Passband HDSL and ADSL
Circuits and Systems

Prof. David Johns
University of Toronto
(johns@eecg.toronto.edu)
(www.eecg.toronto.edu/~johns)

Outline

Baseband Review and Limitations
- Cable Modeling
- Equalization and DFE
- dc Recovery and sinusoidal interference

Passband QAM/CAP HDSL and ADSL
- Basic Concepts
- Equalization
- Timing Recovery
- HDSL and ADSL Applications
- Line Interface Issues
Cable Modeling

- Modeled as a transmission line.

\[L_{dx} \quad R_{dx} \]

\[G_{dx} \quad C_{dx} \]

Twisted-Pair Typical Parameters:

- \(R(f) = (1 + j)\sqrt{f/4} \ \Omega/km \) due to the skin effect
- \(L = 0.6 \ \text{mH/km} \) (relatively constant above 100kHz)
- \(C = 0.05 \ \mu\text{F/km} \) (relatively constant above 100kHz)
- \(G = 0 \)

Cable Attenuation

- Cable gain in dB is

\[H_{dB}(d, \omega) = -k_R \times d \times \sqrt{\omega} \]

(1)

- \(k_R \) — cable constant (typically 0.008)
- \(d \) — cable distance in km
- \(\omega \) — frequency in rad/s

- Attenuation in dB is proportional to cable length
 — 2x distance doubles attenuation in dB
 — reduce attenuation by using larger diameter cable

- Attenuation also proportional to root-frequency
 — 4x frequency doubles attenuation in dB
 — fast rolloff once attenuation reaches 20dB
Transformer Coupling

- Almost all long wired channels (>10m) are AC coupled systems
- AC coupling introduces *baseline wander* if random baseband PAM sent
- A long string of like symbols (for example, +1) will decay towards zero degrading performance
- Requires baseline wander correction (non-trivial)
- Can use passband modulation schemes (CAP, QAM, DMT, AMI)
- *Why AC couple long wired channels?*

Transformer Coupling

Eliminates need for similar grounds

- If ground potentials not same — large ground currents

Rejects common-mode signals

- Transformer output only responds to differential signal current
- Insensitive to common-mode signal on both wires

![Twisted-pair transformer](image-url)
Basic Baseband System

- In 2B1Q, coder maps 2 bits to one of four levels —
 \[A_k = \{-3, -1, 1, 3\} \]

Rectangular Transmit Filter

- The spectrum of \(A_k \) is flat if random.
- The spectrum of \(s(t) \) is same shape as \(H_t(f) \)
- dc component exists
Multi-Level — Low-Noise, Large Bandwidth

- Twice the bit information over same bandwidth!
- More susceptible to noise (but perhaps less noise)
- Commonly called PAM (here 2B1Q — 4-PAM)

![Multi-Level Waveforms](image)

Nyquist Pulses

- For zero intersymbol interference, frequency domain criteria: \(f_s = 1/T \)

\[
\frac{1}{T} \sum_{m = -\infty}^{\infty} H(j2\pi f + jm2\pi f_s) = 1
\]

where \(H(f) = H_L(f)H_c(f)H_r(f) \)

Example Nyquist Pulses (in freq domain)

- **Sinc pulse**
- **Raised-cosine pulse**
Raised-Cosine Pulse

\[f_s = 1/T \]

\[H(j2\pi f) = \begin{cases}
T; & 0 \leq |f| \leq (1 - \alpha)\left(\frac{f_s}{2}\right) \\
\frac{T}{2} \left[1 + \cos \left(\frac{\pi}{2\alpha} \left(\frac{f_s}{f_s} - (1 - \alpha) \right) \right) \right] & (1 - \alpha)\left(\frac{f_s}{2}\right) \leq |f| \leq (1 + \alpha)\left(\frac{f_s}{2}\right) \\
0; & |f| > (1 + \alpha)\left(\frac{f_s}{2}\right)
\end{cases} \]

- \(\alpha \) determines excess bandwidth

Raised-Cosine Pulses

- More excess bandwidth — impulse decays faster.
Raised-Cosine Pulse

- α determines amount of excess bandwidth past $f_s/2$
- Example: $\alpha = 0.25$ implies that bandwidth is 25 percent higher than $f_s/2$ while $\alpha = 1$ implies bandwidth extends up to f_s.
- Larger excess bandwidth — easier receiver
- Less excess bandwidth — more efficient channel use

Example

- Max symbol-rate if a 50% excess bandwidth is used and bandwidth is limited to 10kHz
- $1.5 \times (f_s/2) = 10$ kHz $\Rightarrow f_s = 13.333$ ksymbols/s

Example Waveforms

- Input: -1 -1 -1 +1 +1 -1 -1
- Crest factor: peak to rms ratio — higher crest factor with lower excess bandwidth
• For zero-ISI, \(h_{tc}(t) \otimes h_r(t) \) satisfies Nyquist criterion.
• For optimum noise performance, \(h_r(t) \) \textit{matched-filter}.
• Matched-filter — time-reversed impulse resp \(h_{tc}(t) \)

\[
h_r(t) = K h_{tc}(-t)
\]

where \(K \) is arbitrary constant.
• Not usually best for zero-ISI equalization

\textbf{Matched-Filter — Wh y optimum?}

- Too little signal, Less noise
- Too much noise, All of signal
- Just right — max SNR
Equalization — FFE and DFE Combined

- Assuming correct operation, output data = input data
 — otherwise error propagation in DFE
- $e(n)$ can be either:
 — training: $e(n) = x(n - \text{delay}) - y(n)$
 — decision directed: $e(n) = \delta(n) - y(n)$
- DFE less complex than FFE (trivial multiplies)

Digital Adaptive Filters

- FIR tapped delay line is the most common
LMS Algorithm (and variants)

- **LMS** — \(p_i(n + 1) = p_i(n) + 2\mu e(n) \times x_i(n) \)

Variants to Reduce Complexity

- **Sign-data LMS** — \(p_i(n + 1) = p_i(n) + 2\mu e(n) \times \text{sgn}(x_i(n)) \)
- **Sign-error LMS** — \(p_i(n + 1) = p_i(n) + 2\mu \text{sgn}(e(n)) \times x_i(n) \)
- **Sign-sign LMS** — \(p_i(n + 1) = p_i(n) + 2\mu \text{sgn}(e(n)) \times \text{sgn}(x_i(n)) \)

However, the sign-data and sign-sign algorithms have gradient misadjustment — *may not converge!*

- Might take a few bits (rather than just sign)

Fractionally-Spaced FFE

- Feed forward filter is often a FFE sampled at 2 or 3 times symbol-rate — fractionally-spaced (i.e. sampled at \(T/2 \) or at \(T/3 \))

Advantages

- Allows the matched filter to be realized digitally and also adapt for channel variations (not possible in symbol-rate sampling)
- Also allows for simpler timing recovery schemes (FFE can take care of phase recovery)

Disadvantage

More costly to implement — full and higher speed multiplies, also higher speed A/D needed.
FFE and DFE Combined

Model as:

\[
\begin{align*}
 x(n) \pm 1 & \xrightarrow{H_{tc}(z)} H_1(z) + n_{\text{noise}}(n) \\
 & \xrightarrow{H_2(z)} y(n) \\
 & \xrightarrow{\text{FFE}} y_{\text{DFE}}(n) \\
 & \xrightarrow{\text{output data}} \pm 1 \\
 \delta(n) & = H_1 \\
 Y/N & = H_1 \\
 Y/X & = H_{tc}H_1 + H_2 \\
 & \text{When } H_{tc} \text{ small, make } H_2 = 1 \text{ (rather than } H_1 \to \infty)
\end{align*}
\]

DFE and FFE Combined

- FFE can deal with precursor ISI and postcursor ISI
- DFE can only deal with postcursor ISI (cancellation)
- However, FFE enhances noise while DFE does not

When both adapt

- FFE adds little boost by pushing precursor into postcursor ISI (allpass)
dc Recovery (Baseline Wander)

- Wired channels often ac coupled
- Reduces dynamic range of front-end circuitry and also requires some correction if not accounted for in transmission line-code

Front end may have to be able to accommodate twice the input range!
- DFE can restore baseline wander - lower frequency pole implies longer DFE
- Can use line codes with no dc content — CAP/QAM, DMT, AMI (but not bandwidth efficient)

Baseline Wander Correction

DFE Based

\[
\frac{z - 1}{z - 0.5} = 1 - \frac{1}{2}z^{-1} - \frac{1}{4}z^{-2} - \frac{1}{8}z^{-3} - \ldots \quad \text{STEP INPUT}
\]

0 1 0.5 0.25 0.125 0.0625 0.03125 0.015625 0.0078125 0.00390625 0.001953125 0.0009765625 0.00048828125 0.000244140625...

DFE

\[
\frac{1}{2}z^{-1} + \frac{1}{4}z^{-2} + \frac{1}{8}z^{-3} + \ldots
\]
Sinusoidal Interference

- A sinusoidal interference can be notched out in FFE
- DFE can fill in missing frequency portion

![Diagram of sinusoidal interference notched out in FFE and DFE]

- Effectiveness depends on FFE and DFE lengths — also good SNR so DFE error propagation is small

Quadrature Amplitude Modulation (QAM)

In General

- Start with two independent real signals, \(a(t), b(t) \) — call one real and one imag (for convenience)
 \[
 u(t) = a(t) + j b(t)
 \]
 (6)

- Modulate by \(e^{j \omega_c t} = \cos(\omega_c t) + j \sin(\omega_c t) \) and keep real part
 \[
 y(t) = \sqrt{2} \text{Re}\left\{ u(t) \times e^{j \omega_c t} \right\}
 \]
 \[
 y(t) = \sqrt{2} a(t) \cos(\omega_c t) - \sqrt{2} b(t) \sin(\omega_c t)
 \]
 (7)

- While QAM and single sideband have same spectrum efficiency, QAM does not need a phase splitter
QAM Transmit

- Possibly not symmetrical around carrier frequency

Digital QAM Transmit

- Let $a(t)$ and $b(t)$ be the output of two pulse shaping filters with multilevel inputs, A_k and B_k
QAM

- PAM each independent data stream
- Signal constellations

- Gray encode so that if closest neighbor to correct symbol chosen, only 1 bit error occurs

QAM Receiver

- Treat as two independent streams though they are synchronized in time
- Can use FFE, DFE on each stream as in baseband case.
- Timing recovery shared between two streams
QAM Low Freq Modulation

- Modulate to a low freq f_c just so no dc occurs
 — or perhaps a bit more

$$\begin{align*}
 \cos(\omega_c t) \\
 A_k \rightarrow g(t) \rightarrow a(t) \rightarrow y(t) \\
 B_k \rightarrow g(t) \rightarrow b(t) \rightarrow \sqrt{2} \rightarrow \sin(\omega_c t)
\end{align*}$$

- The choice for f_c depends on excess bandwidth

- Excess bandwidth naturally gives a notch at dc
- For 100% excess bandwidth $f_c = f_s$
- For 20% excess bandwidth $f_c = 1.2 \times f_s/2$
Example — Baseband PAM

- Desired Rate of 4Mb/s — Freq limited to 1.5MHz
- Use 50% excess bandwidth ($\alpha = 0.5$)
- Use 4-level signal (2-bits) and send at 2MS/s

\[G(j2\pi f) \]
\[\alpha = 0.5 \]
\[f_s = 2\text{MHz} \]

Example — QAM

- Desired Rate of 4Mb/s — Freq limited to 1.5MHz
- Use 50% excess bandwidth ($\alpha = 0.5$)
- Use QAM-16 signalling and send at 1MS/s

\[G(j2\pi f) \]
\[G_e(j2\pi f) \]
\[\alpha = 0.5 \]
\[f_s = 1\text{MHz} \]

- Area under two curves same
Example QAM Waveforms

- Only “cos” modulated waveform shown
- QAM waveform always within baseband envelope

CAP (Carrierless AM/PM)

- Can directly create impulse response of two QAM-like signals.

\[
\begin{align*}
A_k &\rightarrow g_i(t) \\
B_k &\rightarrow g_q(t) \quad \boxplus \quad \sqrt{2} \quad y(t)
\end{align*}
\]

\[
g_i(t) = g(t) \cos(\omega_c t) \quad (8)
\]

\[
g_q(t) = g(t) \sin(\omega_c t) \quad (9)
\]

- Not feasible if \(\omega_c \) is much greater than symbol freq
- Two impulse responses are orthogonal

\[
\int_{-\infty}^{\infty} g_i(t) g_q(t) dt = 0 \quad (10)
\]
CAP

- Two matched filters used for receiver

\[
\begin{align*}
&\text{input} \\
&g_f(-t) \quad \mathcal{F} \rightarrow \hat{A}_k \\
g_q(-t) \quad \mathcal{F} \rightarrow \hat{B}_k
\end{align*}
\]

- No need for demodulation by \(\cos \) and \(\sin \)
- Need to adapt each one to separate impulse — should ensure they do not converge to same impulse

CAP and QAM

- CAP same as QAM if carrier is a multiple of \(f_s \)
- Not same if non-multiple (rotating QAM signal)
- CAP waveform might not fall within envelope of baseband signal
CAP/QAM vs. PAM

- Both have same spectral efficiency

- CAP is a passband scheme and does not rely on signals near dc
- More natural for channels with no dc transmission
- Freedom of modulating signal to desired band

- Can always map a PAM scheme into CAP
 - 2-PAM ↔ 4-CAP
 - 4-PAM ↔ 16-CAP
 - 8-PAM ↔ 64-CAP

- Cannot always map CAP scheme into PAM
 - cannot map 32-CAP since \(\sqrt{32}\) not an integer

CAP Equalization

![Diagram of CAP Equalization with mathematical expressions and filter blocks](image-url)
CAP Equalization

FFE operates at 3Fs
- 3 times to satisfy Nyquist sampling
- matched filtering is adaptive
- phase adjustment possible (timing recovery need only find frequency)

FFE are polyphase filters
- Outputs of FFE are immediately downsampled by 3
- N tap filter requires N multiply/accumulates at *downsampled rate*

Deductive Timing Recovery

- Apply non-linearity to generate fs tone.
- Common non-linearity is absolute value
- *Ensemble average* of non-linear circuit output is periodic in T (i.e. tone at fs)
- Thus, f_s component exists (with scrambled data) although not present before non-linearity
Baseband Example (100% excess BW)

- Receive signal
- Absolute value of receive signal
- Average of absolute value of receive signal

average NOT in time but over transmit sequences (100 sequences in this case)

Deductive Timing

- Can pre-filter receive signal to only non-flat portion to reduce jitter — eliminate portion that does not contribute to timing tone.

\[H_{pf}(s) \]

PLL

Rx

\[H_{pf}(s) \]

non-linearity

PLL

Clk
Digital PLL

- Complex modulate signal by \(fs\) (down to dc)
 - Mult by \(\sin(fs)\) and \(\cos(fs)\) (clock at \(3fs\))
- Adjust \(3fs\) until frequency is precisely at dc
 - if positive freq, speed clock up
 - if negative freq, slow clock down

- Sinusoid output tells whether speed up or down
- Use a digital controlled oscillator to adjust freq

A Fractional-N Frequency Synthesizer

- Often need a low jitter clock that can have arbitrary frequency.
- A voltage-controlled crystal oscillator is expensive.
- Use oversampling within a PLL

\[
\frac{f_{xt}}{M} \quad \leadsto \quad \frac{f_{xt}}{PM} \quad \div \quad \frac{Nf_{xt}}{P}
\]

\[N = \{k, k+1\}\]

A digital controlled oscillator
HDSL and ADSL Applications

HDSL Goal
- Transmit 1.544Mb/s over 5.5km of telephone cables
- Symmetric and full-duplex operation
- Baseband and Passband line codes in use today
- Presently two wire pairs (i.e. 4 wires)

ADSL Goal
- Rate-adaptive
- Downstream transmit — 640kb/s to 7Mb/s
- Upstream transmit — 270kb/s to 1Mb/s
- One wire pair — length depends on rate

CAP/QAM HDSL
- Downstream and upstream use same freq band
- Requires effective echo cancellation — high linearity is major challenge
- NEXT limits data rate

![PSD Diagram](slide 48 of 62)
CAP HDSL Transceiver

- Some echo cancellation done in hybrid
- Downsampling by 3 done after FFE (polyphase filters)

CAP/QAM RADSL

- FDM used for downstream and upstream
- Requires more bandwidth but no NEXT limitation — FEXT limits data rate
- Major challenge is to build high performance bandsplit filters
CAP/QAM RADSL

Upstream
- Baud rate fixed at 136 kBaud
- Vary bits/symbol to achieve various data rates
- 3 bits/symbol (272kb/s) to 8 bits/symbol (952kb/s)
- Also coding to achieve 4 dB of coding gain

Downstream
- fx varies from 396 to 1491 kHz
 - 136 kBaud ⇒ fx = 396 kHz
 - 340 kBaud ⇒ fx = 631 kHz
 - 680 kBaud ⇒ fx = 1022 kHz
 - 952 kBaud ⇒ fx = 1335 kHz
 - 1088 kBaud ⇒ fx = 1491 kHz
- 3 bits/symbol to 8 bits/symbol (4 dB coding gain)

RADSL Line Interface Issues

Line Driver
- Transmit launch levels near 20V pp (since self next is not limit and higher freq)
- Bipolar line drivers to obtain linearity and drive — presently separate chip
- Crest factor around 4 (higher for DMT)

Bandsplit Filters
- Often external RLC filtering for linearity reasons
- Might have some internal integrated filtering

Echo Cancellation
- New systems looking at full-duplex over lower band
Echo Cancellation

Received Signal

- For \(d = 4\, km \), a 200kHz signal is attenuated by 40\(dB \).
- Thus, high-freq portion of a 5Vpp signal is received as a 50mVpp signal — **Need effective echo cancellation**

Transmit Path

- Due to large load variations, echo cancellation of analog hybrid is only 6\(dB \)
- To maintain 40\(dB \) SNR receive signal, linearity and noise of transmit path should be better than 74\(dB \).

Line Drivers

- Line driver supplies drive current to cable.
- Often current drive in ethernet case

![Diagram of line driver](image)

- Not practical for high-linearity (no feedback) — large non-linear capacitance affects current out
- Most xDSL line drivers realized as voltage buffers
- High crest factor makes line drivers more challenging
Line Driver

• Can be the most challenging part of analog design.
• Turns ratio of transformer determines equivalent line impedance.

\[V_{ne} = \frac{2}{n} V_2 \]
\[V_1 = \frac{V_2}{n} \]
\[I_1 = nI_2 \]
\[R_1 = \frac{R_2}{n^2} \]

Typical Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_2)</td>
<td>100Ω</td>
</tr>
<tr>
<td>(V_2)</td>
<td>±2.5V</td>
</tr>
<tr>
<td>(I_2)</td>
<td>±25mA</td>
</tr>
</tbody>
</table>

Line Driver

• In CMOS, W/L of output stage might have transistors on the order of 10,000!
• Large sizes needed to ensure some gain in final stage so that feedback can improve linearity — might be driving a 30 ohm load
• When designing, ensure that enough phase margin is used for the wide variation of bias currents
• Nested Miller compensation has been successfully used in HDSL application with class AB output stage
• Efficiency improves as power supplies increase
• Design difficulties will increase as power supplies decreased
Example CMOS Line Driver

- If \(R_L = R_T \), no echo through hybrid
- Can be large impedance variation.

2-4 Wire Hybrid
Typical Line Impedances

Hybrid Issues

- Low frequency pole causes long echo tail in baseband system
 (Baseband HDSL requires 120 tap FIR filter)

Alternatives

- Could eliminate R_1 circuit and rely on digital echo cancellation but more bits in A/D required.

OR

- Can make R_1 circuit more complex to ease A/D specs.
- Less echo return eases transmit linearity spec.
- Might be a trend towards active hybrids
 — Extra D/A to relax A/D converter
 — perhaps 2 A/D converters to relax line driver
References

General

• Special issue on Copper Wire Access Technologies for High Performance Networks, *IEEE Journal on Selected Areas in Communications*, vol. 13, Dec. 1995

CAP/QAM Info

• D. Falconer, Technical memo on CAP, Bell Labs, 1975. (Proposed CAP implementation)

CAP/QAM Comparisons

• T1E1 Standard Contributions (www.t1.org/t1e1/_e14home.htm)
• G.H. Im et al, “51.84 Mb/s 16-CAP ATM LAN standard,” *IEEE Journal on Selected Areas in Communications*, vol. 13, pp. 620-632, May. 1995

• N.A. Zervos and I. Kalet, “Optimized decision feedback equalization versus optimized orthogonal frequency division multiplexing for high-speed data transmission over the local cable network,” *IEEE Proc of Int. Conf. on Comm.*, 1989.