
Improving Memory System Performance for Soft Vector
Processors

Peter Yiannacouras, J. Gregory Steffan, and Jonathan Rose
Department of Electrical and Computer Engineering

University of Toronto
10 King’s College Road

Toronto, Canada

{yiannac,steffan,jayar}@eecg.utoronto.ca

ABSTRACT
Recently proposed vector processing extensions [9, 10] can
significantly improve the performance of a conventional
FPGA-based soft processor, but significantly increase the
pressure on the memory system to keep pace. In this work
we investigate methods of improving the memory system for
soft vector processors via (i) tuning the data cache config-
uration, namely its depth and line size, and (ii) hardware
prefetching mechanisms. We evaluate on our VESPA soft
vector processor connected to DDR and executing hand-
vectorized benchmarks from the EEMBC industry-standard
benchmark suite. We find that cache configuration provides
a significant area/performance trade-off for designers to
wield, providing near 2x average performance for 1.8x the
system area. We also demonstrate that proper prefetching
can improve performance by 28% on average, and up to 2.2x
in the best case.

1. INTRODUCTION
Recent work has proposed extending soft processors with

vector processing capabilities [9, 10] as a means of scaling
performance for data-parallel workloads. Vector processing
allows a single instruction to command multiple processor
datapaths, or vector lanes, a parameter the designer can use
to trade area and performance depending on the application
and design constraints. However, while adding more vector
lanes greatly increases the compute power of the soft vector
processor, it simultaneously increases the pressure on the
memory system to supply data at a proportionally fast
rate. Thus, the design of a high-performance FPGA-based
memory system is key.

Typical processor memory systems are cache-based, with
many configurable parameters such as: i) levels of cache
hierarchy, ii) associativity, iii) cache depth (the capacity of
the cache), iv) cache line size, and v) prefetching. However,
for FPGA-based processors the first two possibilities are less
compelling. First, slower clock speeds of FPGAs result in
a much narrower gap between soft processor performance
and modern DRAM (in our case only 10 cycles), negating
the benefits of multiple levels of cache. Second, associative
caches are inefficient in FPGAs because of the relatively
expensive multiplexing involved. Hence in this work we
focus cache depth, line size, and prefetching.

Examining the operation of VESPA [9], our FPGA-based
soft vector processor, we observed that on average two-
thirds of all processor cycles are spent waiting on

the vector memory unit. The vector memory unit causes
such stalls because it is either i) accessing the data cache
(often across many cache lines), or ii) bringing data into the
data cache by reading from latent DDR SDRAM. In this
work, we improve both of these cases by adding support
for increasing data cache line sizes and prefetching data.
Due to spatial locality, larger cache lines should increase the
amount of useful data found in a single cache line hence
reducing the number of cache accesses required to complete
a vector memory instruction. Also, since data-parallel
code typically has predictable memory access patterns, we
can automatically prefetch data into the cache before the
application requests it, tolerating memory latency.

A key benefit of data prefetching is that it allows the
processor to make greater use of the burst-mode transfers
common in every modern DRAM technology. For a conven-
tional sequential soft processor bursts are typically small,
limited to the size of the cache line; however, with data
prefetching we can leverage the massive bandwidth provided
by burst-mode transfers by transferring much larger blocks
of data. This is a natural fit to vector processors since a
single vector memory instruction targets a large amount of
data. We can pass this information to the prefetcher and
have it load into the cache all required data in (ideally) one
memory transaction.

1.1 Related Work
The most closely related work to ours is by Yu et. al. [10],

who demonstrated the potential for vector processing as a
simple-to-use and scalable accelerator for soft processors,
potentially scaling better than Altera’s C2H behavioral syn-
thesis tool for three benchmark kernels. However, that work
modelled an on-chip 1-cycle (latency) memory system, hence
disregarding the effects and exploration of more realistic
memory systems.

Many strategies for accurate data prefetching have been
explored in the computer architecture community as sum-
marized by Vanderwiel and Lilja [6]. All strategies aim to
prefetch needed data while minimizing the amount of cache
pollution, i.e., prefetching useless data and/or evicting useful
data. In our work we bring these ideas to FPGA-based
vector processors and evaluate them in real hardware.

Fu and Patel investigated prefetching particularly in the
context of a vector processor [3]. They limited prefetching
to vector memory instructions with strides less than or equal
to cache line size and found that prefetching is useful for up
to 32 cache blocks—our results are evaluated in real FPGA



Scalar
MIPS

Vector
Coproc

Lane 1
Lane 2

Lane L
…

Memory
Crossbar

Dcache

…

Icache

Prefetch

Arbiter

DDR

Figure 1: VESPA processor block diagram.

hardware with modern DRAM and agree with this. We
further experiment with a smart vector prefetch where the
vector length is used to calculate the number of cache lines
to prefetch.

1.2 Contributions
In the context of a real hardware evaluation of memory

systems connecting the VESPA soft vector processor to
DDR SDRAM and running vectorized industry-standard
EEMBC benchmarks, this paper makes the following two
contributions: (ii) we quantify the large design and per-
formance trade-offs in varying data cache depth and line
size; (iii) we demonstrate that data prefetching can double
performance for some applications.

2. VESPA
In our previous work on VESPA [9] we implemented a

parameterized vector processor in hardware and explored
its potential for scalability and customization. This paper
extends VESPA by addressing the primary limit to scalabil-
ity, namely the memory system. We further parameterize
the data cache for VESPA to allow a designer to more
powerfully trade area for performance scaling for data-
parallel applications. In this section we provide a brief
description of the VESPA architecture (see our previous
paper for full details [9]).

The VESPA processor consists of a scalar MIPS processor
which was automatically generated using the SPREE sys-
tem [7, 8], coupled with a parameterized vector coprocessor
based on the VIRAM [4] instruction set. Table 1 shows all
the parameters for VESPA while Figure 1 shows a block
diagram of the VESPA architecture. The scalar processor
and vector coprocessor share the instruction stream and are
both in-order pipelines, but can execute out-of-order with
respect to each other except for memory operations which
are serialized to maintain sequential consistency. Both share
a direct-mapped data cache with parameterized aspect ratio
(depth and cache line size). A crossbar connects each byte
in a cache line to M of the L vector lanes in any given cycle.
In this work we use only fully-connected memory crossbars

Table 1: Configurable parameters for VESPA.

Parameter Symbol Values

Vector Lanes L 1,2,4,8,16,. . .
Vector Lane Width W 1,2,3,4,. . .
Maximum Vector Length MVL 2,4,8,16,. . .
Memory Crossbar Lanes M 1,2,4,8,. . . L
Each Vector Instruction - on/off
ICache Depth ID 4KB,8KB,. . .
ICache Line Size IW 16,32,64,. . .
DCache Depth DD 4KB,8KB,. . .
DCache Line Size DW 16,32,64,. . .
DCache Miss Prefetch DPK 1,2,3,. . .
Vector Miss Prefetch DPV 1,2,3,. . .

by setting M equal to L.

3. MEASUREMENT METHODOLOGY
In this section we describe the components of our infras-

tructure necessary to execute, verify, and evaluate VESPA.
Specifically, we describe our hardware platform, verification
process, CAD tool measurement methodology, benchmarks,
and compiler.

Hardware Platform We use the multi-FPGA Transmo-
grifier 4 (TM4) [2] to host the complete vector processor sys-
tems. The platform has four Altera Stratix EP1S80F1508C6
devices each connected to two 1GB PC3200 CL3 DDR
SDRAM DIMMs clocked at 133 MHz (266 MHz DDR). We
use Altera’s Quartus II 8.0 CAD software to synthesize our
processor systems onto one of the four Stratix I FPGAs and
clock the system at 50 MHz. Note our design was intended
for a faster Stratix III FPGA where it has a clock speed of
around 130 MHz, but we used the TM4 board since it was
readily available. All instances of VESPA are fully tested in
hardware using the built-in checksum values encoded into
each EEMBC benchmark. Debugging is performed using
Modelsim and is guided by comparing traces of all writes to
the scalar and vector register files.

FPGA CAD Tools A key value of performing FPGA-
based processor research directly on an FPGA is that we
can attain high quality measurements of the area consumed
and the clock frequency achieved—these are provided by the
FPGA CAD tools. We use aggressive timing constraints
to maximize the CAD tool’s effort for default optimization
settings but with register retiming and register duplication
set to on. Through experimentation we found that these
settings provided the best area, delay, and runtime trade-
off. We also performed 8 such runs for every vector
configuration to average out the non-determinism in modern
CAD algorithms. The relative silicon area of each FPGA
resource relative to a single logic element (LE) was supplied
to us by Altera [1], and we used these equivalent areas to
calculate the total silicon area consumed on the Stratix 1S80
measured in units of equivalent LEs—the silicon area of a
single LE including its routing.

Benchmarks As listed in Table 2, for this study we use
six benchmarks from the Telecom and Digital Entertainment
suites of EEMBC, the industry-standard benchmark collec-



Table 2: EEMBC and Other Benchmarks Used.

EEMBC
Benchmark Suite Dataset

autcor Telecom 2
conven Telecom 1
fbital Telecom 2
viterb Telecom 2

rgbcmyk Digital Ent. 5
rgbyiq Digital Ent. 6

ip checksum Networking extract
imgblend Handmade -
filt3x3 Handmade -

tion. We execute the largest dataset for each benchmark
with the test harness and benchmarks uncompromised, po-
tentially allowing us to calculate and report official EEMBC
scores. We also use two hand-made benchmarks and one
kernel extracted from the Networking suite in EEMBC; the
datasets for these three benchmarks are hand made. Note
that cycle counts are collected from a complete execution on
our hardware platform as described above.

Compilation Framework Benchmarks are built using
a MIPS port of GNU gcc 4.2.0 with -O3 optimization
level. Initial experiments with this version of gcc’s auto-
vectorization capability showed that it is in its infancy,
preventing us from automatically generating vectorized code
from key EEMBC program loops. Instead we ported the
GNU assembler to support VIRAM vector instructions and
used hand-vectorized assembly EEMBC routines provided
to us by Kozyrakis who used them during his work on the
VIRAM processor [4].

VESPA Configuration In this paper we fix the configu-
ration of VESPA to be a 16-lane vector processor with 64
element MVL, full 16-lane memory crossbar, full 32-bit data-
path, and complete instruction set support. The instruction
cache is configured as 4KB direct-mapped cache with 16B
line size, and in general makes a negligible difference in
performance because of the small loops typically executed
in our embedded benchmarks. We study the data cache
configuration in the next section.

4. CACHE DESIGN TRADE-OFFS
In this section we explore the speed/area trade-off for

different data cache configurations. We vary data cache
depth from 4KB to 64KB and the cache line size from 16
bytes to 128 bytes. We do not explore cache line sizes less
than 16 bytes since the DDR memory transmits blocks of 16
bytes at a time so cache lines smaller than this would waste
memory bandwidth. Similarly, we do not explore depths less
than 4KB since a 16-byte wide cache would waste FPGA
RAM storage bits if configured with less than 4KB of space
(for the Stratix I) because of the discrete aspect ratios of the
block RAMs. Finally we do not explore line sizes greater
than 128 bytes or depths greater than 64KB because of
various limitations of the CAD tools, device resources, and
clock frequency.

4.1 Cache Line Size

1.93

1.68

1.77

1.55
1.50

1.37

1.13

1.00

1.25

1.50

1.75

2.00

4KB 8KB 16KB 32KB 64KB

S
p

ee
d

u
p

 V
s 

4K
B

,1
6B

128B
64B
32B
16B

Figure 2: Wall clock speedup attained for different
cache depths and cache line sizes over the 4KB cache
with 16B line size. Each line in the graph depicts a
different cache line size.

Figure 2 shows the average speedup across our bench-
marks achieved for each data cache configuration normalized
against the 4KB cache with 16B line size. We note first
that the largest speedup achieved is almost 2x providing
a large design space for area/speed trade-offs. The boost
in computational power in the vector processor allowed the
memory system to become more influential in determining
overall performance, whereas previous work limited the
role of memory in a (scalar) soft processor to 12% [5].
The figure also shows that cache line size is a much more
dominant parameter than cache depth. This is largely due
to the ability to satisfy more memory requests in the vector
memory unit, but also due to the “prefetching” inherent in
longer cache lines. Finally note that performance for a 64KB
cache with 128B line size could not be attained because of
the timing violations in our 50 MHz Stratix I design.

Although we use the Stratix I available to us for hardware
evaluation, we measure clock frequency on a Stratic III
3S200C2 device since, as mentioned previously, VESPA was
designed for that FPGA family. The clock frequency is
slightly reduced as the cache line size increases. We found
the frequency to be 129 MHz, 126 MHz, 123 MHz, and 122
MHz for 16B, 32B, 64B, 128B cache lines respectively. The
frequency degradation is due to the multiplexing needed to
get data words out of the large cache lines. Further logic
design effort through pipelining and retiming can mitigate
these effects resulting in slightly more pronounced benefits
for the longer cache lines.

Figure 3 shows the silicon area of the complete system
normalized against that of the 4KB cache with 16B line size.
The area cost can be quite significant, in the worst case
almost doubling the system area, but the area trends are
quite different than what one would expect with traditional
hard processors. We notice that increases in cache line sizes
result in significant increases in area. This is largely due
to bigger multiplexers, primarily in the vector memory unit
crossbar which routes each byte to each vector lane; however
it is also due to the increase in FPGA block RAMs being
used. In their current configuration, the block RAMs are
limited to only 16-bit wide data ports, therefore to create
a cache with 16B (128 bit) line sizes we use 8 0.5KB M4K
FPGA block RAMs in parallel, as shown in Figure 4, hence
consuming all 8 of those block RAMs and their associated



1.00

1.25

1.50

1.75

2.00

4KB 8KB 16KB 32KB 64KB

A
re

a 
V

s 
4K

B
,1

6B

128B
64B
32B
16B

Figure 3: System area for different cache depths and
cache line sizes normalized against the system with
4KB cache with 16B line size. Each line in the graph
depicts a different cache line size.

16 

bits
4096

bits
16 

bits
4096

bits
16 

bits
4096

bits
16 

bits
4096

bits
16 

bits
4096

bits
16 

bits
4096

bits
16 

bits
4096

bits
16 

bits
4096

bits

128 bit cache line size

4KB cache depth

Figure 4: Multiple block RAMs are needed to create
the width necessary for 16 byte cache lines. The
cache depth should be configured as 4KB to fully
utilize the capacity of the used block RAMs.

silicon area. Any increases in cache line sizes will result in
corresponding increases in the number of used block RAMs
and with it an automatic increase of physical storage used
(whether it is logically used by the design or not) and silicon
area consumed.

4.2 Cache Depth
Cache depth has a less pronounced impact on perfor-

mance. It generally does not affect clock frequency, except
for the 64KB, 128B cache where it violates timing. The
streaming nature of many of the benchmarks minimize the
need to store large working sets. In fact the performance
gain begins to plateau after 32KB for all cache line sizes.

As shown in figure 3, growing the cache depth results in
step-wise growth of the area as the cache gets implemented
in a larger family of FPGA RAM blocks. When the cache
depth exceeds the capacity of the number of block RAMs
used to achieve the cache line size, the CAD tool uses
the larger MRAM block RAMs on the Stratix instead.
These MRAMs are both wider, up to 64 bits wide in their
current configuration, and deeper, a total of 64KB. Using
the MRAMs result in large spikes in area because of their
massive size. Note that if MRAMs were not used, we would
expect to see a more linear area growth with increased cache
depth as more M4K block RAMs are used to achieve the
desired depth.

5. IMPACT OF DATA PREFETCHING
A key advantage of our data prefetcher is that it leverages

the high bandwidth from burst mode transfers, meaning

0.70

0.80

0.90

1.00

1.10

1.20

1.30

0 1 3 7 15 31 63

Number of Cache Lines Prefetched

S
p

ee
d

u
p

Any Cache Misses

Sequential Vector only

Figure 5: Average speedup, relative to no prefetch-
ing, of prefetching a varying number of cache lines
using two strategies: (i) on any data cache miss;
(ii) on any miss from a sequentially-accessing vector
memory instruction.

after an initial miss penalty, all cache lines including the
prefetched lines are streamed into the cache at the full
DDR rate. This bandwidth is vital for VESPA which
processes a batches of memory requests in each vector
memory instruction. Complications arise from handling
such large memory transfers when the evicted cache lines
are dirty. To ensure these dirty lines are written to memory
we need to either deny the prefetched line entry into the
cache or buffer the dirty cache lines and later write them
to memory, in our work we do the latter, but prefetching is
halted when it reaches the end of the DRAM row that the
miss initially accessed due to limitations in our design.

The data prefetcher is configured using the parameters
DPK and DPV from Table 1. DPK is the number of con-
secutive cache lines prefetched on any cache miss—note
that prefetching is triggered for both scalar and vector
instructions since both share the same data cache and its
prefetcher. To minimize cache pollution we introduce an-
other parameter, DPV, to prefetch only on vector instructions
with strides within two cache lines and are hence known to
access the cache sequentially and can therefore be prefetched
more aggressively.

Using the same base vector architecture from the previous
section, we configure the data cache with 16KB depth and
64 byte line size and explore the effect of different data
prefetching configurations. Because of limitations in our
design we can currently only prefetch for 64 byte line sizes1,
we choose 16KB depth to fully utilize the used block RAMs.
The aggressiveness of the prefetcher is measured by the
number of cache lines it speculatively loads and is varied
from 0 (off) to 63. As discussed earlier, we can separately
configure the number of cache lines to prefetch for known
sequentially accessing vector memory instructions. We
explore both strategies in terms of benchmark performance
and FPGA area, we do not discuss clock frequency since it
was not affected by the prefetcher.

Figure 5 shows the performance, normalized against no
prefetching, of prefetching on any miss and prefetching only
for sequentially-accessing vector instructions. The figure

1Significant modifications would be needed for our DDR
controller to support prefetching for smaller cache line sizes,
while the 128 byte line size is unstable in hardware.



0.5

1

1.5

2

2.5

0 1 3 7 15 31 63

Number of Cache Lines Prefetched

S
p

ee
d

u
p

 v
s 

n
o

 P
re

fe
tc

h
in

g
autcor
conven
viterb
fbital
rgbcmyk
rgbyiq
ip_checksum
imgblend
filt3x3
GMEAN

Figure 6: Speedup when prefetching a constant
number of consecutive cache lines on any data cache
miss, relative to no-prefetching.

shows that the performance is the same—they are collinear
in the graph. This is partly expected since our benchmarks
generally use very few scalar loads or stores and generally
have vector strides less than a cache line, thus most memory
operations come from sequential vector instructions. The
speedup achieved is quite significant resulting on average
28% faster performance. As we increase the number of
cache lines prefetched, and hence the aggressiveness of the
prefetcher, we see diminishing returns on the performance
gains until the cache pollution dominates, reducing the
speedup at 31 and 63 cache line prefetches.

Figure 6 shows the performance of each benchmark
as the aggressiveness is increased for prefetches triggered
by any cache miss. The graph shows that four of the
benchmarks, autcor, conven, fbital, and viterb do
not benefit significantly from prefetching, while the other
five benchmarks achieve large speedups as high as 2.2x.
For large prefetches the performance tapers off and then
begins a downward trend, in the case of conven and fbital

the performance becomes worse than with no prefetching.
As long as the number of cache lines being prefetched is
moderate, benchmarks which benefit from prefetching can
achieve large speedups without slowing down benchmarks
which do not. Of course the benefit of using a soft vector
processor is that one can tune the amount of prefetching for
each application. For example, 15 is on average the best,
but imgblend is best served by prefetching 31 cache lines
while 15 performs worse than most other configurations

With respect to area, the cost of prefetching is largely
dominated by the writeback buffer which stores dirty cache
lines that have been evicted. In general the buffer needs
to have the greater of DPK+1 or DPV+1 entries for the
case where all evicted lines are dirty. With prefetching
disabled this cost is reduced to a single register, but
otherwise is generally implemented in FPGA block RAMs
where the effect of discrete aspect ratios as discussed in
figure 4 result in a constant cost when prefetching is between
1 and 15 cache lines amounting to only 1.6% of total
system area. For more than 15 cache lines this area cost
doubles, but as mentioned previously, there is no additional
performance gain seen in our benchmarks making the trade-
off uninteresting.

5.1 Vector Length Prefetching

0.5

1

1.5

2

2.5

N
on

e

1*
V

L

2*
V

L

4*
V

L

8*
V

L

16
*V

L

32
*V

L

Amount of Prefetching

S
p

ee
d

u
p

autcor
conven
fbital
viterb
rgbcmyk
rgbyiq
ip_checksum
imgblend
filt3x3
GMEAN

Figure 7: Speedup when prefetching a constant
number of consecutive cache lines on any data cache
miss, relative to no-prefetching.

Choosing an optimal value for DPV depends on the mix
of vector lengths used in the program, but each vector
memory instruction instance explicitly specifies its vector
length providing a valuable hint for DPV. We therefore
enable a vector length prefetching mode which prefetches
all data required by a vector memory instruction once that
instruction experiences a cache miss. Note that the actual
vector length used is the remaining vector length, so if the
first eight elements of a vector load were cache hits and a
miss occurred on the ninth element of a 64 element vector,
the prefetcher would use 55 as the vector length.

Figure 7 shows the performance of a range of vector
length prefetches. Prefetching 8V L cache lines performs
best achieving a maximum speedup of 2.2x for ip checksum

and 29% on average. Of specific interest is the 1V L

configuration which prefetches the remaining elements in
a vector miss and hence has zero cache pollution. This
configuration has no speculation, it guarantees no more than
one miss per vector memory instruction and is ideal for
heavily mixed scalar/vector applications, but only achieves
21% speedup on our benchmarks. This shows that our
benchmarks benefit from prefetching cache lines needed on
subsequent loop iterations, but too much prefetching can
undo the performance gains as seen in imgblend where large
prefetches of the input stream conflicts in the cache with the
output stream causing thrashing between the two streams.

There is a slight additional area cost of 0.3% for the
vector length prefetcher which needs to compute the number
of cache lines to prefetch. This computation includes a
multiply operation making the area cost non-negligible.

5.2 Cache Line Size and Prefetching
It is important to realize that cache lines already perform

some intrinsic prefetching: the larger the cache line, the
more data that is effectively prefetched, likely reducing
the benefit of additional hardware prefetching. Since we
can only implement prefetching for 64B cache lines, we
are unable to evaluate the relationship between the two in
hardware, but we expect results similar to Fu and Patel [3].
One key result from this work is that increasing cache line
size has far higher area costs than prefetching due to the
growth of the memory crossbar and increase in FPGA block
RAMs required. However longer cache line sizes provide
additional performance benefits in terms of higher cache-to-



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

16-byte line 64-byte line 64-byte line +
prefetch

F
ra

ct
io

n
 o

f 
T

o
ta

l C
yc

le
s Memory Unit Stall Cycles

Miss Cycles

 

Figure 8: Average fraction of simulated cycles for
autcor, conven, ip checksum, and imgblend spent
waiting in the vector memory unit in total or
exclusively servicing a miss for a 16-lane full memory
crossbar VESPA processor when cache lines are
widened to 64B and prefetching is enabled for the
next 15 cache lines.

lane throughput whereas prefetching helps only memory-
to-cache throughput. We advocate an approach where
cache line size is maximized subject to area constraints, and
prefetching is used to further reduce the occurence of misses.
The effect of this approach in our own work is discussed
below.

Figure 8 shows the average number of cycles across four
of our benchmarks spent waiting on the vector memory
unit or specifically waiting for missed data to be retrieved
from memory. The figure demonstrates that our original 16-
lane full memory crossbar version of VESPA with 16B data
cache lines and 4KB depth spends two out of three cycles
waiting on the vector memory unit, suggesting that memory
system performance is throttling VESPA’s performance.
Expanding the cache line (and the depth to match the block
RAM usage) reduces the cycles spent waiting on the vector
memory unit to less than half. Finally by adding prefetching
we reduce it to only one out of three cycles and we note that
miss cycles were reduced to just 4%, leaving little motivation
to further improving the prefetching.

6. CONCLUSIONS
Vector coprocessors provide large gains in soft processor

computing power but necessitate a corresponding gain in
memory system performance to keep pace. Tuning the data
cache size and line size is an effective means of trading
area for performance in our VESPA processor system, and
provides approximately a doubling of performance for a
system with double the silicon area. Cache line size was
shown to be a more dominant parameter in determining
both area and performance, while cache depth is largely
discretized by the nature of the FPGA block RAMs.

Data prefetching is a very effective means of: (i) paralleliz-
ing memory transfers alongisde computation; (ii) leveraging
the large bandwidths available from burst-mode transfers
in modern DRAMs; and (iii) utilizing the memory access
pattern information encoded into vector memory instruc-
tions. In this work we explored sequential prefetching of
a contant number of cache lines for all cache misses or

those from sequentially accessing vector instructions. We
also enable a vector length prefetcher which dynamically
calculates the number of cache lines to prefetch from the
vector length. Large prefetches of 8 times the vector length
achieved the best overall performance with 29% speedup,
while a conservative vector length prefetcher achieves 21%
speedup and avoids the need to tune the the number of lines
to prefetch to the application.

In future work we plan to investigate ways to further
improve the execution of memory instructions. We believe
there are opportunities for smart banking configurations in
the data cache allowing single-cycle access for vectors that
span or stride across multiple cache lines. We are also in the
process of migrating our hardware platform to the Altera
DE3 board which uses state-of-the art Stratix III FPGAs.
This board will allow further vector lane scaling and will
hence further require better memory system performance.

7. REFERENCES
[1] R. Cliff. Altera Corporation. Private Comm, 2005.

[2] J. Fender, J. Rose, and D. R. Galloway. The
transmogrifier-4: An fpga-based hardware
development system with multi-gigabyte memory
capacity and high host and memory bandwidth. In
IEEE International Conference on Field
Programmable Technology, pages 301–302, 2005.

[3] J. W. C. Fu and J. H. Patel. Data prefetching in
multiprocessor vector cache memories. SIGARCH
Comput. Archit. News, 19(3):54–63, 1991.

[4] C. Kozyrakis and D. Patterson. Scalable, vector
processors for embedded systems. Micro, IEEE,
23(6):36–45, 2003.

[5] M. Labrecque, P. Yiannacouras, and J. G. Steffan.
Scaling Soft Processor Systems. In IEEE Symposium
on Field-Programmable Custom Computing Machines
(FCCM’08)., Palo Alto, CA, April 2008.

[6] S. P. Vanderwiel and D. J. Lilja. Data prefetch
mechanisms. ACM Comput. Surv., 32(2):174–199,
2000.

[7] P. Yiannacouras, J. Rose, and J. G. Steffan. The
Microarchitecture of FPGA Based Soft Processors. In
CASES’05: International Conference on Compilers,
Architecture and Synthesis for Embedded Systems,
pages 202–212. ACM Press, 2005.

[8] P. Yiannacouras, J. G. Steffan, and J. Rose.
Application-specific customization of soft processor
microarchitecture. In FPGA’06: Proceedings of the
International Symposium on Field Programmable Gate
Arrays, pages 201–210, New York, NY, USA, 2006.
ACM Press.

[9] P. Yiannacouras, J. G. Steffan, and J. Rose. Vespa:
Portable, scalable, and flexible fpga-based vector
processors. In CASES’08: International Conference on
Compilers, Architecture and Synthesis for Embedded
Systems. ACM, 2008.

[10] J. Yu, G. Lemieux, and C. Eagleston. Vector
processing as a soft-core cpu accelerator. In FPGA
’08: Proceedings of the 16th international
ACM/SIGDA symposium on Field programmable gate
arrays, pages 222–232, New York, NY, USA, 2008.
ACM.


