ECE1762 Algorithm LEC17

Computability & Complexity

- \(TM = \) Algorithm = Program

- Problem \(\rightarrow \) 01001...

Translation
(Poly. Time)

\[x \in L \rightarrow TM \xrightarrow{\text{Yes}} w \in L \quad \xrightarrow{\text{No}} w \notin L \]

- Optimization vs Decesion Problem

Example: Max Flow = what is Max Flow in a graph? /Optimization

\(\checkmark \)

Max Flow, = Does \(G \) have a Flow of size \(k \)?

\(\checkmark \)

Not Flow \(k \) and

Not \(G \)

\(E = \{ e_0, e_1, \ldots \} \)

A TM decides a problem if after a finite of \(t \) steps returns w/ answer yes or no.
A TM accepts a problem if when it returns \(w \) yes or no the answer is correct, but as long as machine runs you don't know whether it will terminate or not.

Some things to prove

1. If \(L \) is decidable, then \(\overline{L} \) is also decidable

\[
P \cap \text{co-NP} = P \text{ is closed under complementation}
\]

\[
\begin{array}{ccc}
\text{TM} & \xrightarrow{\text{yes}} & \overline{w} \\
\xrightarrow{\text{no}} & \overline{w} & \overline{w} \\
\end{array}
\]

2. \(\exists \) problem that are undecidable

Halting: Is there a TM that can decide whether given any machine \(M \) & input \(x \) \((M, x)\), \(M \) has H's on \(x \)?

Proof: Diagonalization
Complexity Class \(P \)

\[P \equiv \{ x \in \{0,1\}^* : \exists \text{TM} \text{ that decides } x \text{ in } \text{poly-time} \} \]

THM: \(P = \{ x \in \{0,1\}^* : \exists \text{TM} \text{ to accept } x \text{ in } \text{poly } O(n^c) \text{ time} \} \)

Verification: Given an instance to a problem, and a candidate solution to problem, how "easy" is to verify if it is indeed a solution?

Algorithm \(A \) verifies language \(L \) off given instance \(x \) there exists a certificate (witness) \(y \) s.t. \(A(x,y) = 1 \) or 0 (candidate solution)

Complexity Class \(NP \)

\[NP \equiv \{ x \in \{0,1\}^* : \exists \text{certificate } y \in O(|x|^c) \text{ and poly-time algorithm } A \text{ s.t. } A(x,y) = 1 \} \]

THM: \(P \subseteq NP \)
\(\text{co-NP} \equiv \text{if } L \in \text{NP} \text{ then } \overline{L} \in \text{co-NP} \)

\[\exists L \in \{0,1\}^*: \forall y = O(1 \times 1) \in \text{poly } A(x,y) = \emptyset \]

HAM-CYCLE (NP Class)

Given a connected, undirected graph a simple cycle that traverses all vertices?

\[\exists 0,1\}^* \]

\[L \]

\[\text{NP} \][\[\text{co-NP} \]

\[\text{integer factorization} \]

\[\text{NP} = P \quad \text{NP} \cap \text{co-NP} = P \]

\[\text{NP} = \text{co-NP} \]
Reducibility (informal)

Problem A can be reduced to problem \(B \) if there exists a translation algorithm that maps every instance of A into an instance of B, and there mapped instances back to instances of A.

\[
\begin{array}{c}
\text{A} \\
\downarrow \\
\text{B}
\end{array}
\quad f(a) \\
\downarrow \\
f(A) \\
\downarrow \\
f(a)
\]

Polynomial Time Reducibility

we say that \(L \) is poly-reducible to \(L' \) if \(f(x) \) s.t.

\[
x \in L \iff f(x) \in L'
\]

denoted as \(L \leq_p L' \)

THM: if \(L_1 \leq_p L_2 \) and \(L_2 \in \mathsf{P} \) then \(L_1 \in \mathsf{P} \)

\[
x \rightarrow f(x) \rightarrow TM_{L_2} \rightarrow f(x) \in L_2 \rightarrow f^{-1} \rightarrow \text{solution for } x
\]
Language $L \in$ NP-Complete (NPC) off

- $L \in$ NP (takes poly-time to verify)
- $\exists L' \in$ NP, $L' \leq_{p} L$ (NP-hard)

NP

NPC

P

THM: If $\exists L \in$ NPC & $L \in$ P $\Rightarrow P = \text{NP}$

THM: $\text{NP} = \text{co-NP}$ off $\exists L \in$ NPC st $\overline{L} \in$ NP

\Rightarrow Easy

\Rightarrow Let $L \in$ NPC st $\overline{L} \in$ NP

Peek any $L' \in$ NP, $L' \leq_{p} \overline{L} \Rightarrow \overline{L'} \leq_{p} \overline{L}$

$\Rightarrow \overline{L'} \in$ NP because $\overline{L} \in$ NP

\in co-NP

NP-Complete Methodology

To prove that $L \in$ NPC, do the following
- Show that $L \in$ NP (usually easy to show)
- Peek any known $L' \in$ NPC and show $L' \leq_{p} L$
- anybody $\leq_{p} L'$ $\leq_{p} L$
Cook's Thm (1971) Circuit - SAT ∈ NPC

Given circuit w/ OCN AND/OR/NOT gates & single output. Find an input vector that makes output "1"

(A) Circuit - SAT ∈ NP
(B) If NP problem ≤p Circuit - SAT

Outline of Proof:

\[
\begin{align*}
\text{Circuit - SAT} & \quad \downarrow \\
\text{Formula - SAT} & \quad \downarrow \\
\text{3-SAT} & \\
\downarrow & \\
\text{CLIQUE} & \quad \text{HAM-CYCLE} \\
\downarrow & \quad \downarrow \\
\text{Vertex Cover} & \quad \text{travelling salesman}
\end{align*}
\]
Formula-SAT: Given a formula ϕ with Boolean variables $\land, \lor, \lnot, \iff, (,),$ and $O(n)$ symbols all together, is there an assignment to the variables that make $\phi = 1$?

$$\phi = ((x \lor y) \rightarrow z) \iff (a \land b \land c \rightarrow d)$$

A) Show Formula SAT \in NP

Verification in poly time verified

B) Circuit-SAT can reduce to Formula-SAT

Circuit-SAT \leq_P Formula SAT

Good enough to show an example

$$\phi = x_9 \land ((x_1 \land x_2) \iff x_4) \land (x_5 \iff x_4) \land (x_6 \iff x_4) \land (x_6 \lor x_3) \iff x_7) \land (x_8 \iff \lnot x_5) \land (x_9 \iff (x_8 \lor x_7))$$
ECE1762 Algorithm LEC18

To prove language L is NPC
- Show that $L \in$ NP (verifed in poly-time)
- Pick known NPC language L' and show that $L' \leq_p L$ (NP-hard)

3-SAT
Given a set of clauses with three variables which is a conjunction of disjunctions. Find a satisfying assignment

$$\emptyset = (x_1 \lor x_2 \lor \overline{x}_3) \land (x_4 \lor \overline{x}_1 \lor x_5) \land (\overline{x}_2 \lor x_3 \lor \overline{x}_5) \land \ldots$$

2-SAT = poly time

CNF = Conjunctee Normal Form

Verification
QBF: PSPACE \geq UP
Proof:

A) \(3\text{-SAT} \in \text{NP} \) easy

B) Formula-SAT \(\leq_p \) 3-SAT

Given a Formula \(\phi \) I will create a 3-SAT instance:

\[
\phi = ((x_1 \rightarrow x_2) \lor \neg (\neg x_1 \leftrightarrow x_3) \lor x_4) \land \neg x_2
\]

1) Build a parse tree for formula

\[
\phi = y_1 \lor (y_2 \lor (y_3 \lor y_4))
\]

\[
\begin{align*}
(y_2 \lor (y_3 \lor y_4)) \lor \\
(y_3 \lor (x_1 \rightarrow x_2)) \lor \\
(y_4 \lor (y_5 \lor x_4)) \lor \\
(y_5 \lor \neg y_6) \lor \\
(y_6 \lor (\neg x_1 \leftrightarrow x_3))
\end{align*}
\]

\[
\text{replace with clauses}
\]
2) Build Characteristic Function y_i and Find Maxterms

<table>
<thead>
<tr>
<th>y_1</th>
<th>y_2</th>
<th>x_2</th>
<th>$y_1 \leftrightarrow (y_2 \land \overline{x_2})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>\emptyset</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

$\overline{\phi}_{\text{PART}} = (\overline{y_1} \land y_2 \land \overline{x_2}) \lor (y_1 \land \overline{y_2} \land \overline{x_2}) \lor (y_1 \land y_2 \land x_2) \lor (y_1 \land \overline{y_2} \land x_2)$

$\overline{\phi}_{\text{PART}} = (y_1 \land \overline{y_2} \land x_2) \lor (\overline{y_1} \land y_2 \land x_2)$

$(x \land y) = (x \lor y \lor \overline{p}) \land (x \lor y \lor \overline{p})$

- You have to show reduction
- You have to show solution to 1 \iff solution to 2
- You have to show reduction takes polynomial time
CLIQUE (Complete Graph)

Decesion Problem

Given a graph G does it have a clique of size k?

A) CLIQUE ∈ NPC (Easy)
B) 3-SAT ≤p CLIQUE

\[\phi = (x_1 \lor \bar{x}_2 \lor \bar{x}_3)^\lor (\bar{x}_1 \lor x_2 \lor x_3)^\lor (x_1 \lor \bar{x}_2 \lor \bar{x}_3) \]

\(\phi \) has a solution \iff G has clique of size (\# clauses)

1) Introduce a vertex \(\theta \) literal & "group" according to clauses
2) Connect variables between different groups of not complementing each other
Vertex Cover: Given a graph, a VC is a set of vertices such that every graph edge is adjacent to at least one vertex from the cover.

Decision Problem: does G have VC of size k?

A) $VC \in NP$ (Easy)

B) $CLIQUE \leq_p UC$

\[G \quad \bar{G} \]

Claim: G has a clique of size k iff \bar{G} a VC of size $n-k$

The reduction is poly-time.
Assume Ham Cycle for the following Problem

\[\text{NP Complete} \]

Travelling Salesman Problem

Given a complete graph undirected w/ weights what's the lowest cost simple cycle?

Decision: Does G have a TSP of weight w?

A) TSP \(\in \text{NP(early)} \)

B) HAM CYCLE \(\leq_p \) TSP

1) Given G to find a Ham Cycle, introduce the remaining edges to make Gnew a complete graph

In \(E_{\text{new}} = \begin{cases} \text{weight} \; \phi \; \text{of edge existed in } G \\ \text{weight} \; 1 \; \text{of edge new introduced} \end{cases} \)

Does Gnew have TSP of weight \(\phi \)?