INTRODUCTION TO DELTA-SIGMA ADCS

Richard Schreier
richard.schreier@analog.com

NLCOTD: Level Translator

VDD1 > VDD2, e.g.

3-V logic → ? → 1-V logic

VDD1 < VDD2, e.g.

1-V logic → ? → 3-V logic

Constraints: CMOS
1-V and 3-V devices
no static current
Highlights
(i.e. What you will learn today)

1 1st-order modulator (MOD1)
 Structure and theory of operation
2 Inherent linearity of binary modulators
3 Inherent anti-aliasing of continuous-time modulators
4 2nd-order modulator (MOD2)
5 Good FFT practice

0. Background
(Stuff you already know)

• The SQNR* of an ideal n-bit ADC with a full-scale sine-wave input is \((6.02n + 1.76)\) dB
 “6 dB = 1 bit.”
• The PSD at the output of a linear system is the product of the input’s PSD and the squared magnitude of the system’s frequency response
 \[S_{yy}(f) = |H(e^{j2\pi f})|^2 \cdot S_{xx}(f) \]
• The power in any frequency band is the integral of the PSD over that band

* SQNR = Signal-to-Quantization-Noise Ratio
1. What is $\Delta \Sigma$?

- $\Delta \Sigma$ is NOT a fraternity
- Simplified $\Delta \Sigma$ ADC structure:

![Diagram of $\Delta \Sigma$ ADC structure]

- Key features: coarse quantization, filtering, feedback and oversampling

 Quantization is often *quite* coarse (1 bit!), but the effective resolution can still be as high as 22 bits.

What is Oversampling?

- Oversampling is sampling faster than required by the Nyquist criterion

 For a lowpass signal containing energy in the frequency range $(0, f_B)$, the minimum sample rate required for perfect reconstruction is $f_s = 2f_B$.

- The *oversampling ratio* is $OSR \equiv f_s/(2f_B)$

- For a regular ADC, $OSR \sim 2 - 3$

 To make the anti-alias filter (AAF) feasible

- For a $\Delta \Sigma$ ADC, $OSR \sim 30$

 To get adequate quantization noise suppression. Signals between f_B and $\sim f_s$ are removed digitally.
Oversampling Simplifies AAF

OSR \sim 1:

Desired Signal

Undesired Signals

First alias band is very close

OSR = 3:

Wide transition band

Alias far away

How Does A $\Delta \Sigma$ ADC Work?

- Coarse quantization \Rightarrow lots of quantization error. So how can a $\Delta \Sigma$ ADC achieve 22-bit resolution?
- A $\Delta \Sigma$ ADC spectrally separates the quantization error from the signal through noise-shaping
A $\Delta \Sigma$ DAC System

- Mathematically similar to an ADC system
 Except that now the modulator is digital and drives a low-resolution DAC, and that the out-of-band noise is handled by an analog reconstruction filter.

Why Do It The $\Delta \Sigma$ Way?

- **ADC: Simplified Anti-Alias Filter**
 Since the input is oversampled, only very high frequencies alias to the passband.
 A simple RC section often suffices.
 If a continuous-time loop filter is used, the anti-alias filter can often be eliminated altogether.

- **DAC: Simplified Reconstruction Filter**
 The nearby images present in Nyquist-rate reconstruction can be removed digitally.

 - **Inherent Linearity**
 Simple structures can yield very high SNR.

 - **Robust Implementation**
 $\Delta \Sigma$ tolerates sizable component errors.
MOD1 Analysis

- Exact analysis is intractable for all but the simplest inputs, so treat the quantizer as an additive noise source:

\[
V(z) = Y(z) + E(z)
\]
\[
Y(z) = \frac{U(z) - z^{-1}V(z)}{(1-z^{-1})}
\]
\[
\Rightarrow (1-z^{-1}) V(z) = U(z) - z^{-1}V(z) + (1-z^{-1})E(z)
\]

\[
V(z) = U(z) + (1-z^{-1})E(z)
\]
The Noise Transfer Function (NTF)

- In general, \(V(z) = \text{STF}(z) \cdot U(z) + \text{NTF}(z) \cdot E(z) \)
- For MOD1, \(\text{NTF}(z) = 1 - z^{-1} \)

The quantization noise has spectral shape!

- The total noise power increases, but the noise power at low frequencies is reduced

In-band Quant. Noise Power

- Assume that \(e \) is white with power \(\sigma_e^2 \)
 - i.e. \(S_{ee}(\omega) = \sigma_e^2 / \pi \)
- The in-band quantization noise power is
 \[
 \text{IQNP} = \int_0^{\omega_B} \left| H(e^{j\omega}) \right|^2 S_{ee}(\omega) d\omega \approx \frac{\sigma_e^2}{\pi} \int_0^{\omega_B} \omega^2 d\omega
 \]
- Since \(OSR \equiv \frac{\pi}{\omega_B} \), \(\text{IQNP} = \frac{\pi^2 \sigma_e^2}{3} (OSR)^{-3} \)
- For MOD1, an octave increase in \(OSR \) increases SQNR by 9 dB
 - “1.5-bit/octave SQNR-OSR trade-off.”
A Simulation of MOD1

SQNR = 55 dB @ OSR = 128

NBW = 5.7x10^{-6}

CT Implementation of MOD1

- R_i/R_f sets the full-scale; C is arbitrary

 Also observe that an input at f_s is rejected by the integrator—*inherent anti-aliasing*
MOD1-CT Waveforms

- With $u=0$, v alternates between $+1$ and -1
- With $u>0$, y drifts upwards; v contains consecutive $+1$s to counteract this drift

\[
\text{MOD1-CT STF} = \frac{1 - z^{-1}}{s}
\]
Recall $z = e^s$

s-plane

- Zeros @ $s = 2k\pi i$
- Pole-zero cancellation @ $s = 0$
Summary

- $\Delta\Sigma$ works by spectrally separating the quantization noise from the signal
 Requires oversampling. $OSR \equiv f_s/(2f_B)$.
- Noise-shaping is achieved by the use of filtering and feedback
- A binary DAC is inherently linear, and thus a binary $\Delta\Sigma$ modulator is too
- MOD1 has $NTF(z) = 1 - z^{-1}$
 \Rightarrow Arbitrary accuracy for DC inputs.
 1.5 bit/octave SQNR-OSR trade-off.
- MOD1-CT has inherent anti-aliasing
3. MOD2: 2nd-Order ΔΣ Modulator
[Ch. 3 of Schreier & Temes]

- Replace the quantizer in MOD1 with another copy of MOD1 in a recursive fashion:

\[V(z) = U(z) + (1-z^{-1})E_1(z), \quad E_1(z) = (1-z^{-1})E(z) \]

\[\Rightarrow V(z) = U(z) + (1-z^{-1})^2E(z) \]
Simplified Block Diagrams

\[NTF(z) = (1 - z^{-1})^2 \]
\[STF(z) = z^{-1} \]

NTF Comparison

MOD2 has twice as much attenuation as MOD1 at all frequencies
In-band Quant. Noise Power

- For MOD2, $|H(e^{j\omega})|^2 \approx \omega^4$

- As before, $IQNP = \int_0^B |H(e^{j\omega})|^2 S_{ee}(\omega) d\omega$ and $S_{ee}(\omega) = \sigma_e^2 / \pi$

- So now $IQNP = \frac{\pi^4 \sigma_e^2}{5} (OSR)^{-5}$

 With binary quantization to ± 1, $\Delta = 2$ and thus $\sigma_e^2 = \Delta^2 / 12 = 1/3$.

- “An octave increase in OSR increases MOD2’s SQNR by 15 dB (2.5 bits)”

Simulation Example
Input at 75% of FullScale

![Simulation Example Graph]
Simulated MOD2 PSD
Input at 50% of FullScale

SQNR = 86 dB
@ OSR = 128

Simulated spectrum (smoothed)

Theoretical PSD ($k = 1$)

40 dB/decade

NBW = 5.7×10^{-6}

SQNR vs. Input Amplitude
MOD1 & MOD2 @ OSR = 256

Predicted SQNR

Simulated SQNR
SQNR vs. OSR

Predictions for MOD2 are optimistic. Behavior of MOD1 is erratic.

Audio Demo: MOD1 vs. MOD2
[dsdemos4]
MOD1 + MOD2 Summary

- $\Delta\Sigma$ ADCs rely on filtering and feedback to achieve high SNR despite coarse quantization. They also rely on digital signal processing. $\Delta\Sigma$ ADCs need to be followed by a digital decimation filter and $\Delta\Sigma$ DACs need to be preceded by a digital interpolation filter.

- Oversampling eases analog filtering requirements. Anti-alias filter in an ADC; image filter in a DAC.

- Binary quantization yields inherent linearity.

- MOD2 is better than MOD1. 15 dB/octave vs. 9 dB/octave SQNR-OSR trade-off. Quantization noise more white. Higher-order modulators are even better.

4. Good FFT Practice

[Appendix A of Schreier & Temes]

- Use coherent sampling. I.e. have an integer number of cycles in the record.

- Use windowing. A Hann window $w(n) = (1 - \cos(2\pi n / N))/2$ works well.

- Use enough points. Recommend $N = 64 \cdot OSR$.

- Scale (and smooth) the spectrum. A full-scale sine wave should yield a 0-dBFS peak.

- State the noise bandwidth. For a Hann window, $NBW = 1.5 / N$.

[Graph of a Hann window]
Coherent vs. Incoherent Sampling

- Coherent sampling: only one non-zero FFT bin
- Incoherent sampling: “spectral leakage”

Windowing

- \(\Delta S\) data is usually not periodic
 Just because the input repeats does not mean that the output does too!
- A finite-length data record = an infinite record multiplied by a rectangular window:
 \[w(n) = 1, \quad 0 \leq n < N \]
 Windowing is unavoidable.
- “Multiplication in time is convolution in frequency”

Frequency response of a 32-point rectangular window:

Slow roll-off \(\Rightarrow\) out-of-band Q. noise may appear in-band
Example Spectral Disaster

Rectangular window, $N = 256$

Out-of-band quantization noise obscures the notch!

Window Comparison ($N = 16$)
Window Properties

<table>
<thead>
<tr>
<th>Window</th>
<th>Rectangular</th>
<th>Hann†</th>
<th>Hann²</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w(n),) (n = 0, 1, \ldots, N - 1) ((w(n) = 0 \text{ otherwise}))</td>
<td>1</td>
<td>(1 - \cos \frac{2\pi n}{N})</td>
<td>(\left(1 - \cos \frac{2\pi n}{N} \right)^2)</td>
</tr>
<tr>
<td>Number of non-zero FFT bins</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>(|w|_2^2 = \sum w(n)^2)</td>
<td>(N)</td>
<td>(3N/8)</td>
<td>(35N/128)</td>
</tr>
<tr>
<td>(W(0) = \sum w(n))</td>
<td>(N)</td>
<td>(N/2)</td>
<td>(3N/8)</td>
</tr>
<tr>
<td>(NBW = \frac{|w|_2^2}{W(0)^2})</td>
<td>(1/N)</td>
<td>(1.5/N)</td>
<td>(35/18N)</td>
</tr>
</tbody>
</table>

†. MATLAB’s “hann” function causes spectral leakage of tones located in FFT bins unless you add the optional argument “periodic.”

Window Length, \(N \)

- **Need to have enough in-band noise bins to**
 - 1 Make the number of signal bins a small fraction of the total number of in-band bins
 - \(<20\% \text{ signal bins} \Rightarrow >15 \text{ in-band bins} \Rightarrow N > 30 \cdot OSR\)
 - 2 Make the SNR repeatable
 - \(N = 30 \cdot OSR \) yields std. dev. \(\sim 1.4 \text{ dB.} \)
 - \(N = 64 \cdot OSR \) yields std. dev. \(\sim 1.0 \text{ dB.} \)
 - \(N = 256 \cdot OSR \) yields std. dev. \(\sim 0.5 \text{ dB.} \)

- \(N = 64 \cdot OSR \) is recommended
FFT Scaling

- The FFT implemented in MATLAB is
 \[X_M(k + 1) = \sum_{n=0}^{N-1} x_M(n + 1) e^{-j\frac{2\pi kn}{N}} \]

- If \(x(n) = A\sin(2\pi fn/N) \), then
 \[|X(k)| = \begin{cases} \frac{AN}{2} & , k = f \text{ or } N - f \\ 0 & , \text{otherwise} \end{cases} \]

⇒ Need to divide FFT by \((N/2)\) to get \(A\).

\[\text{\dag} \quad f \text{ is an integer in (0, } N/2\text{). I've defined } X(k) = X_M(k + 1), x(n) = x_M(n + 1) \text{ since Matlab indexes from 1 rather than 0.}\]

The Need For Smoothing

- The FFT can be interpreted as taking 1 sample from the outputs of \(N\) complex FIR filters:

\[x \rightarrow h_0(n) \rightarrow y_0(N) = X(0)\]

\[\vdots\]

\[h_k(n) \rightarrow y_k(N) = X(k)\]

\[h_{N-1}(n) \rightarrow y_{N-1}(N) = X(N-1)\]

⇒ an FFT yields a high-variance spectral estimate
How To Do Smoothing

1. Average multiple FFTs
 Implemented by MATLAB’s `psd()` function

2. Take one big FFT and “filter” the spectrum
 Implemented by the ΔΣ Toolbox’s `logsmooth()` function
 logsmooth() averages an exponentially-increasing number of bins in order to reduce the density of points in the high-frequency regime and make a nice log-frequency plot

Raw and Smoothed Spectra

```
Normalized Frequency
10^-2  10^-1

dBFS
-120  -100  -80  -60  -40  -20  0

Raw FFT
logsmooth
```

ECE1371 42
Simulation vs. Theory (MOD2)

What Went Wrong?

1. We normalized the spectrum so that a full-scale sine wave (which has a power of 0.5) comes out at 0 dB (whence the “dBFS” units)

 ⇒ We need to do the same for the error signal.

 i.e. use $S_{ee}(f) = 4/3$.

 But this makes the discrepancy 3 dB worse.

2. We tried to plot a power spectral density together with something that we want to interpret as a power spectrum

 • Sine-wave components are located in individual FFT bins, but broadband signals like noise have their power spread over all FFT bins!

 The “noise floor” depends on the length of the FFT.
Spectrum of a Sine Wave + Noise

Observations

• The power of the sine wave is given by the height of its spectral peak

• The power of the noise is spread over all bins
 The greater the number of bins, the less power there is in any one bin.

• Doubling N reduces the power per bin by a factor of 2 (i.e. 3 dB)
 But the total integrated noise power does not change.
So How Do We Handle Noise?

- Recall that an FFT is like a filter bank
- The longer the FFT, the narrower the bandwidth of each filter and thus the lower the power at each output
- We need to know the noise bandwidth (NBW) of the filters in order to convert the power in each bin (filter output) to a power density
- For a filter with frequency response $H(f)$,

$$NBW = \frac{\int |H(f)|^2 df}{H(f_0)^2}$$

\[h_k(n) = \exp\left(j\frac{2\pi k}{N}n\right), \quad H_k(f) = \sum_{n=0}^{N-1} h_k(n) \exp(-j2\pi fn) \]

\[f_0 = \frac{k}{N}, \quad H_k(f_0) = \sum_{n=0}^{N-1} 1 = N \]

\[\int |H_k(f)|^2 = \sum |h_k(n)|^2 = N \text{ [Parseval]} \]

\[\therefore NBW = \frac{\int |H_k(f)|^2 df}{H_k(f_0)^2} = \frac{N}{N^2} = \frac{1}{N} \]
Better Spectral Plot

![Plot](image)

- **Simulated Spectrum**
- **Theoretical Q. Noise**

\[
\text{passband for } \quad \text{OSR} = 128
\]

\[
\text{NBW} = 1.5 / N = 2 \times 10^{-5}
\]

\[
N = 2^{16}
\]