D.8 Consider the exponential response of an STC low-pass circuit to a 10-V step input. In terms of the time constant τ, find the time taken for the output to reach 5 V, 9 V, 9.9 V, and 9.99 V.

D.9 The high-frequency response of an oscilloscope is specified to be like that of an STC LP circuit with a 100-MHz corner frequency. If this oscilloscope is used to display an ideal step waveform, what rise time (10% to 90%) would you expect to observe?

E.1 Find the transfer function \(T(s) = \frac{V_o(s)}{V_i(s)} \) of the circuit in Fig. PE.1. Is this an STC network? If so, of what type? For \(C_1 = C_2 = 0.5 \ \mu F \) and \(R = 100 \ \text{k}\Omega \), find the location of the pole(s) and zero(s), and sketch Bode plots for the magnitude response and the phase response.

D′E.2 (a) Find the voltage transfer function \(T(s) = \frac{V_o(s)}{V_i(s)} \) for the STC network shown in Fig. PE.2.

(b) In this circuit, capacitor \(C \) is used to couple the signal source \(V_i \) having a resistance \(R_i \) to a load \(R_L \). For \(R_s = 10 \ \text{k}\Omega \), design the circuit, specifying the values of \(R_L \) and \(C \) to only one significant digit to meet the following requirements:

(i) The load resistance should be as small as possible.
(ii) The output signal should be at least 70% of the input at high frequencies.
(iii) The output should be at least 10% of the input at 10 Hz.

E.7 An amplifier has a voltage transfer function \(T(s) = \frac{10^6}{s(s + 10^3)(s + 10^3)} \). Convert this to the form convenient for constructing Bode plots [that is, place the denominator factors in the form \((1 + s/\alpha)\)]. Provide a Bode plot for the magnitude response, and use it to find approximate values for the amplifier gain at 1, 10, 10^2, 10^3, 10^4, and 10^5 rad/s.

E.9 A transfer function has the following zeros and poles:
one zero at \(s = 0 \) and one zero at \(s = \infty \); one pole at \(s = -100 \) and one pole at \(s = -10^5 \). The magnitude of the transfer function at \(\omega = 10^6 \text{ rad/s} \) is 100. Find the transfer function \(T(s) \) and sketch a Bode plot for its magnitude.

E.10 Sketch Bode plots for the magnitude and phase of the transfer function

\[
T(s) = \frac{10^4(1 + s/10^5)}{(1 + s/10^3)(1 + s/10^5)}
\]

From your sketches, determine approximate values for the magnitude and phase at \(\omega = 10^6 \text{ rad/s} \).
9.1 The amplifier in Fig. P9.1 is biased to operate at $g_m = 1 \text{ mA/V}$. Neglecting r_o, find the midband gain. Find the value of C_s that places f_o at 20 Hz.

9.3 The NMOS transistor in the discrete CS amplifier circuit of Fig. P9.3 is biased to have $g_m = 5 \text{ mA/V}$. Find $A_{1p}, f_{p1}, f_{p2}, f_{p3}$, and f_o.

9.4 Consider the low-frequency response of the CS amplifier of Fig. 9.2(a). Let $R_{sg} = 0.5 \text{ M\Omega}$, $R_C = 2 \text{ M\Omega}$, $g_m = 3 \text{ mA/V}$, $R_o = 20 \text{ k\Omega}$, and $R_L = 10 \text{ k\Omega}$. Find A_{1p}. Also, design the coupling and bypass capacitors to locate the three low-frequency poles at 50 Hz, 10 Hz, and 3 Hz. Use a minimum total capacitance, with capacitors specified only to a single significant digit. What value of f_L results?