# IFFE SiPhotonics-**A Calibration Technique for Microring Modulator Thermal Controller**

## <u>Mahdi Zabihpour<sup>1</sup></u>, Kelly Hunter<sup>1</sup>, Eugene Zailer<sup>1</sup>, Hossein Shakiba<sup>2</sup>, and Ali Sheikholeslami<sup>1</sup>

https://www.ieee-siphotonics.org/wp-content/uploads/sites/6/2023/08/2024-Si-Photonics-logo.png

<sup>1</sup> University of Toronto, Toronto, ON, Canada <sup>2</sup> Huawei Technologies, Toronto, ON, Canada

April 15<sup>th</sup>, 2024

# Outline

## **D** Motivation

# D Background Design D Measurements

## **D** Conclusion

Thermal Controller

## A Calibration Technique for Microring Modulator

# Motivation





A Calibration Technique for Microring Modulator Thermal Controller

## Silicon photonics higher BW, lower power MRM better choice with respect to MZM Inherent WDM functionality to reduce area Sensitive to PVT variation How to reach max OMA

# Background

## Drop-port



# Background



## The ring's resonance is a strong function of temperature The goal is to observe OMA or a related parameter and change the temperature to arrive at maximum OMA How to observe OMA? How to stabilize the temperature? ш

# ~50 pm/ C 1312 1313 Wavelength (nm)





# Ш Actuator:

# Thermal Control Unit (TCU)

Drop-port (dedicated to each channel, suitable for WDM) Through-port (not compatible with WDM)

Heater resistor can be used to thermally lock the resonance wavelength

A Calibration Technique for Microring Modulator Thermal Controller

# To stabilize the temperature and maximize OMA we need sensor and actuator Sensors can either sense temperature (not sufficient) or laser power For laser power sensor, a photodiode can be located at either:

# Through-Port vs Drop-Port Methods



Through-Port Method

Monitor the average power of the modulated laser OMA is a function of average power  $\Box$  Find the ratio of  $P_t/P_i$  or  $P_d/P_i$  that maximizes OMA Set the locking point accordingly by adjusting R1,2

> A Calibration Technique for Microring Modulator Thermal Controller



# Prior works [4,5], used modeling and simulations for determination

# Susceptibility to Process Variation

## Through-Port Method



## It results in zero OMA п

## Subject to Process Variation

The result is a higher susceptibility to process variations  $\vec{t}$ 

A Calibration Technique for Microring Modulator Thermal Controller

![](_page_7_Picture_9.jpeg)

# Relying heavily on simulations and models to determine the locking point TCU fails to lock in 16% and 35% of the time in through-port and drop-port methods

# Susceptibility to Process Variation

![](_page_8_Figure_1.jpeg)

A target OMA of 0.5 mW, is expected to provide a yield of 61% and 36%, respectively

![](_page_8_Figure_5.jpeg)

# This Work

![](_page_9_Figure_1.jpeg)

## Utilizing a calibration method that locks to the max OMA, eliminates failures to lock It also increases expected yield to 83% for the target OMA

![](_page_9_Figure_4.jpeg)

# Proposed Design

![](_page_10_Figure_1.jpeg)

![](_page_10_Figure_4.jpeg)

![](_page_11_Figure_1.jpeg)

## Level 1 ----Level 0 -

![](_page_11_Figure_3.jpeg)

Voltage Port Drop

A Calibration Technique for Microring Modulator Thermal Controller

![](_page_11_Picture_8.jpeg)

## Wavelength

12

![](_page_12_Figure_1.jpeg)

![](_page_12_Figure_2.jpeg)

![](_page_12_Picture_3.jpeg)

Voltage Port Drop

A Calibration Technique for Microring Modulator Thermal Controller

## Wavelength

![](_page_12_Picture_11.jpeg)

![](_page_13_Figure_1.jpeg)

![](_page_13_Figure_2.jpeg)

Voltage Port Drop

![](_page_13_Figure_7.jpeg)

![](_page_14_Figure_1.jpeg)

![](_page_14_Figure_2.jpeg)

![](_page_14_Figure_4.jpeg)

Voltage Port Drop

![](_page_14_Figure_8.jpeg)

![](_page_15_Figure_1.jpeg)

![](_page_15_Figure_2.jpeg)

![](_page_15_Figure_4.jpeg)

$$A_{DP_{0,1}}$$

$$4\left(\lambda_{n} \pm \frac{dl}{2\Delta\lambda}\right)^{2}$$

where

$$\lambda_n = \frac{\lambda - \lambda^*}{\Delta \lambda}$$

![](_page_16_Figure_1.jpeg)

![](_page_16_Figure_2.jpeg)

![](_page_17_Figure_1.jpeg)

![](_page_17_Figure_2.jpeg)

![](_page_18_Figure_2.jpeg)

![](_page_18_Figure_4.jpeg)

Voltage ort do 

A Calibration Technique for Microring Modulator Thermal Controller

![](_page_18_Picture_7.jpeg)

![](_page_19_Figure_2.jpeg)

![](_page_19_Figure_4.jpeg)

Voltage ort do  $\square$ 

A Calibration Technique for Microring Modulator Thermal Controller

![](_page_19_Picture_7.jpeg)

![](_page_19_Figure_9.jpeg)

![](_page_20_Picture_2.jpeg)

![](_page_20_Figure_4.jpeg)

Voltage Port do  $\square$ 

A Calibration Technique for Microring Modulator Thermal Controller

![](_page_20_Figure_7.jpeg)

![](_page_21_Picture_2.jpeg)

![](_page_21_Figure_4.jpeg)

![](_page_21_Figure_5.jpeg)

A Calibration Technique for Microring Modulator Thermal Controller

## $f(A_{DP_0}, A_{DP_1}, dl/\Delta\lambda)$

![](_page_21_Picture_9.jpeg)

![](_page_22_Picture_2.jpeg)

![](_page_22_Figure_4.jpeg)

![](_page_22_Figure_5.jpeg)

A Calibration Technique for Microring Modulator Thermal Controller

![](_page_22_Picture_7.jpeg)

![](_page_23_Figure_1.jpeg)

![](_page_23_Figure_2.jpeg)

## Thermal Controller

A Calibration Technique for Microring Modulator

![](_page_23_Picture_5.jpeg)

# Measurement Results

![](_page_24_Picture_1.jpeg)

I

# Goal is Our thread thread

![](_page_24_Figure_3.jpeg)

# Measurement Results

![](_page_25_Figure_1.jpeg)

**/ ~ ~ ~** 

ſ

.

1

**S** 0.5 0 0.45 had a state  $\overline{\mathbf{U}}$ 0.4 0.35 0.3 -5

![](_page_25_Picture_6.jpeg)

# Conclusion

- Implemented 8-channel WDM transmitter with on-chip TCU in monolithic GF45SPCLO technology
- TCU relies on average power of the modulated laser
- Verified locking to max OMA with a new calibration technique without any high
  - speed circuitry or relying on simulations
- OMA is expected to become significantly more stable against process variations
- Leading to an enhancement in yield from 36% to 83%

# References

[1] C. Sun et al., "A 45 nm CMOS-SOI Monolithic Photonics Platform With Bit-Statistics-Based Resonant Microring Thermal Tuning," in IEEE Journal of Solid-State Circuits, vol. 51, no. 4, pp. 893-907, April 2016, doi: 10.1109/JSSC.2016.2519390 [2] H. Li et al., "A 25 Gb/s, 4.4 V-Swing, AC-Coupled Ring Modulator-Based WDM Transmitter with Wavelength Stabilization in 65 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 50, no. 12, pp. 3145-3159, Dec. 2015, doi: 10.1109/JSSC.2015.2470524 [3] S. Agarwal et al., "Wavelength Locking of a Si Ring Modulator Using an Integrated Drop-Port OMA Monitoring Circuit," in IEEE Journal of Solid-State Circuits, vol. 51, no. 10, pp. 2328-2344, Oct. 2016, doi: 10.1109/JSSC.2016.2592691. [4] H. Li et al., "12.1 A 3D-Integrated Microring-Based 112Gb/s PAM-4 Silicon-Photonic Transmitter with Integrated Nonlinear Equalization and Thermal Control," 2020 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2020, p. [5] J. Sharma et al., "Silicon Photonic Microring-Based 4  $\times$  112 Gb/s WDM Transmitter With Photocurrent-Based Thermal Control in 28-nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 57, no. 4, pp. 1187-1198, April 2022, doi: 10.1109/JSSC.2021.3134221

A Calibration Technique for Microring Modulator

A Calibration Technique for Microring Modulator Thermal Controller

![](_page_28_Picture_9.jpeg)

29