1) Find the voltage source equivalent and current source equivalent circuits for the following circuits at nodes A-B.
5.4 An NMOS transistor that is operated with a small v_{DS} is found to exhibit a resistance r_{DS}. By what factor will r_{DS} change in each of the following situations?

(a) V_{OV} is doubled.
(b) The device is replaced with another fabricated in the same technology but with double the width.
(c) The device is replaced with another fabricated in the same technology but with both the width and length doubled.
(d) The device is replaced with another fabricated in a more advanced technology for which the oxide thickness is halved and similarly for W and L (assume μ_c remains unchanged).

5.9 An NMOS transistor with $k_n = 1 \text{ mA/V}^2$ and $V_r = 1 \text{ V}$ is operated with $V_{GS} = 2.5 \text{ V}$. At what value of V_{DS} does the transistor enter the saturation region? What value of I_D is obtained in saturation?

5.12 With the knowledge that $\mu_p = 0.4 \mu_n$, what must be the relative width of n-channel and p-channel devices if they are to have equal drain currents when operated in the saturation mode with overdrive voltages of the same magnitude?

5.34 An NMOS transistor is fabricated in a 0.8-μm process having $k'_n = 130 \mu\text{A/V}^2$ and $V_A' = 20 \text{ V/\mu m}$ of channel length. If $L = 1.6 \mu$m and $W = 16 \mu$m, find V_A and λ. Find the value of I_D that results when the device is operated with an overdrive voltage of 0.5 V and $V_{DS} = 2 \text{ V}$. Also, find the value of r_D at this operating point. If V_{DS} is increased by 1 V, what is the corresponding change in I_D?

5.39 A p-channel transistor for which $|V_A| = 1 \text{ V}$ and $|V_A'| = 50 \text{ V}$ operates in saturation with $|V_{GS}| = 3 \text{ V}$, $|v_{DS}| = 4 \text{ V}$, and $i_D = 3 \text{ mA}$. Find corresponding signed values for v_{GS}, v_{SD}, v_{DS}, $v_{SD'}$, V_r, V_A, λ, and $k_p(W/L)$.

5.76 For the NMOS amplifier in Fig. P5.76, replace the transistor with its T equivalent circuit, assuming $\lambda = 0$. Derive expressions for the voltage gains v_s/v_i and v_d/v_i.

Figure P5.76