University of Toronto
Faculty of Applied Science and Engineering
Midterm Examination

ECE 241S - Digital Systems
Examiner: Belinda Wang, Jianwen Zhu

February 27th, 2002
Duration: 90 minutes

ANSWER QUESTIONS ON THESE SHEETS, USING THE BACKS IF NECESSARY.

1. No calculator is allowed.

2. Weight for each question is indicated in []. Attempt all questions, since a blank sheet will certainly get a zero.

Last Name: __________________________
First Name: __________________________
Student Number: ______________________
Lecture Section:
Section 01 (Zhu) []
Section 02 (Wang) []

Maximum grade = 100

<table>
<thead>
<tr>
<th>Question</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
Problem 1 [20 marks] Circle T (for True) or F (for False) in statement below.

IMPORTANT NOTE: For each question, right answer gets “2”, wrong answer gets “-2”, no answer (no circle) gets “0”.

T F The following are all valid representations of Boolean function.
 - Truth table
 - Karnaugh map
 - Venn diagram
 - Timing diagram
 - Sum-of-product Boolean expression

T F Any Boolean function can be implemented exclusively by NAND gates.

T F Any Boolean function can be expressed as the sum of its essential prime implicants.

T F \((00011010)_2 = (32)_8 = (1B)_{16} = (26)_{10}\)

T F For a complex logic function, a multi-level implementation is often favored over two-level implementation due to its lower cost.

T F Any logic function can be implemented by a multi-level network of multiplexors.

T F In CMOS technology, a 2-input AND gate is faster than a 2-input NAND gate, provided that all transistors have equal sizes.

T F For any Boolean function \(f\), there exists one and only one optimal PLA implementation.

T F The pull-down network of a CMOS gate can be implemented by PMOS transistors equally well as the NMOS transistors.

T F A multi-level logic circuit can be improved by applying logic transformations such as functional decomposition and factoring.
Problem 2 [10 marks] Reduce the following Boolean expressions to the indicated number of literals.

(1) \(\overline{A}B + C + C + AB + CD \) (to three literals). [5 marks]

(2) \(\overline{A}B(\overline{D} + \overline{C}D) + B(A + \overline{A}CD) \) (to one literal). [5 marks]
Problem 3 [15 marks] Obtain the truth table of the function f and express f in canonical sum-of-product (sum-of-minterm) and canonical product-of-sum (product-of-maxterm) forms.

$$f = (x_1x_2 + x_3)(x_2 + x_1x_3)$$

(1) Truth table. [5 marks]

(2) Sum-of-minterm form. [5 marks]

(3) Product-of-maxterm form. [5 marks]
Problem 4 [20 marks] Given the Boolean function

\[f = x_1 \overline{x}_2 x_3 + \overline{x}_1 x_2 x_3 + \overline{x}_4 x_1 x_2 + x_4 \overline{x}_1 x_2 + x_4 x_1 x_2 \]

(1) Obtain the K-map of the function. [5 marks]

(2) Simplify the function to a minimal number of literals. [5 marks]
(4) Show the logic diagram from the simplified expression, assuming for all i, both x_i and \bar{x}_i are available as the primary inputs. [5 marks]

(4) Evaluate the cost of the logic diagram in (3). [5 marks]
Problem 5 [15 marks]

(1) Show the implementation of a CMOS gate $Y = \overline{ABC + (C + D)\overline{E}}$ as a network of NMOS and PMOS transistors. Identify the pull-up network and pull-down network. [5 marks]

(2) Assuming all transistors have the same size, how does the delay of a gate in (1) compare to the delay of an inverter? State your reason. [5 marks]
(3) For the following logic diagram, where each gate is labeled with its delay, calculate the total delay from primary inputs to primary outputs f. [5 marks]
Problem 6 [20 marks]
Implement a logic circuit that can detect whether a binary coded decimal (BCD) digit (from 0 to 9), which can be represented by the four Boolean variables x_1, x_2, x_3, x_4, is a prime number. Note that a prime number is a number that can only be factored as a product of 1 and itself. Also note that 0 and 1 are not considered prime numbers.

(1) Obtain the K-map of the circuit. [5 marks]

(2) Obtain the simplified Boolean expression. [10 marks]
(3) Implement the simplified Boolean expression using NOR gates, assuming for all \(i \), both \(x_i \) and \(\bar{x}_i \) are available as primary inputs. [5 marks]