Gain cell

\[V_o \]

\[V_i \]

\[V_{th} \]

\[0 \]

\[V_i \]

\[V_o \]

\[\Delta V_o \]

\[R_D \]

\[V_D \]

\[M1 \]

Assume \(A = 0 \)

\((\Gamma_o \rightarrow \infty) \)

\[M1 \]

1. Cutoff
2. Active
3. Triode

Small-signal gain \(\frac{V_o}{V_i} \) is \(\frac{\partial V_o}{\partial V_i} \)

So \(\frac{V_o}{V_i} = 0 \) in 1

\(\frac{V_o}{V_i} \) small in 3
IN ② (ACTIVE)

GAIN DEPENDS ON g_m WHICH DEPENDS ON I_D

$$\frac{V_o}{V_i} = -g_m R_D$$

$$g_m = \frac{2I_D}{V_{OV}}$$

$$V_{OV} = V_{GS} - V_{TN}$$

$$V_{OV} = V_I - V_{TN}$$

LARGEST GAIN OCCURS NEAR $V_I = V_i$

FOR A GIVEN TRANSISTOR & I_D

(HENCE GIVEN g_m) TO INCREASE $\frac{V_o}{V_i}$

NEED TO INCREASE R_D BUT THEN

V_{RD} TOO LARGE.

REPLACE R_D WITH CURRENT SOURCE.
ASSUME $A = 0$
($R_0 \to \infty$)

M1

1. CUTOFF
2. ACTIVE BUT $I_D < I_X$
3. ACTIVE $I_D = I_X$
4. TRIDEB

V_1 occurs when

$I_D = \frac{\mu W C}{2} \left(\frac{W}{L} \right) (V_1 - V_{tn})^2 = I_X$

Gain $\frac{V_D}{V_i}$ in 3 is ∞!!
IDEAL CURRENT SOURCE
THAT GOES TO \(I = 0 \) IF \(V \geq 0 \)

\[
\begin{align*}
V_{DD} & \quad \downarrow I \\
V & \quad \uparrow I_x \\
(\text{LOAD}) & \quad I = I_x \quad V > 0 \\
0 & \quad I = 0 \quad V \leq 0 \\
\end{align*}
\]
NOW ASSUME $x \neq 0$ (if finite)

\[V_0 \]

\[V_1 \]

\[V_2 \]

\[V_{en} \]

\[V_I \]

\[\text{FINITE SLOPE} \]

\[\text{In 3) } \]

\[g_m = \frac{2I_D}{V_0V} \]

\[R_0 = \frac{L}{x^2 I_D} = \frac{V_A'L}{I_D} \]

\[\frac{V_0}{V_i} = -g_m R_0 = - \frac{2I_D}{V_0V} \frac{V_A'L}{I_D} \]

\[= - \frac{2V_A'L}{V_0V} \]

TYPICAL

\[V_{0V} \approx 0.2 \text{ V} \]

\[V_A' \approx 10 \text{ V/mm} \]

\[\text{INTRINSIC GAIN} \]

\[\approx 20 \text{ V/V} \]

\[L = 0.2 \text{ mm} \]
BJT

\[V_{cc} \]

\[I_x \]

\[V_i \]

\[I_c \]

\[V_o \]

VA FINITE

ACTIVE WHEN

\[I_c = I_x \]

\[\text{WHEN ACTIVE} \quad g_m = \frac{I_c}{V_T} \]

\[\Gamma_0 = \frac{V_A}{I_c} \]

\[\text{GAIN} \quad \frac{V_o}{V_i} = -g_m \Gamma_0 \]

\[= - \frac{I_c}{V_T} \frac{V_A}{I_c} = -\frac{V_A}{V_T} \]

TYPICAL \quad V_A \approx 15V \quad \text{INTRINSIC GAIN}

\[\sqrt{V_T} \approx 25mV \quad \approx 600 \frac{V}{V} \]

MUCH HIGHER THAN MOSFETS
PRACTICAL CURRENT SOURCE LOAD

\[V_B \quad G \quad M_2 \quad V_B \text{ is constant} \]

DC VOLTAGE TO GENERATE \(I_X \)

\[V_1 \quad M_1 < g m_1, \quad R_0 \]

SMALL-SIGNAL MODEL FOR \(M_2 \)

\[V_B = 0 \quad \text{for small-signal} \]

\[V_D = 0 \quad \text{for small-signal} \]

So INTRINSIC GAIN IS

\[\frac{V_O}{V_I} = -g m_1 \left(\frac{R_0_1}{R_0_2} \right) = -\frac{1}{2} g m_1 \frac{R_0}{R_0} \]

IF \(R_0 = R_0_1 = R_0_2 \)