
IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 6, JUNE 2010 1091

A 5-Gb/s ADC-Based Feed-Forward CDR
in 65 nm CMOS

Oleksiy Tyshchenko, Ali Sheikholeslami, Senior Member, IEEE, Hirotaka Tamura, Member, IEEE,
Masaya Kibune, Hisakatsu Yamaguchi, and Junji Ogawa, Member, IEEE

Abstract—This paper presents an ADC-based CDR that blindly
samples the received signal at twice the data rate and uses these
samples to directly estimate the locations of zero crossings for the
purpose of clock and data recovery. We successfully confirmed the
operation of the proposed CDR architecture at 5 Gb/s. The receiver
is implemented in 65 nm CMOS, occupies 0.51 mm�, and consumes
178.4 mW at 5 Gb/s.

Index Terms—Clock and data recovery, CDR, ADC-based CDR,
feed-forward CDR, blind-sampling CDR, all-digital CDR.

I. INTRODUCTION

C OMMUNICATION standards reflect the growing de-
mand for higher data rates in wireline channels. The

rapidly evolving integrated circuit (IC) technologies enable the
transceivers to keep up with these high data rates. The advance-
ment of the channels, however, typically lags the advancement
of the IC technologies. As a result, current multi-Gb/s standards
require the transceivers to operate in the presence of high signal
attenuation.

Receivers with binary samplers typically compensate the
received signal for channel loss in the analog domain, prior
to sampling, using feed-forward equalization (FFE), decision
feedback equalization (DFE) or both. This analog equalization
limits the amount of channel compensation that can practically
be implemented in an integrated receiver. Replacing the binary
sampler with an analog-to-digital converter (ADC), as shown
in Fig. 1, allows integration of extensive digital signal pro-
cessing (DSP) into the receiver to compensate for high channel
distortion after the signal is sampled.

Recently reported ADC-based clock and data recovery
(CDR) circuits align the sampling clock with the received
signal using a phase-tracking feedback loop [1]–[4], as shown
in Fig. 1(a). This architecture requires a voltage-controlled
oscillator (VCO) or a phase interpolator (PI), both analog
circuits, to adjust the phase of the sampling clock. To eliminate
these analog circuits (and their phase control) in favor of an
all-digital implementation, a blind-sampling ADC-based CDR
(shown in Fig. 1(b)) samples the received signal without phase

Manuscript received August 28, 2009; revised January 04, 2010; accepted
February 20, 2010. Current version published June 09, 2010. This paper was
approved by Associate Editor Jafar Savoj.

O. Tyshchenko and A. Sheikholeslami are with the Department of Electrical
and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4,
Canada (e-mail: tyshche@eecg.utoronto.ca; ali@eecg.utoronto.ca).

H. Tamura, M. Kibune, H. Yamaguchi, and J. Ogawa are with Fujitsu Labo-
ratories, Kawasaki 211-8588, Japan.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSSC.2010.2047156

Fig. 1. ADC-based CDR architectures: (a) phase-tracking CDR; (b) blind-sam-
pling interpolating feedback CDR; (c) blind-sampling feed-forward CDR (this
work).

locking to the signal. The CDR then interpolates between the
blind samples to obtain a new set of samples in order to recover
phase and data [5], [6]. The interpolator, however, is relatively
complex and since it remains in the CDR loop, it contributes to
the loop latency.

In this paper, we propose a feed-forward CDR architecture,
shown in Fig. 1(c), that estimates the data phase directly from
the blind digital samples, hence eliminating the need for digital
interpolation. In this architecture, we use a low-complexity dig-
ital phase detector (PD) and data decision circuits along with a
digital FFE. We have implemented and characterized the pro-
posed CDR in 65 nm CMOS at 5 Gb/s.

The remainder of this paper is organized as follows. Section II
reviews basic concepts of binary and ADC-based sampling in
CDRs. Section III presents the proposed feed-forward CDR ar-
chitecture. Section IV describes the implementation of the dig-
ital CDR. Section V validates the proposed architecture through
the CDR simulations and the test-chip measurements. Finally,
Section VI concludes this paper.

II. BACKGROUND

A conventional phase-tracking CDR with a binary front-end
samples the received signal with a flip-flop and represents every

0018-9200/$26.00 © 2010 IEEE

Authorized licensed use limited to: The University of Toronto. Downloaded on July 25,2010 at 14:27:59 UTC from IEEE Xplore. Restrictions apply.

1092 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 6, JUNE 2010

Fig. 2. Binary and ADC-based sampling schemes: (a) phase-tracking binary
sampling at �� ; (b) phase-tracking ADC sampling at � ; (c) blind ADC sam-
pling at �� .

sample with a single bit. These binary samples preserve the sign
of the signal at the sampling instances, but discard the magni-
tude of the signal. In Fig. 2(a), we use (hat) to denote binary
samples. To recover clock and data, the CDR samples the signal
at twice the baud rate, : it takes two samples in every unit
interval (UI)—one close to UI center, , and one close to UI
edge, . The samples capture only 2 bits of information for
every UI. The CDR then uses the UI edge samples, , along
with their surrounding UI center samples, and , to drive
the phase-tracking feedback loop in order to recover the clock
and to align the sampling instances with the received signal. The
UI center samples, , become the recovered data.

An ADC-based CDR, in contrast, samples the signal with an
ADC (instead of a flip-flop) and represents every sample with
multiple bits, say 5 bits. These digital samples preserve both
the sign and the magnitude of the signal, as shown in Figs. 2(b)
and (c). The digital samples capture more information about the
signal at the sampling instances, compared to binary samples.
This extra information in the samples allows the ADC-based
CDRs to recover clock and data using either phase-tracking
sampling at or blind sampling at , as we will discuss
next.

Recently published phase-tracking ADC-based CDRs sample
the signal at : they take one sample per UI close to UI center,
as shown in Fig. 2(b) [1]–[4]. The CDR then extracts the timing
information from the baud-rate samples, , to drive the phase-
tracking loop. Mueller-Müller scheme [7] is typically used for
this timing recovery. This scheme relies on the timing estima-
tion from the impulse response of the channel in the presence

Fig. 3. Mueller-Müller timing recovery scheme. (a) Impulse response. (b) Con-
tinuous data.

of some inter-symbol interference (ISI). To illustrate this, we
use a sample impulse response shown in Fig. 3(a). In this ex-
ample, is the signal cursor, while and are the first
pre- and post-cursors of the signal. If the signal is sampled such
that , then is close to the maximum of the im-
pulse response, which is the desirable sampling phase. Hence,
a function indicates if the sampling phase is
early or late for optimum sampling, and it can guide a timing
recovery from the baud-rate samples. Mueller and Müller also
showed in [7] that a simple operation estimates this timing func-
tion from a continuous data stream in the average sense:

. In this equation, and are the
signal samples, while and are the corresponding de-
cisions bits. In Fig. 3(b) we illustrate this estimation of timing
from continuous data through a simplified example. Since the
timing recovery aligns the samples with UI centers, the signs
of the samples are the recovered data. In this CDR scheme,
the timing function is specific to the channel response. If the
pre- and post-cursors in the channel impulse response are asym-
metric then the timing function used in our example does not
converge. Thus, the Mueller-Müller scheme is not suitable for
applications with a wide variety of potential channel responses.

Blind-sampling ADC-based CDRs sample the received signal
without aligning the sampling instances to the signal. Out of two
common sampling rates, and , blind nature of sampling
rules out sampling at , since in the worst case, the baud-rate
samples might fall on UI edges, which makes error-free data re-
covery practically impossible. Hence, typical blind ADC-based
CDRs sample the signal at , as illustrated in Fig. 2(c). To
recover clock and data, the CDR interpolates between the blind
samples, , a new set of two samples per UI—the phase-locked
set [5], [6]. In the phase-locked set, one sample is close to UI
center and the other sample is close to UI edge. The CDR then
uses the interpolated UI edge samples to drive the digital phase
recovery loop in order to align the interpolated samples with the
received signal. The signs of the interpolated UI center samples
become the recovered data.

Since digital samples capture both the sign and the magnitude
of the signal, ADC-based CDRs implement the channel equal-
ization after sampling in the digital domain. This post-sampling

Authorized licensed use limited to: The University of Toronto. Downloaded on July 25,2010 at 14:27:59 UTC from IEEE Xplore. Restrictions apply.

TYSHCHENKO et al.: A 5-GB/S ADC-BASED FEED-FORWARD CDR IN 65 NM CMOS 1093

digital equalization allows ADC-based CDRs to integrate a
higher degree of channel equalization, compared to pre-sam-
pling analog equalization in binary CDRs. This, in turn, makes
the ADC-based CDRs preferable over binary CDRs for appli-
cations that require a high degree of compensation for channel
distortion.

Baud-rate phase-tracking ADC-based CDRs, similar to bi-
nary phase-tracking CDRs, require a feedback loop that crosses
the analog/digital domain boundaries and contains a phase ad-
justable clock generator—a VCO or a PI. Blind-sampling ADC-
based CDRs implement the phase-tracking loop entirely in the
digital domain, preventing the loop from crossing the analog/
digital domain boundaries. This all-digital loop implementation
comes at the cost of doubling the ADC conversion rate from

to , increasing the ADC area and power consumption.
The increased sampling rate, on the other hand, allows to elimi-
nate the VCO/PI from the CDR, which reduces the circuit com-
plexity and loop latency, thus increasing the jitter-tracking band-
width. Furthermore, containing the phase-tracking loop in the
digital domain simplifies the design and verification process for
the blind-sampling CDRs, and it allows to take full advantage
of the IC technology scaling.

The blind-sampling CDR architecture imitates the
phase-tracking clock and data recovery by means of digital
interpolation. The interpolator in the feedback loop, however,
is a relatively complex block, and its latency contributes to the
total latency of the digital phase-tracking loop, which has a
negative impact on the loop stability.

In the next section, we present our proposed feed-for-
ward ADC-based CDR architecture that eliminates the
phase-tracking loop from the CDR. In this architecture,
we recover the clock and data directly from the blind digital
samples without the need for interpolation, thus reducing the
CDR complexity.

III. PROPOSED CDR ARCHITECTURE

Fig. 4 presents the block diagram of the proposed blind-sam-
pling ADC-based receiver with feed-forward CDR architecture.
We sample the received signal, , with two time-interleaved
5-GS/s 5-bit ADCs. A two-phase blind sampling clock triggers
the ADCs to take 2 samples per UI. We refer to the phases of the
sampling clock as 0 phase and 180 phase. A 2:32 demux then
feeds 32 samples with 5-bit resolution at every 16 UI interval
to the digital CDR. A 1:16 clock divider divides the sampling
clock to trigger the digital CDR. A two-tap FFE compensates
the received signal for the channel loss such that both samples
in each UI are equalized. A phase detector (PD) uses the equal-
ized samples to estimate the instantaneous zero-crossing phase,

, for every UI with a data transition. A phase subtracter with
a low-pass filter (LPF) in a feedback loop form the phase-re-
covery filter of the CDR. This filter uses to generate the av-
erage zero-crossing phase, . Since we use only the input
and the output of the phase-recovery filter (and no internal sig-
nals), the CDR is of a feed-forward type.

A slicer and a data decision block compose the data decision
path of the CDR. In this path, the slicer detects the signs of the
equalized samples to represent each sample with a single bit.
Then, the data decision block picks one sliced sample per UI as

Fig. 4. Block diagram of receiver with feed-forward CDR architecture.

Fig. 5. Linear estimation of instantaneous phase, � .

a data bit by comparing the instantaneous phase, , with the
average phase, , for every UI.

In the following section, we describe the implementation of
the digital CDR.

IV. CDR IMPLEMENTATION

A. Phase Detector

The PD estimates the data zero-crossing phase from the
equalized digital samples of the received signal. We refer to
this phase as the instantaneous zero-crossing phase, . The
PD processes the samples from 16 cycles of the sampling clock
in parallel (2 samples per cycle) and outputs for the UIs
with data transitions.

Fig. 5 illustrates the phase detection scheme through an ex-
ample of a single cycle of the sampling clock. The PD looks at 3
consecutive samples: A, B and C, which correspond to 0 , 180
and 360 phases of the blind sampling clock. Since sample C
corresponds to 360 phase, it is also sample A (0 phase) in the
following cycle of the sampling clock.

When two adjacent samples have opposite signs (A and B
in our example), the PD linearly estimates the time of zero-
crossing between these two samples with respect to 0 phase
of the sampling clock. We mark the estimated zero crossing as
point X in Fig. 5. We find from two proportional triangles:
ABL and AXK. The adjacent samples are 0.5 UI apart in time,
which makes side BL of ABL a constant equal to 0.5 UI. Side
AL of ABL is the sum of amplitudes of A and B, while side AK
of AXK is the amplitude of A. Thus, we find , which is side
XK of AXK, as a ratio:

(1)

To maintain low circuit complexity, we limit the accuracy of this
division to 2 bits. The flowchart in Fig. 6 shows that this 2-bit

Authorized licensed use limited to: The University of Toronto. Downloaded on July 25,2010 at 14:27:59 UTC from IEEE Xplore. Restrictions apply.

1094 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 6, JUNE 2010

Fig. 6. Flowchart of 2-bit accurate division for calculating � .

accurate division requires only simple operations: addition/sub-
traction and left shift by 2 (multiply by 4 in decimal).

Since A and B are 0.5 UI apart, the total resolution of is
3 bits per UI. When a transition takes place between B and C,
(1) becomes

(2)

which simply changes the most significant bit (MSB) of
from ‘0’ to ‘1’. We postpone the discussion of the effect of lim-
iting the accuracy to 3 bits till the Data Decision subsection.

Nominally, there is at most one data transition in every cycle
of the sampling clock: either between A and B or between B and
C. However, duty-cycle distortion (DCD) and frequency offset
between transmitter and receiver might cause two transitions per
sampling cycle: between A and B as well as between B and
C. When two such transitions occur, the PD calculates as
modulo-1 sum of both zero-crossing phases so that both transi-
tions contribute to the average phase recovery. This summation
allows the phase detection scheme to estimate the data phase in
the presence of DCD and frequency offset between transmitter
and receiver.

In the following subsection we describe the phase recovery
filter that we implemented in the CDR.

B. Phase Recovery Filter

The phase recovery filter averages the instantaneous phase,
, to recover the average zero-crossing phase, . Similar

to PI control in conventional phase-tracking CDRs, in our
feed-forward architecture tracks the data phase in an average
sense. For this phase tracking, we use a discrete-time IIR filter
shown in Fig. 7. The filter consists of a phase subtracter and a
3rd order low-pass filter (LPF) in a feedback loop.

The phase subtracter, shown in the left inset of Fig. 7, calcu-
lates the phase difference between and for 16 UIs at a
time and outputs the combined phase error, , for these 16
UIs. To assure that the phase recovery converges for any offset
between and , we calculate in a modulo manner
such that is in the range [, 0.5) UI. The subtracter
excludes the UIs without data transitions from contributing to

. in our architecture plays the same role as the PD
output in a conventional phase-tracking CDR.

We feed into the 3rd order LPF, which consists of three
cascaded discrete-time delaying integrators with gains
and . There are three forward paths in the LPF: 1st, 2nd and
3rd order paths (see the right inset in Fig. 7). These three paths

Fig. 7. Phase recovery filter.

add up to the average (recovered) phase, . The transfer
function of the entire phase recovery filter is

(3)

where is the forward gain of the LPF:

(4)

Three criteria determine the filter gain values: the desired
jitter-tracking bandwidth of the CDR, the absence of gain
peaking in the jitter-transfer function of (3), and the low-cir-
cuit-complexity filter implementation. First, we choose the
CDR jitter-tracking bandwidth (approximately 5 MHz in the
proposed receiver). Then, we determine through simulations the
gain values that achieve this bandwidth while minimizing the
gain peaking in the jitter transfer function. Finally, we round-off
the gain values to the nearest easy-to-implement values in bi-
nary. This procedure leads to , and

. To illustrate the low complexity gain implemen-
tation, is implemented as , where
gains of and are obtained through right-shifting the
input value by 5 and 6 bits. In a similar manner, and
are composed of right-shift and addition operations to maintain
the low circuit complexity. We used these gain values in the
simulations and measurements presented in Section V.

To explore the effect of the order of the phase-recovery filter
on the CDR performance, we reduced the filter order from 3rd
to 2nd and 1st, and simulated the CDR’s jitter tolerance, as il-
lustrated in Fig. 8. Note that in all three cases, the CDR’s jitter-
tracking bandwidth remains constant. As the order changes from
1st to 2nd, the high-frequency jitter tolerance improves by ap-
proximately 0.2 UI . Furthermore, with the use of the 2nd
order filter, the jitter tolerance roll-off slope increases allowing
for a higher tolerance at low frequencies. The 3rd order filter
shows a small improvement of the jitter tolerance compared to
the 2nd order filter: the high-frequency jitter tolerance remains
unchanged, but the low-frequency jitter tolerance increases by
up to 3 (at 32 kHz for instance). For a safe design with a high

Authorized licensed use limited to: The University of Toronto. Downloaded on July 25,2010 at 14:27:59 UTC from IEEE Xplore. Restrictions apply.

TYSHCHENKO et al.: A 5-GB/S ADC-BASED FEED-FORWARD CDR IN 65 NM CMOS 1095

Fig. 8. Jitter tolerance dependence on the LPF order (simulated).

tolerance to low-frequency jitter, we use the 3rd order filter in
the proposed feed-forward CDR.

The resolution of the intermediate phase values in the integra-
tors is 16 bits: 10 least significant bits represent the fractional
part of the phase (1 UI long period), while 6 most significant
bits represent the integer part. To tolerate the jitter exceeding 64
UIs (UIs), we use ‘roll-over’ rather than ‘saturating’ counters
in the integrators.

The CDR uses the recovered along with for data de-
cision according to the scheme that we present in the following
subsection.

C. Data Decision

The proposed feed-forward clock recovery eliminates the in-
terpolator from the CDR thus reducing the circuit complexity.
As a consequence of this interpolator elimination, the value of
the signal at the UI center is not interpolated and therefore is
unknown. To enable error-free data recovery along with the
feed-forward clock recovery, a data decision scheme is essen-
tial to the proposed feed-forward CDR. The role of the data de-
cision block is to estimate the sign of the received signal near
the maximum eye opening, i.e., near the UI center. Since
indicates the average position of the UI boundaries, we calcu-
late the position of the UI centers by adding 0.5 UI to
using modulo-1 addition. We refer to this UI center phase as the
data-picking phase, . The data decision block takes the
sliced samples from 16 sampling cycles and picks one decision
sample for every UI by comparing and .

Fig. 9 illustrates the data-picking scheme through an example
of a single sampling cycle. The data decision block takes three
consecutive sliced samples (A, B and C) and picks one of these
samples as the decision bit. This decision bit is picked such that
it is close to the UI center. We will now explain how this scheme
recovers data in a jitter-free case and in the presence of jitter.

In a jitter-free case shown in Fig. 9(a), coincides with
, and hence it is 0.5 UI away from . in fact

points to the UI in which we are recovering the data (shaded
in the figure). The decision scheme thus picks one of the two
samples adjacent to : either A or B in our example. In a

Fig. 9. Data decision scheme. (a) Jitter-free case; (b) jitter example 1; (c) jitter
example 2.

jitter-free case, both samples adjacent to have the same
sign and hence the decision is trivial.

In the presence of jitter, the two samples adjacent to
might belong to different UIs, and these samples might have
opposite signs, as we illustrate in Figs. 9(b) and (c). In this case,
the data decision scheme picks the sample that belongs to the
same UI to which points (shaded UI in the figure). For
instance, in Fig. 9(b) the jitter causes to shift left compared
to Fig. 9(a) and we pick A as the decision data. In the example
of Fig. 9(c), shifts right compared to Fig. 9(a) and we pick
sample B. This scheme requires a single comparison between

and for every UI.
Simulations revealed that jitter, limited channel bandwidth

and duty cycle distortion (DCD) reduce the width of UI-long
data pulses and thus cause two transitions per sampling cycle.
We refer to this case as an isolated pulse. Fig. 10 illustrates a
nominal and isolated UI-long pulses. In the nominal case of
Fig. 10(a), samples B and C are equidistant from , which
makes both samples equally correct decisions. However, in the
presence of isolated pulses (Figs. 10(b) and (c)), two transitions
per UI prohibit defining a single instantaneous phase value, .
As a consequence, a comparison between and proves
insufficient for a correct data decision. The data-picking scheme
detects these isolated pulses using XOR operation on every pair
of consecutive samples. It then disregards the phase informa-
tion and picks the sample at the center of the pulse, i.e., farthest
from both transitions. When two transitions happen in the same
sampling cycle between A and B, and between B and C (see
Fig. 10(b)), we pick B as the decision data. In a similar manner
we check for isolated pulses at the boundary between two con-
secutive sampling cycles. As Fig. 10(c) illustrates, when we de-
tect a transition between B and C in sampling cycle , and be-
tween A and B in cycle , we pick C (A) as the
decision bit.

Authorized licensed use limited to: The University of Toronto. Downloaded on July 25,2010 at 14:27:59 UTC from IEEE Xplore. Restrictions apply.

1096 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 6, JUNE 2010

Fig. 10. Data decision with isolated pulses. (a) Nominal pulse width, jitter-free
case; (b) two transitions in the same cycle; (c) two transitions in adjacent cycles.

The proposed data decision scheme based on the comparison
between and recovers the data correctly when
deviates by up to 0.5 UI in either direction. Hence, the CDR
has the theoretical maximum jitter tolerance of 1 UI at high
frequencies. Estimating with 3-bit accuracy (instead of in-
finite accuracy) results in the reduction of the high frequency
tolerance by only 1/8 UI. We postpone further discussion of the
jitter tolerance till Section V.

To prevent data errors due to a frequency offset between the
transmitter and the receiver, we rely on flow control at the data
link layer of the communication protocol. We discuss the fre-
quency offset compensation scheme next.

D. Compensation for Frequency Offset

The transmitter clock determines the data rate at the input of
the CDR, while the blind sampling clock determines the data
rate at the output of the CDR. Since these two clocks are free-
running with respect to each other, a frequency offset between
them is inevitable. This frequency offset, in turn, leads to a mis-
match between the data rates at the input and at the output of the
CDR. A flow control technique compensates for this rate mis-
match at the data link layer of the communication protocol.

A small frequency offset between the transmitter and the re-
ceiver clocks causes the recovered average phase, , to con-
stantly shift in one direction. For instance, if the transmitter
clock has a higher frequency than the receiver clock, con-
stantly reduces, indicating that the received UI is shorter than the
period of the sampling clock. Thus, , as well as ,
can be used as an indicator of the frequency offset. In our CDR,
we use for this purpose. When crosses the UI
boundaries, the data decision block outputs 15 or 17 valid bits,
while it outputs 16 valid bits when remains within the UI
boundaries.

Multiple instances of 17 valid data bits at the CDR output (in-
stead of nominal 16 bits) eventually leads to a data overflow at
the data link layer of the protocol. In this case, the flow con-
trol reduces the data flow rate from the transmitter by reducing
transmitted data window size. This approach allows the physical

Fig. 11. Simulated jitter tolerance.

layer of the protocol (the CDR) to eliminate the generation of
the recovered clock and hence to reduce the CDR complexity.

The following section presents the results of the CDR simu-
lations and of the test-chip measurements.

V. SIMULATION AND MEASUREMENT RESULTS

To validate the proposed CDR architecture, we first simulated
the CDR on a behavioral level, and then we fabricated and char-
acterized a receiver with this CDR in 65 nm CMOS.

To simulate the CDR, we used an event-driven behavioral
model [9] in Simulink. This model accounts for limited channel
BW, supports asynchronous clock domains, and allows adding
multiple jitter sources into the simulation. Fig. 11 presents the
simulated jitter tolerance and summarizes the simulation condi-
tions. In these simulations, we superimposed sinusoidal jitter on
random, deterministic jitter (RJ and DJ) and a frequency offset
between the transmitter and receiver. We simulated the CDR
with a 5 Gb/s 2 1 PRBS sequence passed through a channel
with 13 dB attenuation at 2.5 GHz. The transmitter pre-em-
phasis is 3 dB. To maintain reasonable simulation time, we ran
the simulations for UIs for jitter frequencies, , above
250 kHz, and for 1 jitter period for below 250 kHz, which
corresponds to . We set a nominal frequency
offset between transmitter and receiver clocks, , to 600
ppm. In addition to this nominal value, we added due to
spread-spectrum clocking (SSC) of up to 5000 ppm at 32 kHz.
This SSC-induced offset was added both at the transmitter and at
the receiver for a total of up to 10600 ppm. The variance

Authorized licensed use limited to: The University of Toronto. Downloaded on July 25,2010 at 14:27:59 UTC from IEEE Xplore. Restrictions apply.

TYSHCHENKO et al.: A 5-GB/S ADC-BASED FEED-FORWARD CDR IN 65 NM CMOS 1097

Fig. 12. Receiver test-chip photo.

of RJ was adjusted to reach the reported peak-to-peak values
within each simulation run. These simulations confirm that the
proposed CDR recovers error-free data at 5 Gb/s in the pres-
ence of jitter on the transmitter and the receiver sides, frequency
offset up to 1.06%, and channel loss of 13 dB at 2.5 GHz.

We implemented a receiver with the proposed CDR architec-
ture in 65 nm standard-logic CMOS. Fig. 12 presents the die
photo of the fabricated receiver. The ADC, frequency divider,
PI and the 2:8 portion of 2:32 demux are analog custom-de-
signed blocks. The 8:32 portion of 2:32 demux, the FFE, CDR
and the test structures (PRBS comparator and test register) are
all synthesized.

The ADC consists of two time-interleaved 5 GS/s 5-bit in-
terpolating flash ADCs to achieve the total sampling rate of 10
GS/s. To reduce the receiver input loading, the ADC evaluates
four most significant bits (MSBs) using 17 comparators at the
front end, and resistively interpolates the least significant bit
(LSB) to achieve the 5-bit resolution. The ADC has a measured
ENOB of 4.2 bit and a power consumption of 110 mW. After
the signal samples are demuxed, we compensate the samples
for the channel loss using a half-UI-spaced 2-tap FIR filter as
an FFE. The filter tap coefficients are programmable through
a serial shift register. The FFE compensates for up to 15 dB
of channel attenuation at 2.5 GHz. Since both unequalized and
equalized samples are available in the digital domain, the FFE
adaptation algorithm can be implemented entirely in the digital
domain. The FFE compensates the blind samples for the channel
attenuation prior to the CDR, which makes the equalization in-
dependent of the clock and data recovery.

Fig. 13 presents the measured jitter tolerance of the fabri-
cated receiver and summarizes the measurement conditions. In
these measurements, we used a 2 1 PRBS sequence running
at 5 Gb/s as the data source. The channel attenuation is 10 dB at

Fig. 13. Measured jitter tolerance.

2.5 GHz. We used a 3 dB pre-emphasis at the transmitter with
the launch amplitude of 750 mV . The measured jitter toler-
ance was recorded at . For a comparison between
the simulated and measured results, we included a simulated
jitter tolerance with the same data source and channel loss into
Fig. 13. The measured and simulated jitter tolerances closely
match each other. The receiver consumes 178.4 mW at 5 Gb/s,
including the ADC. The entire receiver occupies the chip area
of 0.51 mm (test structures excluded).

VI. CONCLUSION

We presented a blind-sampling ADC-based feed-forward
CDR architecture. In this architecture, we sample the received
signal blindly with an ADC at twice the baud-rate. The blind
sampling allows removing the phase-tracking feedback loop
from the CDR, thus simplifying the receiver architecture. We
recover the data phase directly from digital signal samples in a
feed-forward manner, hence eliminating the need for a digital
interpolating feedback loop. This feed-forward topology re-
duces the CDR circuit complexity compared to blind-sampling
interpolating CDRs.

We fabricated a receiver with this feed-forward architecture in
65 nm CMOS. The test-chip successfully recovers data at 5 Gb/s
in the presence of channel attenuation of 10 dB at 2.5 GHz. The
receiver occupies 0.51 mm of die area and consumes 178.4 mW
of power. Our CDR simulations and test-chip measurements
confirm that the proposed architecture is suitable for high-speed
serial links.

Authorized licensed use limited to: The University of Toronto. Downloaded on July 25,2010 at 14:27:59 UTC from IEEE Xplore. Restrictions apply.

1098 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 45, NO. 6, JUNE 2010

ACKNOWLEDGMENT

The authors thank Chihiro Sannomiya for her assistance with
test-chip design and verification.

REFERENCES

[1] J. Cao et al., “A 500 mW digitally calibrated AFE in 65 nm CMOS for
10 Gb/s serial links over backplane and multimode fiber,” in IEEE Int.
Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2009, pp. 370–371.

[2] O. Agazzi et al., “A 90 nm CMOS DSP MLSD transceiver with inte-
grated AFE for electronic dispersion compensation of multimode op-
tical fibers at 10 Gb/s,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp.
2939–2957, Dec. 2008.

[3] M. Harwood et al., “A 12.5 Gb/s SerDes in 65 nm CMOS using a
baud-rate ADC with digital receiver equalization and clock recovery,”
in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2007,
vol. 591, pp. 436–437.

[4] H.-M. Bae et al., “An MLSE receiver for electronic dispersion com-
pensation of OC-192 fiber links,” IEEE J. Solid-State Circuits, vol. 41,
no. 11, pp. 2541–2554, Nov. 2006.

[5] F. Gardner, “Interpolation in digital modems—Part I: Fundamentals,”
IEEE Trans. Commun., vol. 41, no. 3, pp. 501–507, Mar. 1993.

[6] M. Spurbeck and R. Behrens, “Interpolated timing recovery for hard
disk drive read channels,” in Proc. IEEE Int. Conf. Communications,
Jun. 1997, vol. 3, pp. 1618–1624.

[7] K. Mueller and M. Müller, “Timing recovery in digital synchronous
data receivers,” IEEE Trans. Commun., vol. 24, no. 5, pp. 516–531,
May 1976.

[8] R. Johnson, Jr. et al., “Blind equalization using the constant modulus
criterion: A review,” Proc. IEEE, vol. 86, no. 10, pp. 1927–1950, Oct.
1998.

[9] M. van Ierssel et al., “Event-driven modeling of CDR jitter induced
by power-supply noise, finite decision-circuit bandwidth, and channel
ISI,” IEEE Trans. Circuits Syst. I, vol. 55, no. 5, pp. 1306–1315, Jun.
2008.

Oleksiy Tyshchenko received the B.A.Sc. degree
(with honors) in electrical engineering from the Divi-
sion of Engineering Science in 2004 and the M.A.Sc.
degree in electrical and computer engineering in
2006, both from the University of Toronto, Toronto,
ON, Canada. He is currently working toward the
Ph.D. degree in the Department of Electrical and
Computer Engineering, University of Toronto. In
2006, he spent 6 moths as an intern with Fujitsu Labs
of America working on circuit design for high-speed
signaling applications.

His research interests are in the design of clock and data recovery (CDR)
systems for high-speed ADC-bases receivers. He is also interested in the archi-
tecture and circuit design for content-addressable memories (CAM).

Mr. Tyshchenko has held the Natural Sciences and Engineering Research
Council of Canada (NSERC) postgraduate scholarship and the Ontario Grad-
uate Scholarship (OGS).

Ali Sheikholeslami (S’98–M’99–SM’02) received
the B.Sc. degree from Shiraz University, Shiraz, Iran,
in 1990 and the M.A.Sc. and Ph.D. degrees from the
University of Toronto, Toronto, ON, Canada, in 1994
and 1999, respectively, all in electrical and computer
engineering.

In 1999, he joined the Department of Electrical
and Computer Engineering, University of Toronto,
where he is currently an Associate Professor. His
research interests are in the areas of analog and
digital integrated circuits, high-speed signaling, and

VLSI memory design. He currently supervises two active research groups in
the areas of high-speed signaling and VLSI memories. He has collaborated
with industry on various VLSI design research in the past few years, including
work with Nortel and Mosaid, Canada, and with Fujitsu Labs of Japan and
America. He spent his 2005–2006 research sabbatical year with Fujitsu Labs
of Japan and Fujitsu Labs of America.

Dr. Sheikholeslami served on the Memory Subcommittee of the IEEE Inter-
national Solid-State Circuits Conference (ISSCC) from 2001 to 2004, and on
the Technology Directions Subcommittee of the same conference from 2002
to 2005. He currently serves on the Wireline Subcommittee of ISSCC. He pre-
sented a tutorial on ferroelectric memory design at ISSCC 2002 and a tutorial
on high-speed signaling at ISSCC 2008. He is an Associate Editor for the IEEE
TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS. He was the
program chair for the 34th IEEE International Symposium on Multiple-Valued
Logic (ISMVL 2004) held in Toronto, Canada. He is a Registered Professional
Engineer in the province of Ontario, Canada.

Dr. Sheikholeslami has received the Best Professor of the Year Award four
times since 2000 by the popular vote of the undergraduate students in the De-
partment of Electrical and Computer Engineering, University of Toronto. In
2006, he received the Early Career Teaching Award in recognition of his “su-
perb accomplishment in teaching” from the Faculty of Applied Science and En-
gineering at the University of Toronto.

Hirotaka Tamura received the B.S., M.S., and
Ph.D. degrees in electronic engineering from Tokyo
University, Tokyo, Japan, in 1977, 1979, and 1982,
respectively.

In 1982, he joined Fujitsu Laboratories, Ltd.,
Kawasaki, Japan, where he was engaged in research
on Josephson devices and other exploratory devices.
In 1995, he moved into the area of CMOS circuit
design. After working on multi-gigabit DRAMs and
ferroelectric nonvolatile memories, he got involved
in CMOS high-speed signaling. His current interest

covers the circuit topology and architecture of high-speed CMOS interfaces.

Masaya Kibune was born in Kanagawa, Japan,
in 1973. He received the B.S. and M.S. degrees in
applied physics from Tokyo University in 1996and
1998 respectively.

In 1998, he joined Fujitsu Laboratories, Ltd.,
Kanagawa, Japan. He has been engaged in research
and design of high-speed IO with CMOS.

Hisakatsu Yamaguchi graduated from electrical en-
gineering, Tokyo University of Science, Chiba, Japan
in 1994 and received the M.S. degree in electronics
engineering from University of Tokyo, Tokyo, Japan
in 1996.

In 1996, he joined Fujitsu Labratory, Kawasaki,
Japan, where he engaged in research on DRAM with
high-speed IF and developed MPEG4 Codec LSI. He
is working on developing High-speed IF macro.

Junji Ogawa (M’89) received the B.S. degree in
physical chemistry and in applied mathematics from
the University of Tokyo, Tokyo, Japan, in 1979 and
1981, respectively.

He joined Fujitsu Ltd., Kawasaki, Japan, in 1981.
He was engaged in research and development of
DRAM technology in both Fujitsu Ltd. and Fujitsu
Laboratories Ltd. His early research included a
study of application-specific memory design. He
also moved to Fujitsu Laboratories of America Inc.
in 1998 and returned to Japan in 2004. He has been

working on CMOS high speed interconnection circuits.
Mr. Ogawa is a member of the Information Processing Society of Japan.

Authorized licensed use limited to: The University of Toronto. Downloaded on July 25,2010 at 14:27:59 UTC from IEEE Xplore. Restrictions apply.

