MOS CAPACITOR MODEL

\[C_{gs} = \frac{2}{3} WL \cdot \text{Cox} + WL_{ov} \cdot \text{Cox} \]

\[C_{gd} = WL_{ov} \cdot \text{Cox} \]

\[C_{db} = \frac{C_{db0}}{\sqrt{1 + \frac{V_{PB}}{V_{0}}}} \]
\(\frac{2}{3} \) \(W \) \(L \) \(\text{Cox} \) is gate to channel cap when device active channel is connected to source

\[\frac{2}{3} \] factor due to channel shape

\(W \) \(L \) \(\text{Cov} \) is gate overlap capacitance

\(\text{L} \) \(\text{ov} \) is overlap length

\(\text{C}_{\text{db}0} \) is drain body capacitance when \(\text{V}_{\text{dB}} = 0 \)

\(\text{V}_{\text{dB}} \) is drain body voltage (reverse bias voltage)

\(\text{V}_{0} \) is junction built-in voltage

\(\text{V}_{0} \approx 0.7 \text{ V} \)
MOSFET MODEL WHEN $V_{SB} = 0$

G

C_{gd}

V_{gs}

C_{gs}

$V_{gs} - V_{ds}$

r_0

C_{db}

S

MOSFET UNITY GAIN FREQ

FREQ WHERE SHORT-CIRCUIT CURRENT GAIN EQUALS 1.

$C_{gd} \leq SC_{gd}V_{gs}$

$I_0 = g_m V_{gs} - SC_{gd}V_{gs}$

CAN SHOW TYPICALLY $SC_{gd}V_{gs} \ll g_m V_{gs}$

$I_0 \approx g_m V_{gs}$
\[V_{qs} = \frac{I_i}{s(C_{qs} + C_{gd})} \] \hspace{1cm} (2)

\[1 + 2 \Rightarrow \ \frac{I_o}{I_i} = \frac{g_m}{s(C_{qs} + C_{gd})} \] \hspace{1cm} (3)

Let \(3 = 1 \) to find when \(I_o = I_i \):

\[\left| \frac{g_m}{s(C_{qs} + C_{gd})} \right| = 1 \Rightarrow \omega_T = \frac{g_m}{C_{qs} + C_{gd}} \]

\[f_T = \frac{g_m}{2\pi (C_{qs} + C_{gd})} \]

Recall \(g_m = \mu_n C_{ox} \left(\frac{W}{L} \right) V_{ov} \)

\[C_{qs} = \frac{2}{3} W L C_{ox} \]

Assuming \(C_{gd} \ll C_{qs} \)

\[f_T = \frac{3 \mu_n V_{ov}}{4 \pi^2 L^2} \] \hspace{1cm} independent of \(W \)

Proportional to \(\frac{1}{L^2} \)

Proportional to \(V_{ov} \)
\[\left| \frac{I_o}{I_i} \right| \text{dB} \quad \text{from (3)} \]

\[
\text{LET } s = j\omega
\]

\[-20 \text{ dB/dec} \]

\[W_t = 2\pi \text{ shift} \]

\[W_t = \frac{g_m}{C_{gs} + C_{gd}} \]