Lab assignment 1: Synchronization

Ding Yuan
Overview of the lab assignment

• Task 1: implementing synchronization primitives
 – 1a: implement lock
 – 1b: implement condition variable

• Task 2: use synchronization primitives to solve problems
 – 2a: Mice and cats
 – 2b: traffic lights
Lock and cond. var.

- Needs atomic region
 - Atomic region can be done in a similar way to semaphore
- If you understand how semaphore is implemented, should be trivial!
 - Cannot use semaphore to implement lock or cond. var.

```c
P(sem) {
    Disable interrupts;
    while (sem->count == 0) {
        thread_sleep(sem); /* current thread will sleep on this sem */
    }
    sem->count--;  
    Enable interrupts;
}

V(sem) {
    Disable interrupts;
    sem->count++; 
    thread_wakeup (sem); /* this will wake up all the threads waiting on this 
                        sem. Why wake up all threads? */ 
    Enable interrupts;
}
```
Synchronization problems

• How to start?
 – First: write operation code
 – Next: carefully reason about all the possible interleaving and timing scenarios
 – Add synchronization
Mice and cats

• Two bowls, multiple cats and mice
• Safety criteria:
 – If a cat is eating at either dishes, no mouse can eat
 – If a mouse is eating at either dishes, no cat can eat
void sem_eat(const char *who, int num, int bowl, int iteration) {
 kprintf("%s: %d starts eating: bowl %d, iteration %d\n", who, num,
 bowl, iteration);
 clocksleeep(1);
 kprintf("%s: %d ends eating: bowl %d, iteration %d\n", who, num,
 bowl, iteration);
}

void mousesem(void * p, unsigned long mousenumber) {
 int bowl, iteration;
 for (iteration = 0; iteration < 4; iteration++) {
 sem_eat("mouse", mousenumber, bowl, iteration);
 }
}

int catmousesem(... ...) {
 for (index = 0; index < NCATS; index++)
 thread_fork("catsem Thread", NULL, index, catsem, NULL);

 for (index = 0; index < NMICE; index++)
 thread_fork("mousesem Thread", NULL, index, mousesem, NULL);
}
About starvation

– You do not need to consider priority or starvation
 • e.g., mice can prevent cat from eating
– Since cats/mice will eventually finish eating, won’t starve forever