CIRCUIT REVIEW

OHM'S LAW

\[I = \frac{V}{R} \]

\[V = I \cdot R \]

* IMPORTANT TO GET V "+" CORRECT WITH RESPECT TO I "->"

POWER DISSIPATED P = VI

KCL (KIRCHHOFF CURRENT LAW)

\[I_1 + I_2 + I_3 = 0 \]

\[\sum_{k=1}^{n} I_k = 0 \]

SUM OF CURRENTS FLOWING INTO A NODE EQUALS 0
KVL (KIRCHHOFF VOLTAGE LAW)

\[V_1 + V_2 + V_3 = 0 \]

\[\sum_{k=1}^{n} V_k = 0 \quad \text{Sum of Voltages Around a Loop Equals 0} \]

Getting Signs Correct

Can define \(I \) (or \(V \)) anyway you want but must have \(I \) \(V \) for one device to be consistent.

Example 1

\[V_B - V_R = 0 \]

\[V_R = V_B \]

If \(V_B = +1V \)

\[R = 1 \Omega \Rightarrow I_R = 1A \]

\[V_R = 1V \]
Ex 2

![Circuit diagram]

\[V_B + V_R = 0 \]
\[V_R = -V_B \]
\[I_R = \frac{V_R}{R} \]

If \(V_B = 1\text{V} \)
\(R = 1\Omega \) then \(I_R = \frac{-1\text{V}}{1\Omega} = -1\text{A} \) \(\checkmark \)
\(V_R = -1\text{V} \)

Ex 3

WRONG

\[V_R = V_B \]
\[I_R = \frac{V_R}{R} \] \(\times \)

If \(V_B = 1\text{V} \)
\(R = 1\Omega \) then \(I_R = \frac{1\text{V}}{1\Omega} = 1\text{A} \) \(\times \)

Actually \(I_R = -1\text{A} \)

Could use \(I_R = -\frac{V_R}{R} \) but why not just get device: \(V_I \) consistent.
INDEPENDENT SOURCES

VOLTAGE

DEVELOPMENT SOURCES

VCVS
VOLTAGE CONTROLLED VOLTAGE SOURCE

VCCS
VOLTAGE CONTROLLED CURRENT SOURCE

CCVS

CCC

RM [Ω]
A circuit of voltage sources, current sources and resistors (independent + dependent sources) can be converted to

\[\begin{align*}
V_s & \quad + \\
M & \quad A \\
R_\text{s} & \\
\quad - & \quad B
\end{align*} \]

where \(V_s \) is open circuit voltage, \(V_{oc} \) seen at \(A-B \) & \(R_s \) is resistance seen at \(A-B \) when independent sources are zeroed.

Voltage source zeroed \(\Rightarrow \) short circuit current \(\Rightarrow \) open current
CURRENT SOURCE EQUIVALENT
(NORTON EQUIVALENT)

A VOLTAGE SOURCE EQUIVALENT CAN BE CONVERTED TO

\[I_S = \frac{V_S}{R_S} \]

\(I_S \) IS SHORT CIRCUIT CURRENT, \(I_{sc} \) AT A-B

\(R_S \) IS RESISTANCE SEEN AT A-B WHEN INDEPENDENT SOURCES ARE ZEREOED

Note \(R_S = \frac{V_S}{I_S} \) OR \(R_S = \frac{V_{oc}}{I_{sc}} \)

\(V_{oc} \Rightarrow V_{AB} \) WHEN OPEN CIRCUIT

\(I_{sc} \Rightarrow I_{AB} \) WHEN SHORT CIRCUIT
Calculate V_{oc}

$V_{oc} = 7.5V$

$\Rightarrow U_S = 7.5V$

Calculate R_S

$R_S = 2k$
$I_S = \frac{V_S}{R_S} = 3.75\, mA$
WHEN TO USE VOLTAGE SOURCE OR CURRENT SOURCE?
EITHER CAN BE USED BUT BETTER INSIGHT IF

RS SMALL ⇒ VOLTAGE SOURCE
RS LARGE ⇒ CURRENT SOURCE

\[
\begin{align*}
 &\text{RS} \quad \text{Vout} \\
 &\text{Vs} \\
\end{align*}
\]

AS RS → 0 BECOMES MORE IDEAL

\[
\begin{align*}
 &\text{I}_S \quad \text{RS} \\
 &\text{Vout} \\
\end{align*}
\]

AS RS → ∞ BECOMES MORE IDEAL

LARGE OR SMALL COMPARED TO NEXT STAGE INPUT RESISTANCE

THIS KEEPS VALUE OF "Vs" OR "I_S" A REASONABLE VALUE (NOT UNREASONABLY LARGE)
CAPACITORS + INDUCTORS

CAPACITOR

\[q = CV_c \]

\[\frac{dq}{dt} = C \frac{dV_c}{dt} \]

\[I_C = C \frac{\Delta V_c}{\Delta t} \text{ if constant current } I_c \]

CHARGE, \(q \) \text{ units of coulombs}

CURRENT, \(I \) \text{ units of amps } \Rightarrow \text{ coulombs/second}

CAPACITOR IMPEDANCE

\[Z = \frac{1}{SC} \]

\(S \Rightarrow \text{ LAPLACE TRANSFORM VARIABLE} \)

LET \(S = j\omega \) for sinusoidal frequencies
CAPACITOR ENERGY (POTENTIAL ENERGY)
\[E_C = \frac{1}{2} CV_C^2 \] (STORED IN ELECTRIC FIELD)

INDUCTOR INDUCTANCE \(L \)
\[V_L = \frac{1}{3} L \frac{di_L}{dt} \]

INDUCTOR IMPEDANCE
\[Z = \frac{L}{\sigma} \]

INDUCTOR ENERGY (POTENTIAL ENERGY)
\[E_L = \frac{1}{2} L i_L^2 \] (STORED IN MAGNETIC FIELD)