functions in this method are represented in

1In factored form[6], as opposed to sum-of-product form.

0278–0070/99$10.00 1999 IEEE

CHANG AND CHENG: EFFICIENT BOOLEAN DIVISION AND SUBSTITUTION 1097

BDD’s and the cost function of optimization is also based on
some features on BDD’s.

In this paper, we first present a new technique to perform
Boolean division. Our technique is based on the concept of
redundancy addition and removal(RAR) discussed in [4], [5],
[7], and [12]. The basic philosophy of the RAR technique is to
first add some redundancy and then remove other redundancies
elsewhere, with the goal that the removed ones reduce the
circuit size more than the added one. With a fixed setup that
is specially configured, we tailor the RAR philosophy onto the
Boolean division problem. Unlike traditional RAR techniques,
which require redundancy checking on the potential wire to
be added, our algorithm is tailored in a way that we know
a priori that our interested potential wire is redundant. Also,
although quite effective on adding one redundancy and then
removing other redundancies, the traditional RAR techniques
have little success on trying to add multiple wires/gates. In
our algorithm, the traditional RAR philosophy is tailored to
add multiple wires/gates in a specific way particularly for the
Boolean division problem.

As far as substitution is concerned, knowing how to perform
division is only the first step. The second step is to choose
potential divisors. Traditionally, substitution on a function
is done by going through the existing nodes in the circuit and
treating each of them as a potential divisor of. Division is
tried on each potential divisor and substitution is carried out
when the trial is favorable. Since it is up to the underlining
division algorithm to conclude whether a divisor is good or not,
the algorithm may miss some “good” divisors. In the example
mentioned earlier, let us say the node with function does
not exist and, instead, a node with function
exists. Since function does not depend on variable, a
traditional division algorithm would quickly conclude that the
quotient of function divided by is zero and, therefore,
no substitution would occur. However, if we slightly change
the circuit structure by decomposing to two nodes

and , function can then be substituted
with node . We will use the termbasic divisionto refer
to the scenario where the given divisor is not allowed to be
decomposed, and the termextended divisionfor the scenario
where the divisor is allowed to be decomposed, certainly with
some purpose in mind. In the above example where function

is divided by , we would
say that under basic division the quotient is zero. For the same

and we would also say that under extended division the
subexpression can be extracted out as a new divisor, and
with the new divisor the quotient is . From this
viewpoint, all the traditional division algorithms perform only
basic division, while our algorithm presented in this paper
performs extended division.

Traditional substitution approaches operate on each node’s
internal sum-of-product data structure and, hence, can only
perform substitution/division in the sum-of-product form. In
contrast, our algorithm operates on circuit structure directly.
Given an initial circuit, the first step of our algorithm is to
decompose each node’s internal sum-of-product form into a
two-level AND and OR gates. The circuit then, in general,
has a level of AND gates, followed by a level of OR gates,

and so on. As a result, in addition to the traditional sum-of-
product type of substitution, our algorithm can also perform
substitution in the flavor of product-of-sum form. In other
words, in two-level form, whether the dividend/divisor are a
bunch of AND’s followed by an OR, or a bunch of OR’s
followed by an AND are completely symmetric to us. For
example, let and

be existing nodes. With our algorithm we can quickly
substitute into and obtain , i.e.,

. Performing substitution in such a manner is
completely not possible in the traditional approaches because
of the strong attachment to the underlining sum-of-product
expression, while in our technique performing substitution
through sum-of-product form or product-of-sum form are
basically the same.

Another feature of our algorithm is the ability to naturally
handle don’t cares. Traditional techniques either totally cannot
handle don’t cares or can only handle don’t cares in anad-
hoc way. Since our algorithm is based on the RAR technique,
which performs so calledimplications, we can take any
internal don’t cares into account naturally. Furthermore, since
various types of implication algorithms exist [10], [11], [13],
we can in fact adjust the tradeoff between the run time and
the amount of don’t cares we take into account.

The rest of the paper is organized as follows. Section II
reviews the RAR technique. Section III provides a fundamen-
tal view of our algorithm focusing on basic division only.
Section IV presents our complete algorithm. Section V shows
some experimental results and, finally, Section VI concludes
this paper.

II. REDUNDANCY ADDITION AND REMOVAL

The most related work to our Boolean substitution algorithm
is the technique of RAR. Here, we provide a detailed review.
In [4], [5], [7], and [12], the technique of RAR is proposed
and applied to general multilevel logic optimization. The basic
philosophy in RAR is to add some redundancy first and then
try to remove other redundancies elsewhere, with the goal that
the removed ones reduce the circuit size more than the added
one. We review the technique with an example circuit.

Fig. 1(a), without the dotted wire, shows an irredundant
circuit. The dotted wire is a redundant wire, i.e.,
adding the wire does not change the circuit’s functional-
ity. However, once this wire is added, the two thick wires,

and , become redundant. In this case, we
can remove these two redundant wires without changing the
circuit’s functionality. After removing these two wires, we
then have the circuit shown in Fig. 1(b), which is smaller in
size.

In general, the RAR technique first decides, based on some
cost function, some existing irredundant wire that is the target
to be removed. Then the technique searches for some nonex-
isting wire, sometimes called a candidate connection, that
once added can remove the target wire. Finally, the technique
checks whether the candidate connection is redundant, i.e.,
whether adding the nonexisting wire preserves the circuit’s
functionality. Only when the candidate connection is verified

1098 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 8, AUGUST 1999

Fig. 1. The RAR technique.

as redundant, we can then add the connection and further
remove the target wire. Note that most of the RAR techniques
only try to incrementally add one wire at a time. Due to a large
search space, efforts that try to add multiple wires/gates and
remove even more wires/gates have only little success (e.g.,
[4]).

III. B ASIC DIVISION

Given a function and a divisor , we use the termbasic
divisionto refer to the scenario where the divisor is not allowed
to be decomposed, and use the termextended divisionto refer
to the scenario where the divisor can be freely decomposed,
with some optimization goal in mind. In this section, we focus
on basic division.

A. SOS and POS of a Function

We first need some definitions. Aproduct term, or cube,
is a set of literals AND’ed together. Asum termis a set of
literals OR’ed together. A function containsa function
if the on-set of contains the on-set of . As an example,
function (cube) contains function (cube) ; function (sum
term) contains function (sum term). Furthermore, we
define SOS and POS of a function as follows:

SOS) Given a function in two-level sum-of-product
form, we say a function , also in sum-of-product
form, is a sum-of-subproduct(SOS) of if every
cube in is contained by at least one cube in.

POS) Given a function in two-level product-of-sum
form, we say a function , also in product-of-sum
form, is a product-of-subsum(POS) of if every
sum term in contains at least one sum term in.

For example, is a SOS of
because every cube in is contained by either cubeor cube

in . For another example, is also a SOS of
the above , since adding more cubes to does not change
the original containment relationship in. On the other hand,
function is not a SOS of , since cube is not
contained in any cube in function .

On the POS side, for example, is a POS of
because every sum term in

contains either sum term or sum term in . For another
example, function is also a POS of the

above , since adding more sum terms todoes not change
the original containment relationship in. On the other hand,
function is not a POS of , since sum term

does not contain any sum term in function.
The concepts of SOS and POS play a central role in our

algorithm, and we now look at some of their simple properties.
Lemma 1: Let function be a SOS of function . Then

.
Proof: Since is an AND operation, and an AND

operation can only reduce, but never increase, the set of
minterms in . The lemma holds if we can prove that all
the cubes in are still in the final sum-of-product of .
Since each cube in is contained by at least one cube
in and , all the cubes in must be in the final
sum-of-product of .

Lemma 2: Let function be a POS of function . Then
.

Proof: By similar arguments of the proof in Lemma 1.

These two lemmas establish the ground where we can
tailor the technique of RAR onto our substitution problem. To
illustrate the concept, we take the example of
and from Section I. Since is a SOS of , by
Lemma 1, the new function
must be equivalent to the original function. From the RAR
viewpoint, we have successfully “added” a redundancy into
the circuit. Focusing on the original part inside ,
we then try to remove as many redundancies as possible,
and can quickly arrive . Symmetric to
the SOS case, we can perform similar operations on POS.
Let and .
Since is a POS of , by Lemma 2, the new function

must be equivalent to
the original function . Focusing on removing redundancies
from the original part inside , we then quickly have

.

B. Performing Basic Division

Given a function and a divisor , in this section we
present an algorithm that performs basic Boolean division, i.e.,

. The best way to explain our algorithm is to
discuss it with an example. Fig. 2(a) shows two nodes, which
correspond to and . Since

CHANG AND CHENG: EFFICIENT BOOLEAN DIVISION AND SUBSTITUTION 1099

(a) (b)

(c) (d)

(e)

Fig. 2. Basic division.

our central idea is based on the SOS concept, the first step to
perform divided by is to take out from all the cubes
that are not contained by any cube in, and such cubes will
be our final remainder term. Among the four cubes in ,
is the only such cube since and . Fig. 2(b) shows
the circuit structure after we form the remainder, where we
use dotted circle to indicate the remainder region and
to denote the resulting function with cubetaken out from

. Since every cube in is now contained by at least
one cube in is a SOS of . By Lemma 1,
would stay unchanged if AND’ed with . This fact is shown
in Fig. 2(c) with an extra bold AND gate and the shift of
from before this AND gate to after this AND gate. From the

viewpoint of the RAR technique, we have successfully added
a redundancy and the circuit still has the same functionality.
Now the region marked by the circle is highly redundant.
The final step is to perform redundancy removal on the
region and we reach the final result shown in Fig. 2(d), which
is of the form . To show how redundancy
removal is done, we duplicate the circuit snapshot shown in
Fig. 2(c) to (e) and remark some nodes. Let us illustrate how
wire , the thick wire in Fig. 2(e), is detected as a
redundant wire. For wire stuck-at-one fault to be
testable, must be to activate the fault. For the fault effect
to propagate through gate , must be and must be .
For the fault effect to propagate through gate must be

1100 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 8, AUGUST 1999

. Since and implies , gate must
be , which is a conflict. A conflict during the implication
process means the fault stuck-at-one is untestable
and, therefore, wire can be replaced by a constant.
Our basic division algorithm works as illustrated by the above
example. In summary, our algorithm consists of three steps.
The first step of our algorithm is to decompose the dividend
so that the cubes that make the divisornot a SOS of form
the remainder . The second step is to AND with ,
which does not change the functionality of by Lemma
1. The third step is to remove all the redundancies inside the

region.
Note that it is the RAR steps that make our technique

Boolean. Comparing to the traditional RAR techniques, how-
ever, a major difference lies on the fact that we knowa priori
that the added wires/gates are redundant because of the SOS
property in Lemma 1. In other words, unlike the traditional
RAR techniques, we do not need to check if the added
wire/gate are redundant or not. Furthermore, as mentioned
in Section II, there has been little success in works trying to
generalize the RAR technique to adding multiple wires/gates.
What our algorithm does is essentially a tailored version of
the RAR philosophy onto the substitution problem, with a
fixed configuration of multiple wires/gates addition. Also note
that since the added wires/gates are known to be redundant
a priori, the most time-consuming step in our algorithm is
only on the redundancy removal step. As mentioned earlier,
with different implication methods we can actually adjust the
tradeoff between the run time and the quality of result. For
example, we can limit our implication process only inside
a small region, the region plus the region. As far
as substitution is concerned, most of the reconvergences and
implication conflicts would occur in this small region. Limiting
the implication process inside this small region would greatly
reduce the time required as opposed to a traditional redundancy
removal process. On the other hand, we can certainly spend
more time to perform implications to gates outside this small
region, and thereby can naturally incorporate any internal
don’t cares into consideration. In the extreme case, we can
even adopt some quite exhaustive implication technique such
as recursive learning [11] to incorporate a large amount of
internal don’t cares. We do not discuss the details here but
simply point out the existence of such a flexibility on various
implication algorithms. Finally, as can be seen from the
above example, our algorithm operates on circuit structure
directly, rather than manipulating expressions like traditional
approaches. As mentioned earlier, we are therefore not limited
to performing substitutions in terms of the traditional sum-
of-product viewpoint. With the POS concept, we can also
perform substitutions on two functions when they are both
in the product-of-sum form. Instead of using the SOS concept
and Lemma 1, we can use the POS concept and Lemma 2, and
the same philosophy as illustrated above would apply directly.
As a simple example, imagine a circuit that is identical to
the one shown in Fig. 2 with all the AND gates changed
to OR gates and vice versa. With our algorithm it is as
easy as was illustrated in this section, while in a traditional
substitution technique all the sum-of-product expressions form

a complete new problem whose result is difficult to predict.
Since conceptually SOS and POS are symmetric, throughout
the remaining of this paper we do not go into the details of
the case for POS.

IV. EXTENDED DIVISION

Section III presented our algorithm that performs basic
division, where a divisor is not allowed to be decomposed.
Given a function and a divisor , under basic division we
seek to reexpress as . This means we are
allowed to decompose only on but not on . In this section
we present an algorithm that performs what we call extended
division. Given a function and a divisor , under extended
division we are allowed to decompose not onlybut also

, with the purpose of minimizing the number of literals in
substitution. In essence, we first want to separate the cubes
in into two groups, thecore divisor and theremaining
divisor . Once this separation is determined, we decompose
the original divisor into two nodes such that .
Decomposing into a new node for the core divisor means
that , a subexpression that was originally embedded in
the given divisor , is now exposed and can be used for
substitution. We then apply our basic division algorithm in
Section III on function and core divisor to obtain the
result. For example, given function and
divisor , we decompose the divisor into the
core divisor and the remaining divisor .
Applying our basic division algorithm on and , we then
obtain the same result as illustrated in Section III. It should
be clear that the most important thing here is to intelligently
determine the core divisor , since once is determined
an extended division reduces to a basic division.

Recall that during our basic division algorithm, it is the step
of redundancy removal that really performs the minimization
process. Looking back in Fig. 2(c), whenever we remove a
wire from the cubes in the region, we effectively reduce
a literal in the final quotient. What we would like to have
is a core divisor that is able to remove the most wires. To
determine the core divisor with a given function and
a given divisor , our basic idea is to have each wire in the
cubes of “vote” for a candidate core divisor. For each wire

in the cubes of , we perform implications to see which
cubes in divisor are able to remove wire. For example, let
function and divisor ,
whose circuit structure is shown in Fig. 3(a). In Fig. 3(a),
we name divisor ’s four cubes and ; we also
name function ’s four cubes and , which are,
respectively, driven by gates and . Consider wire

stuck-at-one fault. We have the following implications:

(to activate the fault)
and to allow fault effect thru
to allow fault effect thru and

Assume that we somehow have determined a core divisor
. This core divisor, in our specialized configuration for

basic division, feeds into a gate similar to the bold AND gate
in Fig. 2(e) of Section III. This means that if we want

CHANG AND CHENG: EFFICIENT BOOLEAN DIVISION AND SUBSTITUTION 1101

(a) (b)

(c)

Fig. 3. Extended division.

any fault effect in the region to propagate through the
bold AND gate, this core divisor must have a value one
during the fault’s implication process. In the case of extended
division, if the core divisor that we eventually determine has
implication value zero for a particular fault, the fault must
be untestable because a conflict will occur with the required
assignment of one mentioned above. We illustrate this point
by continuing the example for wire stuck-at-one fault.
We focus on the results that appear on the’s side whose
implication values are zero. In this case, we have
and . Assuming we eventually choose as our
final core divisor, i.e., , then our
basic division algorithm in Section V would change the circuit
structure to the one shown in Fig. 3(b), where is
connected to the bold AND gate. Following the basic division
algorithm in Section III, we would try to remove as many
wires as possible in the region. When we again perform
implications for the fault stuck-at-one, shown with a
cross in Fig. 3(b), we know that and , and hence ,
all have implication value . This creates a conflict because,
as stated earlier, for the fault effect of stuck-at-
one to propagate through the bold AND gate, must be

TABLE I
VOTE TABLE

(a) (b)

assigned one. In other words, if we do choose as
our core divisor, we expect wire to be removed in
the subsequent basic division. Now, in determining the core
divisor, different wires have different implication values on the

’s side in Fig. 3(a). In some sense, this means that each wire
“votes” for a candidate core divisor. In the above example,
wire votes for candidate core divisor . This

1102 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 8, AUGUST 1999

TABLE II
EXPERIMENTAL RESULTS (SCRIPT A)

should become clear if we look at the complete situation after
each wire performs implications on the example circuit shown
in Fig. 3(a). Table I(a) lists all the ’s that have implication
value zero for each wire.

We explain the interpretation of Table I(a) by examples. The
meaning of the second row is that we expect wire
to be removed if we choose as the core
divisor. For simplicity, we also say that wire votesfor
candidate core divisor . Similarly, the meaning
of the fourth row is that we do not expect wire to be
removed, regardless of whatever core divisor we choose. The
remaining entries of Table I(a) can be interpreted in a similar
way.

The above voting scheme demonstrates our criteria for
choosing a good core divisor. However, from the RAR tech-
nique’s viewpoint, one more thing we need to make sure is that
a candidate core divisor is indeed a redundant wire which we
can eventually “add” to the circuit. This is done by checking
if the candidate core divisor voted by a wire is a SOS of
the cube that is connected to wire. For example, from the
first entry in Table I(a), the candidate core divisor of wire

is . The cube that is connected to
wire is . Since the candidate core divisor

is a SOS of cube , we know eventually if we add
core divisor into the circuit, the added wire will be a
redundant wire and, therefore, the circuit functionality would
not change. In Table I(a), the only candidate core divisors that
do not hold for this condition are wires and .
The candidate core divisor for wire is ,
which is not a SOS of the corresponding cube . On
the case of wire , candidate core divisor is not
a SOS of the corresponding cube . We therefore need
to delete these two entries in Table I(a), and we have our final
vote table, shown in Table I(b).

To finalize the choice of the core divisor, various heuristics
can be used. We reduce the above choice problem to a maximal
clique problem [8] in graph theory. First we construct a graph.
For each wire we create a vertex; there is an edge between
two vertices and if the intersection of the corresponding
candidate core divisors are not empty. For example, the
intersection of the candidate core divisors between wires

and is , and hence there is an edge

CHANG AND CHENG: EFFICIENT BOOLEAN DIVISION AND SUBSTITUTION 1103

TABLE III
EXPERIMENTAL RESULTS (SCRIPT B)

between the vertices corresponding to these two wires. For
another example, since the intersection of the candidate core
divisors between wires and is empty, there
is no edge between the vertices corresponding to these two
wires. The complete graph is shown in Fig 4. Each clique
in this graph represents a core divisor that, if chosen, is
expected to remove all the wires corresponding to the vertices
in the clique. As we can see from Fig. 4, one clique, marked
with a dotted circle, consists of four vertices

, and , with the corresponding intersected
candidate core divisor being . In this case,
we expect to remove the four wires,

, and , if we choose as the final
core divisor. Another clique, marked by the three bold edges
in Fig. 4, consists of three vertices , and

, with the corresponding intersected candidate core
divisor being . This means we expect to
remove the three wires, , and , if we
choose as the final core divisor. The problem of finding
the best core divisor that would potentially remove most wiresFig. 4. Graph that represents the intersection of candidate core divisors.

1104 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 8, AUGUST 1999

TABLE IV
EXPERIMENTAL RESULTS (SCRIPT C)

is, therefore, reduced to a maximal clique problem. In this
example, since the maximal clique is the one of size four, we
determine the core divisor to be ,
with which we change the circuit structure to the one shown
in Fig. 3(b). After performing redundancy removal, the four
wires , and are removed and,
finally, we have

.
Applying our extended division algorithm to the substitution

problem, we want to point out that we can actually do
more than what the above discussion shows. In the above
formulation, we focus only on one existing node. In the case
of substitution, we actually have freedom to select our core
divisor from many circuit nodes. As an example of how this
generalization works, imagine the given divisor in the above
example, , does not exist in our circuit
and instead, two nodes and exist,
as shown in Fig. 3(c). When function
is given and we want to search for a good divisor between
and with extended division, we can temporarily pretend
that all the five cubes are from the same node and, therefore,

the flow is identical to the example shown in this section.
Each wire in the cubes of and votes for a candidate
core divisor and we have an identical vote table as shown in
Table I(b). The only slight modification we need is in the final
maximal clique formulation, where we need to model the fact
that some cubes in the second column of Table I originally
come from a different node. Since the situation is very similar
to the situation when we only have one node, we do not go into
details here. Note that, as is also the case for basic division,
we can perform extended division in terms of sum-of-product
form as well as product-of-sum form. Instead of focusing on
the cubes that have implication value zero, we would then
focus on the sum terms that have implication value one. The
rest of the algorithm applies similarly.

V. EXPERIMENTAL RESULTS

We have implemented our algorithm and applied it to the
substitution problem. Our implementation has three configu-
rations:

1) basic division;
2) extended division without global internal don’t cares;

CHANG AND CHENG: EFFICIENT BOOLEAN DIVISION AND SUBSTITUTION 1105

TABLE V
EXPERIMENTAL RESULTS (script.algebraic)

3) extended division with global internal don’t cares.

To clarify what we mean by global internal don’t cares, we
refer to Fig. 3(b) as an example. As explained earlier, after
adding a redundancy most of the internal don’t cares would
occur within the region, the region, and the bold AND
gate. With the second configuration we limit our implications
search within these interested regions, while with the third
configuration we allow the implication search to go outside
these regions.

We performed experiments on MCNC and ISCAS bench-
marks within SIS [15] environment. For each benchmark, we
first run the following script to obtain the initial circuit:

Script A: eliminate simplify

The purpose of “eliminate zero” is to create complex gates
by collapsing gates with single fanout since complex gates
are more suitable for substitution. After running the above
script, we then compare our algorithm with the algebraic
resubstitution “resub -d” in SIS. Table II shows the comparison
between SIS and our result.

The first column shows the name of the circuit. The second
column shows the initial literal count after running Script A

above. The columns labeled “sis” is the result of running the
“resub -d” command in SIS, with subcolumns “lit.” and “cpu”
reporting the number of literals and CPU time, respectively.
The column labeled “basic” is the result of our basic division
algorithm. The column labeled “ext.” shows the result of our
extended division without global don’t cares (GDC’s); while
column “ext. GDC” shows the result with GDC’s taken into
consideration. All literal counts are in factor form. Take the
circuit C2670as an example, after running the above script,
initially the circuit had 928 literals, shown in the second
column. After running “resub -d” the circuit reduced to 843
literals. With our basic division the literal count was reduced
to 831. The extended division reduced it to 829, while the
extended division with GDC’s taken into account brought
it down to 817. The last two rows show the summation of
each column and the percentage of improvement compared
to the initial literal count. As the table indicates, all three
configurations of our division algorithms outperformed the
traditional division and substitution. In general, the “resub -
d” command, the basic division, and the extended division
without GDC’s spent similar CPU times, while the extended

1106 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 18, NO. 8, AUGUST 1999

division with GDC’s, in spite of the best result, spent much
more time. The much larger CPU time was spent in performing
implications throughout the whole circuit, as opposed to
restricting the implication only within the interested area
discussed earlier.

To further explore the scenario of different initial circuits,
we note that the commands “gcx” and “gkx” are also typically
good steps before applying the “resub” command.2 We there-
fore repeated the experiment with the following two scripts:

Script B: eliminate simplify gcx
Script C: eliminate simplify gkx

Tables III and IV, respectively, show the results, which are
consistent with the observations drawn from Table II.

The above three scripts were created so that we may directly
compare the traditional resubstitution with our algorithms in
one single run. To test our algorithm in a complete flow, we
have also performed an experiment which replaces all the
occurrences of the “resub” command inscript.algebraic3 [15]
by our algorithm, keeping the rest of the script intact. Table V
shows the result. Again we see that our division algorithms
outperformed the traditional division and substitution. One
anomaly we see in Table V is that “ext.GDC” on average
underperformed “ext.” We believe this is due to the locally
greedy nature of our implementation. In other words, since
our implementation takes the first division that has a positive
gain on literal count, which can be marginal, we may have
neglected the other potential better divisors.

In summary, our division and substitution algorithm con-
sistently had about 10% improvement over SIS “resub” on a
variety of script setups and/or starting points. As we discussed
earlier, the better result is due to our consideration of Boolean
substitutions instead of algebraic substitutions. Moreover, we
consider additional POS structure and GDC’s during opti-
mization. Among the three configurations we setup for the
experiments, extended divisions (“ext.”) seems to have the
best balance between the run time and the quality of result.

VI. CONCLUSION

In this paper, we first presented an efficient algorithm, based
on the philosophy of RAR, for performing Boolean division.
With the concept of SOS and POS, we tailored the RAR phi-
losophy to the Boolean division problem. The tailoring enables
us to add multiple wires/gates in a specialized configuration
and remove more wires/gates. Applying our Boolean division
algorithm, our algorithm can perform substitution not only
in the traditional sum-of-product form, but also in product-
of-sum form. We then generalize our basic division to what
we call extended division. Extended division allows us to
decompose not only on the dividend but also on the divisor.
Furthermore, our technique is able to naturally incorporate
all types of internal don’t cares into consideration. We also
presented some experimental results to verify the effectiveness
of our algorithm.

2In almost all the scripts shipped with the SIS package, “resub” is run after
either “simply”, “gcx”, or “gkx.”

3We choosescript.algebraicbecause it is one of the scripts that contain the
most “resub”s among the many scripts included in the distribution of SIS.

REFERENCES

[1] M. Abramovici, M. A. Breuer, and A. D. Friedman,Digital Systems
Testing and Testable Design. Piscataway, NJ: IEEE Press, 1994.

[2] R. K. Brayton and C. McMullen, “The decomposition and factorization
of Boolean expressions,” inProc. IEEE ISCAS-82, 1982, pp. 49–54.

[3] R. K. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis.
Norwell, MA: Kluwer Academic, 1984.

[4] S. C. Chang and M. Marek-Sadowska, “Perturb and simplify: Multi-level
Boolean network optimizer,” inProc. IEEE/ACM Int. Conf. Computer-
Aided Design, Nov. 1994, pp. 2–6.

[5] S. C. Chang, L. VanGinneken, and M. Marek-Sadowska, “Fast Boolean
optimization by rewiring,” inProc. ACM/IEEE Int. Conf. Computer-
Aided Design, Nov. 1996, pp. 262–269.

[6] G. De Micheli, Synthesis and Optimization of Digital Circuits. New
York: McGraw Hill, 1994.

[7] L. A. Entrena and K. T. Cheng, “Combination and sequential logic opti-
mization by redundancy addition and removal,”IEEE Trans. Computer-
Aided Design,vol. 14, pp. 909–916, July 1995.

[8] M. R. Garey and D. S. Johnson,Computers and Intractability. San
Francisco, CA: Freeman, 1979.

[9] W. J. Hsu and W. Z. Shen, “Coalgebraic division for multilevel logic
synthesis,” inProc. ACM/IEEE Design Automation Conf., June 1992,
pp. 438–442.

[10] T. Kirkand and M. R. Mercer, “A Topological search algorithm for
ATPG,” in Proc. ACM/IEEE Design Automation Conf., June 1987, pp.
502–508.

[11] W. Kunz and D. K. Pradhan, “Recursive learning: An attractive alterna-
tive to the decision tree for test generation in digital circuits,” inProc.
Int. Test Conf., 1992, pp. 816–825.

[12] , “Multi-level logic optimization by implication analysis,” inProc.
IEEE/ACM Int. Conf. Computer-Aided Design, Nov. 1994, pp. 6–13.

[13] M. Schulz and E. Auth, “Advanced automatic test pattern generation
and redundancy identification techniques,” inProc. Fault Tolerant
Computing Symp., June 1988, pp. 30–34.

[14] T. Stanion and C. Sechen, “Boolean division and factorization using
binary decision diagrams,”IEEE Trans. Computer-Aided Design, vol.
13, pp. 1179–1184, Sept. 1994.

[15] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli, “SIS:
A system for sequential circuit synthesis,” Univ. California, Berkeley,
memo UCB/ERL M92/41.

Shih-Chieh Changreceived the B.S. degree in elec-
trical engineering from National Taiwan University,
Taiwan, in 1987 and the Ph.D. degree in electrical
engineering from the University of California, Santa
Barbara, in 1994.

He worked at Synopsys, Inc., Mountain View,
CA, from 1995 to 1996. He then joined the faculty
at the Institute of Computer Science and Informa-
tion Engineering, National Chung Cheng University,
Taiwan. His current research interests include VLSI
logic synthesis, layout, and field-programmable gate

array (FPGA) related applications.
Dr. Chang received a Best Paper Award at the 1994 Design Automation

Conference.

David Ihsin Cheng received the B.S. degree in
computer engineering from National Chiao-Tung
University, Taiwan, in 1986 and the Ph.D. degree
in electrical engineering from the University of
California, Santa Barbara, in 1995.

He worked at Mentor Graphics Corporation, San
Jose, CA, and Exemplar Logic Corporation, San
Jose, CA, from 1995 to 1998. He is currently Man-
ager of System Integration at Ultima Interconnect
Technology, Sunnyvale, CA, working on physical
aspects of VLSI design automation. During the sum-

mers of his student years he had worked with Daimler-Benz Research Institute
in Ulm, Germany, AT&T Bell Labs in Murray Hill, NJ, and IBM Watson
Research Center in Yorktown Heights, NY. His research interests include
logic synthesis, physical design, formal verification, and error diagnosis.

