Analog Electronics Problems 3

D 7.21 In a MOS cascode amplifier, the cascode transistor is required to raise the output resistance by a factor of 40. If the transistor is operated at \(V_{OV} = 0.2 \) V, what must its \(V_A' \) be? If the process technology specifies \(V_A' \) as 5 V/\(\mu \)m, what channel length must the transistor have?

D 7.24 Design the cascode amplifier of Fig. 7.9(a) to obtain \(g_m = 1 \) mA/V and \(R_o = 400 \) kΩ. Use a 0.18-\(\mu \)m technology for which \(V_m = 0.5 \) V, \(V_A = 5 \) V/\(\mu \)m and \(k_n' = 400 \) \(\mu \)A/V². Determine \(L, W/L, V_{G2} \), and \(I \). Use identical transistors operated at \(V_{OV} = 0.2 \) V, and design for the maximum possible negative signal swing at the output. What is the value of the minimum permitted output voltage?

D 7.27 Design the circuit of Fig. 7.10 to provide an output current of 100 \(\mu \)A. Use \(V_{DD} = 3.3 \) V, and assume the PMOS transistors to have \(\mu_p C_{ox} = 60 \) \(\mu \)A/V², \(V_{tp} = -0.8 \) V, and \(|V_A'| = 5 \) V. The current source is to have the widest possible signal swing at its output. Design for \(V_{OV} = 0.2 \) V, and specify the values of the transistor \(W/L \) ratios and of \(V_{G3} \) and \(V_{G4} \). What is the highest allowable voltage at the output? What is the value of \(R_o' \)?

D 7.46 For \(V_{DD} = 1.8 \) V and using \(I_{REF} = 100 \) \(\mu \)A, it is required to design the circuit of Fig. 7.22 to obtain an output current whose nominal value is 100 \(\mu \)A. Find \(R \) if \(Q_1 \) and \(Q_2 \) are matched with channel lengths of 0.5 \(\mu \)m, channel widths of 4 \(\mu \)m, \(V_t = 0.5 \) V, and \(k_n' = 400 \) \(\mu \)A/V². What is the lowest possible value of \(V_o' \)? Assuming that for this process technology the Early voltage \(V_A' = 10 \) V/\(\mu \)m, find the output resistance of the current source. Also, find the change in output current resulting from a +0.5-V change in \(V_o' \).