IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 1, JANUARY 2006 43

An Area-Efficient Universal Cryptography Processor
for Smart Cards

Yadollah Eslami, Member, IEEE, Ali Sheikholeslami, Senior Member, IEEE, P. Glenn Gulak, Senior Member, IEEE,
Shoichi Masui, Member, IEEE, and Kenji Mukaida

Abstract—Cryptography circuits for smart cards and portable
electronic devices provide user authentication and secure data
communication. These circuits should, in general, occupy small
chip area, consume low power, handle several cryptography algo-
rithms, and provide acceptable performance. This paper presents,
for the first time, a hardware implementation of three standard
cryptography algorithms on a universal architecture. The mi-
crocoded cryptography processor targets smart card applications
and implements both private key and public key algorithms
and meets the power and performance specifications and is as
small as 2.25 mm? in 0.18-pm 6LM CMOS. A new algorithm is
implemented by changing the contents of the memory blocks that
are implemented in ferroelectric RAM (FeRAM). Using FeRAM
allows nonvolatile storage of the configuration bits, which are
changed only when a new algorithm instantiation is required.

Index Terms—Computer security, cryptography, microproces-
sors, smart cards.

1. INTRODUCTION

HE rapid growth of portable electronic devices with lim-
ited power and area has opened a vast area of low-power
and compact circuit design opportunities and challenges for
VLSI circuit designers. Cellular phones, PDAs, and smart cards
are examples of portable electronic products that are becoming
an integral part of everyday life. The popularity of these devices
necessitates special considerations for their security subsys-
tems. Unlike computer network security systems that impose
less stringent limitations on the area and power consumption
but put more emphasis on high throughput (several Gigabit/s),
portable applications demand security hardware with more
restrictions on area and power and less on throughput (sev-
eral hundred kilobit/s to a few Megabit/s). This difference in
requirements dictates a different approach in the design and
implementation of the security systems for these devices.
Since next-generation, multipurpose smart cards will be used
for a wide range of applications, their security system must im-
plement both private (symmetric) and public (asymmetric) key
algorithms, to accommodate various application requirements.

Manuscript received June 25, 2004; revised on February 3, 2005 and May 6,
2005. This work was supported in part by Fujitsu Laboratories Ltd., Japan, and
the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Y. Eslami is with the Department of DRAM Research and Development, Mi-
cron Technology Inc., Boise, ID 83707 USA (e-mail: yeslami @micron.com).

A. Sheikholeslami and P. G. Gulak are with the Department of Electrical and
Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
(e-mail: ali@eecg.utoronto.ca; gulak @eecg.utoronto.ca).

S. Masui and K. Mukaida are with Fujitsu Laboratories Ltd., Kawasaki,
211-8588 Japan (e-mail: masui.shoichi @jp.fujitsu.com; mukaida@fram.ed.fu-
jitsu.co.jp).

Digital Object Identifier 10.1109/TVLSL.2005.863188

Private key algorithms with high throughput are suitable for data
communication, while public key algorithms with much lower
throughput are suitable for private key exchange and authentica-
tion. Among all available algorithms, data encryption standard
(DES), advanced encryption standard (AES), and elliptic curve
cryptography (ECC), which are approved by standards organi-
zations [1]-[3], are selected for this application. DES, for past
compatibility, and AES, for high security and throughput, are
the major candidates for private key algorithms, and ECC is
the best candidate for the public key algorithm for its encryp-
tion efficiency. RSA, which is also a standard public key algo-
rithm, is not considered in this design for three reasons. First,
it is believed that 160-b ECC provides the same level of secu-
rity as 1024-b RSA. Thus, ECC will be a better choice when
implementation area is a key factor in the design. Second, RSA
uses binary addition of large numbers and needs binary adders
that are either slow for carry propagation or large for look-ahead
carry generation. Third, a larger number of bits in RSA means
wider buses, which adds to the area and power consumption of
the design, both of which are scarce resources in smart cards.

A cryptography system can be implemented in either soft-
ware or hardware. Software implementations allow multiple
algorithms to be supported on the same hardware platform,
but they are usually slow and cannot meet the required specifi-
cations. Moreover, they are considered to be more vulnerable
to side-channel attacks compared to other implementations.
Side-channel attacks use physical measurements on the device,
for example, the power consumption of the processor, to detect
the encryption/decryption key [4]-[6]. On the other hand, hard-
ware implementations which support high throughput do not
allow for flexibility and, hence, are not suitable for smart cards.
Flexible field-programmable gate array (FPGA) implementa-
tions are not a good choice either, because they need large area
and power which cannot be supported on smart cards.

Based on the physical constraints for smart cards set by the
International Standard Organization (ISO) [7], the maximum
chip area on a smart card is limited to 25 mm?. Considering
the nonvolatile and volatile memories, CPU, and other periph-
eral circuits required on the chip, it is desirable to fit the se-
curity subsystem in as small an area as possible. One of the
objectives of this study is to investigate the minimum required
chip area for the implementation of the security circuits satis-
fying the algorithm agility, power consumption, and throughput
requirements. Rows 3, 8, and 9 of Table I show the area and
power consumption of recently published ASIC implementa-
tions of several cryptography algorithms. Although these imple-
mentations mostly target high-throughput network applications,

1063-8210/$20.00 © 2006 IEEE

Authorized licensed use limited to: The University of Toronto. Downloaded on January 2, 2010 at 11:21 from |IEEE Xplore. Restrictions apply.

44

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 1, JANUARY 2006

TABLE 1

SOME RECENT CRYPTOGRAPHY ALGORITHM IMPLEMENTATION SPECIFICATIONS (*: BASED ON THE AREA OF A TWO-INPUT NAND GATE
WiTH FANOUT OF FOUR IN 0.18-psm CMOS)

HW/ CLOCK TECHNOLO

ALGORITHM SW ASIC/FPGA (MHZ) AREA/GATE COUNT THROUGHPUT POWER P
[15] DES HW ASIC 77 - 44.0 MBytes/s No 2um
2000 RS4 300 Kbps Silicon

Blowfish

SAFER
[30] ECC Sw - - - 44.8ms/PM (160bits) - ARM (32
2001 bit)
[10] RSA HW ASIC 50 2.9mm x 2.9mm 8.2ms (512bit) 75mwW 0.25um
2001 ECC (8.41mm’) 6.95ms/PM (176bit) @2V
[31] AES HW ASIC 333 0.1 mm’ 24Mbps No 0.18um
2001 Silicon
[32] ECC SwW - 13 - ~22ms/PM (163bits) - ARM
2002 (32bit)
[11] ECC HW FPGA 30 936 CLBs (155bit) 10.8 ms (155bit) - Xilinx
2002 (Variable n) XCV1000-6
[12] ECC HW ASIC 13.56 14434 gates (160bit) 15ms/PM (160bit) No 0.35um
2002 0.5mm*)" Silicon
[14] AES HW ASIC 154 173000 gates 1.6Gbps (AES-128) S56mw 0.18um
2003 (5.9mm?)" @1.8V
[29] AES HW ASIC 465 28626 gates (1.0 1.64Gb/s 314mw 0.18um
2003 mm’)" + @18V

4Kbit RAM +
128Kbit ROM

Our DES HW ASIC 13.56 2.25mm’ 3.5Mbps 15.9mw 0.18um
work AES 1.83(Enc), 0.85(Dec)Mbps 16.3mw 6LM

ECC 417ms/PM (155b) 18.3mw

@1.8V

they clearly indicate the challenge in fitting three separate ded-
icated circuits—to implement the three mentioned algorithms
(i.e., DES, AES, and ECC)—in a small area. Moreover, the
cryptography scircuits should be able to provide encryption/de-
cryption of the data at the maximum data transfer rate of 847.5
kb/ps (fcrk /16) at a clock frequency of 13.56 MHz set for con-
tactless smart cards [8]. Furthermore, in the case of contactless
smart cards, since the power is transferred to the IC via RF sig-
nals, the power transfer is limited to 10-20 mW, so the cryptog-
raphy circuits should ideally be power-aware. RISC processors
that implement the cryptography algorithms in software provide
a very attractive throughput, area, and power consumption solu-
tion [9]. However, since users and manufacturers are still con-

cerned about the vulnerability of software implementations of
the cryptography algorithms to side-channel attacks, it is im-
portant to design hardware circuits that meet the required speci-
fications and are more immune to these attacks. Considering all
of the limitations discussed so far, it is quite challenging to de-
sign and implement an algorithm-agile and area-and-power-ef-
ficient cryptoprocessor for smart cards with acceptable perfor-
mance and security.

This paper introduces, for the first time, a hardware imple-
mentation of a cryptography coprocessor (cryptoprocessor)
that implements two standard private-key algorithms (DES
and AES), and one standard public-key algorithm (ECC),
in a single design that satisfies the power consumption and

Authorized licensed use limited to: The University of Toronto. Downloaded on January 2, 2010 at 11:21 from |IEEE Xplore. Restrictions apply.

ESLAMI et al.: AREA-EFFICIENT UNIVERSAL CRYPTOGRAPHY PROCESSOR FOR SMART CARDS 45

throughput requirements of smart cards and occupies 2.25
mm? in 0.18-ym 6LM CMOS. The published works in this
area address only a subset of these issues. For example, [10]
introduces an energy-efficient reconfigurable cryptography pro-
cessor that considers public key cryptography only. References
[11] and [12] consider ECC only, [13] implements DES, and
[14] implements AES only. The FPGA implementation in [15]
is a processor that does not support AES and ECC. A recon-
figurable architecture to implement six candidate algorithms of
AES competition is presented in [16].

This paper is organized as follows. Section II presents an
overview of the three cryptography algorithms implemented in
this study. A mathematical background for these algorithms can
be found in [3] and [17]-[20]. Section III introduces the pro-
posed cryptography engine. The designed cryptoprocessor spec-
ifications are presented in Section IV, followed by the imple-
mentation details in Section V. Area and power requirements of
the design are discussed in Section VI and its performance in
Section VII. Possible enhancements to the design presented in
this paper are discussed in Section VIII. The conclusions are
provided in Section IX.

II. CRYPTOGRAPHY ALGORITHMS

In this section, a brief introduction of the three implemented
algorithms which are essential in the understanding of the re-
mainder of the paper are provided. Interested readers are re-
ferred to [1]-[3], and [17]-[19] for additional details.

A. Data Encryption Standard (DES)

This is a well-established algorithm that has been used for
more than two decades (since 1977) in military and commercial
data exchange and storage. The algorithm is designed to enci-
pher and decipher blocks of data consisting of 64 b using a 56-b
key. A block to be enciphered is subjected to an initial permuta-
tion (IP), then to 16 rounds of a complex key-dependent permu-
tation, and, finally, to another permutation which is the inverse
of the IP, TP !, as shown in Fig. 1. The function f() in this figure
is the heart of this algorithm and consists of an expansion, XOR,
lookup table (LUT), and permutation, as depicted in Fig. 2. To
decipher, it is necessary to apply the very same algorithm to an
enciphered message block, using the same key.

Since the processing power of current computers is much
higher than those of two decades ago, a brute-force attack
(checking all possible key combinations to decipher an en-
crypted ciphertext) to this algorithm is possible in a relatively
short time (possibly as short as a few minutes [21]). For this
reason, this algorithm is no longer considered to be a secure
algorithm for many applications by the National Institute of
Standards and Technology (NIST). A more secure algorithm
based on DES which is still supported by NIST is called the
triple data encryption algorithm (Triple DES, 3DES, or TDEA)
depicted in Fig. 3. In this figure, DES represents encryption and
DES™! represents decryption. 3DES involves applying DES,
then DES™!, followed by a final DES to the plain text using
three different key options [1], which results in a cipher text
that is much harder to break.

LO RO

L1=R0O R1=LO(H)f(RO,K1)
48 K,
f() -t
L2=RI R2=L1(H)f(R1.K2)

L15=R14 RI5=L14(¥)f(R14,K15)

48 Kig
==

R16=L15@f(R15,K16) L16=R15
I |

Inverse Initial Permutation (IP")
64
Data_out

Fig. 1. DES block diagram (K1, K2,- - -, K16 refer to the key values used in
rounds 1-16).

The implementation of DES needs four basic operations only,
namely, the XOR, shift, LUT, and permutation, which are rela-
tively simple to implement in hardware. The TDEA also uses
the same set of operations as DES.

B. Advanced Encryption Standard (AES)

AES, also known as Rijndael, is a block encryption algorithm
which encrypts blocks of 128 b using a unique key for both
encryption and decryption [2]. A block diagram representation
of the algorithm is shown in Fig. 4.

Three versions of the algorithm are available differing only
in the key generation procedure and in the number of rounds
the data is processed for a complete encryption (decryption) [2].
AES-128 uses a 128-b key and needs 10 rounds. AES-192 and
AES-256, respectively, need 192-b and 256-b keys and 12 and
14 rounds for processing a block of data.

Authorized licensed use limited to: The University of Toronto. Downloaded on January 2, 2010 at 11:21 from |IEEE Xplore. Restrictions apply.

46 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 1, JANUARY 2006

Expansion

48 KEY

GF addition
_ 48

di
+ -
\4/48
6 6 6 6 6 6 6 6
s2 s3 s4 S5 s6 87 s8

et

ouT
Fig. 2. DES f()-box details.
(plaintext) (ciphertext)
 — DES DES’ DES —
T f T
(key1) (key2) (key3)
Fig. 3. 3DES (TDEA) block diagram.

The 128-b input data is considered as a 4 X 4 array of 8-b
bytes (also called “state” in the algorithm). The state under-
goes four different operations in each round, except for the final
round which has only three operations. These operations are
“ByteSub,” “ShiftRow,” “MixColumn,” and “AddRoundKey” op-
erations. “MixColumn” is omitted in the final round. Each round
of the algorithm needs a 128-b key, which is generated from the
input key to the algorithm. The key-scheduler block (not shown
in Fig. 4) consists of two sections: the key expansion unit, which
expands the input key bits to the maximum number of bits re-
quired by the algorithm, and the key selection unit, which selects
the required number of bits from the expanded key, for every
round [2]. As mentioned before, aside from the key values, all
of the steps in all of the rounds are the same except for the last
round that MixColumn is not present.

Each byte in the state matrix is an element of a Galois Field
GF(2%), and all of the operations can be expressed in terms of
the field operations [2]. In simple terms, GF(2™) is a set of 2"
elements each represented by an n-bit string of 0’s and 1°s and
two basic operations: addition and multiplication. These two op-
erations are defined such that the closure, associativity, and other
field properties are satisfied [20].

From the implementation point of view, ByteSub operation
can be implemented by LUT. The ShiftRow can be implemented
using a circular shifter. The MixColumn is the most complicated
operation in this algorithm and needs GF(2®) field multiply and
add operations. Due to the specific choices of the parameters of
the algorithm, this operation can be expressed as a matrix multi-
plication, which can be implemented using shift and XOR oper-
ations. A more detailed analysis of the implementation options
of this block are presented in [22]. AddRoundKey is just a log-
ical XOR operation.

Data_in
128

Input State

Initial Key addition

| AddR;undKey }47%

ByteSub |

L]

| ShiftRow | _
Y
I MixColumn l
Y K,
| AddRoundKey |tA5

1st Round

I ByteSub l

L]

| ShifiRow | L
L]
I MixColumn l
i o
| AddRoundKey %

2nd Round

Y

I ByteSub l

v Final Round
| ShiftRow |

v KNr
| AddRoundKey |45

Output State

N=f(Ny)
128 N;: No. of Rounds (10 or 12 or 14)
Ny: No. of 32-Bit words in key(4,6,8)

Data_out

Fig. 4. AES block diagram.

C. Elliptic Curve Cryptography (ECC)

The set of all (x,y) pairs satisfying the nonsupersingular el-
liptic curve equation

y2+wy:w3+a2x2+a6

are called points on the elliptic curve F, where z, y, a2, and ag
are elements of the GF(2"). The point addition (S = P + Q)
and multiplication (R = k- P, where k is a constant) operations
are defined such that both S and R are also points on the elliptic
curve F. Moreover, knowing R and P, it is practically impos-
sible to find k. This property forms the fundamental foundation
of ECC [17], [18].

Elliptic curves can be used in different forms in cryptography.
As an example, we will explain one of the basic applications,

Authorized licensed use limited to: The University of Toronto. Downloaded on January 2, 2010 at 11:21 from |IEEE Xplore. Restrictions apply.

ESLAMI et al.: AREA-EFFICIENT UNIVERSAL CRYPTOGRAPHY PROCESSOR FOR SMART CARDS 47

Secret Key: K, Secret Key: Ky,

Calculate: K,.P Calculate: K,.P

Calculate: S=K,.(Ky,.P) Calculate: S=Ky,.(K,.P)

User B
K} = User B’s Private Key

Ky, P= User B’s Public Key

User A
K, = User A’s Private Key

K,.P=User A’s Public Key

Fig. 5. ECC secret-key-exchange algorithm block diagram.

which is the secret key exchange. The basic secret-sharing algo-
rithm (ECKAS-DH in [3]), also known as the Diffie-Hellman
protocol for key exchange, is pictured in Fig. 5. In brief, both
users, A and B, agree on the elliptic curve F, a point P on F, and
a mathematical basis, such as polynomial basis or normal basis
(NB). Each user then chooses a secret key from GF(2™), K,
and K3, and calculates her/his own public key (PK, = K,. P
and PK, = K} - P) and sends it to the other user. At this point
both users can calculate the secret point S(zs, ys)

S(ze,ys) = Ko - PKy = Ky - PK, = K, - K, - P.

Note that, although both z,; and y, are available, only one of
them should be used for higher security [3], [17]-[19].

III. CRYPTOGRAPHY ENGINE

Our procedure for designing this domain-specific processor
starts by listing all of the required functional blocks for the se-
lected algorithms followed by the selection of a minimum set
of the required blocks that can implement all algorithms. Then,
a cost function, which is the area in this case, but could be any
other parameter such as power or speed or any combination of
several parameters, is defined and calculated for the selected set.
If the cost is larger than the available budget, the complex func-
tional blocks are expressed in terms of simpler blocks by re-
vising the algorithm primitives or by selecting a new mathemat-
ical interpretation of the operation. This should be followed by
the selection of the minimum set of functional blocks and cal-
culation of the new cost. The procedure should be repeated until
the cost criterion is met or the simplest form of the functional
blocks is achieved.

The list of operations required by the three algorithms DES,
AES, and ECC is shown in Table II. The list is directly derived
from the primitives of the algorithms as defined in Section II.
Referring to Table I, a design including three independent cir-
cuits, each implementing one of these algorithms, needs an area
that is much larger than the available area for this application. A
reconfigurable architecture at this level is not feasible either, be-
cause most of the operations are complex and dedicated to each
algorithm, and there are only few operations which are common
among the three algorithms.

Our approach to address this problem is to express the high-
level operations of each algorithm in terms of basic arithmetic
and logic operations to maximize the number of common op-
erations among the algorithms and, hence, minimize the overall

TABLE 1I
OPERATIONS REQUIRED BY DES, AES, AND ECC FOR
DIRECT IMPLEMENTATION

Operand Size
Expand/ . Logic GF GF GF
Permute Substitute XOR SQR MULT INV
35,56, .
DES 43,64 6in=>4out 32,48 - - -
AES 8in => 8out 8,128 - 8 _
ECC - - m m M m

(GF: Galois Field m: ECC key length in bits)

required chip area. This is challenging for two reasons. First, for
DES, the data and the key lengths are fixed at 64 and 56 b, for
AES the data length is fixed at 128 b, but the key length could
be any of 128, 192, or 256 b, and for ECC both the data and
the key lengths are variable (m-bits). Second, DES uses a set
of simple logical functions, substitution, and permutation oper-
ations, and AES adds to this set a more complicated GF(2%)
multiplication which can be implemented using shift and XOR
operations, while ECC is based on complex mathematical finite
field operations in GF(2) and GF(2™).

The field elements used in ECC can be represented in either
polynomial basis (PB) or normal basis (NB) [3], [17]-[19]. The
hardware implementation of the field operations when using PB
requires large silicon area. By using NB, GF(2™) squaring (GF
SQR in Table II) is achieved by a simple circular shift left op-
eration. Furthermore, GF'(2") multiplication is simplified to a
series of LUTs, AND, and XOR operations, and GF(2™) inver-
sion is simplified to a series of shift and field multiplications
[17].

Optimal normal basis (ONB) representation is a subset of NB
which further reduces the implementation complexity and in-
creases the throughput. The major advantage of using ONB in-
stead of NB is that the multiplication matrix [3] used in field
multiplication in ONB has at most two nonzero elements per
row/column in comparison to up to m nonzero values in NB.
To share more blocks among the three algorithms and minimize
the hardware and increase the throughput, we use an ONB rep-
resentation of field elements for ECC in our design. This choice
affects the design in two ways. First, the multiply and invert
operations are performed faster compared to NB and require
less power. Second, this limits the ECC implementation to the
field sizes that support ONB only [3], because all field sizes do
not have ONB representations. This is not considered a serious
drawback because there are enough field sizes with ONB repre-
sentation that can be used for ECC implementation. Our design
implements ECC with five field sizes for low (83 b), medium
(131, 155), and high (239, 254) security applications.

Table I1I shows the list of all required functional blocks for the
desired algorithms after expressing the basic primitives in terms
of simple operations. The table reveals that the algorithms may
be implemented using much simpler operations that also maxi-
mize the number of common blocks among them. Based on the
information in Table III, we are proposing the cryptoprocessor

Authorized licensed use limited to: The University of Toronto. Downloaded on January 2, 2010 at 11:21 from |IEEE Xplore. Restrictions apply.

48 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 1, JANUARY 2006

TABLE III
OPERATIONS REQUIRED BY DES, AES, AND ECC AFTER
REORGANIZATION OF PRIMITIVES

Operand Size
Expand/ Table Logic Logic Circular/Logical
Permute Jookup XOR AND Right/Left Shift
35,56, 6in=> .
DES oo tout 32,48 - 28 (by 1 or 2 bits)
8in=> .
AES - Sout 8,128 - 32 (by 8 bits)
m (by x bits,
ECC - - m m 0<x<m)

(m: ECC key length in bits)

32} Input
} ¢ Dapla

Control & Status

Reconfigurable
Register File Sequencer Microprogram
(DES/AES/ECC)
Microinstruction
256 256 A__ e . f:‘)_mEOI_Si_E:‘_“IS_ Decoder

36,

Source Buses
L

S

Expansion Programms .
grammable] Functional)
XOR| JAND| &) Shifter Blocks Memory (LUTSs)
Permutatio
+ + 256 +32 Output Data
> ya >

Destination Bus

Fig. 6. Detailed cryptoprocessor architecture.

depicted in Fig. 6, which uses a microprogrammed processor ar-
chitecture [25], [26]. This design implements all of the required
microoperations for the three algorithms and provides algorithm
agility by updating the contents of its memory blocks.

IV. CRYPTOPROCESSOR SPECIFICATIONS

This section includes three subsections. Section IV-A ex-
plains the architecture of the designed cryptoprocessor, which
is followed by the details of its initialization and interface with
the host CPU in Section IV-B. Section IV-C introduces the Mi-
croinstruction set and the Microprograms for the implemented
algorithms in the cryptoprocessor.

A. Architecture

A microprogrammed control unit (Fig. 7) controls the data
path and implements the algorithm agility. The design uses a
32-b bidirectional data bus and a 9-b address bus and a 13-b
control bus to communicate to the host CPU. The host CPU uses
these signals to write/read the algorithm inputs/outputs to/from
the memory-mapped cryptoprocessor registers in addition to the
updating the configuration memories (microprogram and LUTs)
that define the function of the cryptoprocessor.

Control
& <>
Status Microprogram
Reset =31 Memory L .
MPC Microinstruction
Clock =P 30 o Z
Sequencer| AS (DES/AES/ECC) [,20 g 'V -
256132 Control
256 Microinstructions Microinstruction | Signals
(32 bits each) Decoder 30742
r
12
Fig. 7. Cryptoprocessor controller and its subblock interconnections.
Data Manipulation Command Program Control Command
31 24 23 2019 1615 12 11 8.7 (
Operation ! ABUS + BBUS + Dest. Control } Next pinstruction
(encoded) . Reg. . Reg. . Reg. Operation ' Address
Fig. 8. Cryptoprocessor microinstruction format.

TABLE IV
TypiCAL FeERAM AND SRAM CHARACTERISTICS IN 0.18-yM CMOS
TECHNOLOGY (PLANAR CAPACITOR ASSUMED FOR FeRAM)

Power
Area Access

Read_mode Size (mm?) (mW/V Time (ns)
MHz)

Type

FeRAM NonVol. Dest. 256X32 0.26 0.0213 50
SRAM Vol. NonDest. 256X32 0.35 0.0163 1.9
Dest. : Destructive ~ Vol.: Volatile

Microinstruction encoding (Fig. 8) is used to minimize the
number of bits in each microinstruction. Note that the 8-b oper-
ation code field in the instruction code is used to have the word
length of the memory at 32 b and to use standard memory blocks
for the microprogram memory. This field could be reduced to 5 b
(only 32 microinstructions are required for the current imple-
mentation, as shown in Table V) and a custom-designed memory
module with 29-b word length could be used to further reduce
the chip area.

LUTs are used to realize the substitution operations in DES
and AES and to implement the multiply operation in ECC. For
the case of ECC, LUTs are used to implement the m X m
multiplication matrix [3] using two m x log,m arrays to save
area. The most notable feature of this design is that reconfigura-
bility is achieved by changing the contents of the microprogram
memory and the LUTs. A maximum of 24 kb needs to be up-
dated for an algorithm change, which can be done in less than
30 ms (using 847.5-kb.s data rate for contactless cards [8]).

Both volatile (SRAM) and nonvolatile memories (e.g.,
EEPROM, Flash, and FERAM) can be used for the memory
blocks in this cryptoprocessor, but nonvolatile memories
have the advantage of keeping their contents, and hence the
cryptoprocessor configuration, intact, even when the power is
removed from the circuit. Therefore, the cryptoprocessor does
not need to be reconfigured before each use, unless a change
of algorithm is required. Among the nonvolatile memories,

Authorized licensed use limited to: The University of Toronto. Downloaded on January 2, 2010 at 11:21 from |IEEE Xplore. Restrictions apply.

ESLAMI et al.: AREA-EFFICIENT UNIVERSAL CRYPTOGRAPHY PROCESSOR FOR SMART CARDS 49

TABLE V
DAT A MANIPULATION MICROINSTRUCTIONS OF THE CRYPTOPROCESSOR

Mnemonic Operation Comments
NOP No Operation
PF out <--f_block_Permuted(in) Permutation used in f() block of DES
IPO out <--Initial_Permutation(in) Initial Permutation used in DES(First 32 bit)
IPI out <--Initial_Permutation(in) Initial Permutation used in DES(Second 32 bit)
IPM10 out <--Inverse_Initial_Permutation(in) Inverse Initial Permutation used in DES(First 32 bits)
IPM11 out <--Inverse_Initial_Permutation(in) Inverse Initial Permutation used in DES(Second 32 bits)
EXP0O out <--Expanded(in) Expansion function used in f{) in DES(First 32 bits)
EXPI out <--Expanded(in) Expansion function used in f{) in DES(Second 32 bits)
PC10 out <----Permutation_choicel (in) Permutation Choicel used in DES key(First 32 bits)
PC11 out <--Permutation_choicel (in) Permutation Choicel used in DES key(Second 32 bits)
PC20 out <--Permutation_choice2(in) Permutation Choice2 used in DES key(First 32 bits)
PC21 out <--Permutation_choice2(in) Permutation Choice2 used in DES key(Second 32 bits)
MOV out <--in Move Registers
SHTL out <--Shifted_Left(in) Shift Left operation
SHTR out <--Shifted_Right(in) Shift Right operation
SPSHFW out <--(Special) Shifted(in) Special Shift Left mode used in AES (Normal output)
SPSHFR out <--(Special_extension) Shifted(in) Special Shift Left mode used in AES (Extended output)
LUTO out <--Mfin] Memory look up operation for every 8-bit of in and out
LUTI out <--Mfin] Same as LUTO, but uses the upper 256 bytes of memories
BMOV out[8%*i-1: 8*9i-1)] < --in[8*i-1: 8*9i-1)] Byte MOVe used in AES ShiftRows() operation
XOR out <--(ABUS) XOR (BBUS) XOR operation
AND out <--(ABUS) AND (BBUS) AND operation
SHTR-LUT out <--Shifted(in) Shift Right (ECC mode, uses LUT result as shift count)
SHTL-WIN out <--Shifted(in) Shift Left(ECC mode, uses Win_Reg as shift count)

FeRAM is a better choice, because of its short write access
time and low power and voltage write operation [13], which
results in fast instantiation of the algorithm with minimum
power. Differential capacitance read scheme (DCRS) [27] can
be used for the FeERAM read operation to achieve short access
time (less than 50 ns) that satisfies the available time budget
for smart card applications (1., = 74 ns approximately, which
corresponds to fopk = 13.56 MHz). The main disadvantage
of FeRAM over other nonvolatile memories is its higher power
consumption for read operation. One remedy to this problem
is to use shadow SRAM memory blocks, which can add up
to 10% to the overall chip area. Table IV compares the basic
characteristics of typical FERAM and SRAM memories in
0.18-pum CMOS technology.

The microcode is optimized such that at most 16 live vari-
ables need to be present in the cryptoprocessor at any given time.
These variables are stored in 16 registers that comprise the reg-
ister file. Source operands of the instructions are provided by

the registers of the register file, and the result of the operation
is written back to one of the registers at the end of the same
clock cycle. To accommodate a variable number of data and shift
counts by the shifter, a logarithmic shifter is used as the core of
the shifter block. To minimize the area and power consumption,
the width of the internal buses and the registers of the cryptopro-
cessor is limited to 256 b. Since a 256-b ECC provides higher
security than a 2048-b RSA [18], the cryptoprocessor will pro-
vide sufficient security for smart card applications. Moreover,
for applications that do not use all 256 b (e.g., DES, AES, and
ECC with key length less than 256 b), the unused bits are deac-
tivated to further reduce power consumption.

B. Initializations

The operational mode of the cryptoprocessor is controlled by
a RESET signal. When the RESET signal is at logic “0,” the
cryptoprocessor is in reset mode and the host CPU can read and

Authorized licensed use limited to: The University of Toronto. Downloaded on January 2, 2010 at 11:21 from |IEEE Xplore. Restrictions apply.

50

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 1, JANUARY 2006

TABLE VI

PROGRAM CONTROL MICROINSTRUCTIONS OF THE CRYPTOPROCESSOR

Mnemonic Operation Comments
JMPA MPC <--NIAD Jump Always

MPC <--MPC+1, Rnd_Cntr <--NIAD,

JNXLRA m._Reg <—-m-1, Win_Reg <0 Jump Next, and Load Round Counter

JPLRm MPC <--NIAD, Rnd_Cntr <-- m_Reg JumP and Load Round counter from m_Register

DRJINZ Rnd_Cnir <~Rnd_Cntr-1, Decrement Round counter and Jump if NonZero
If(Rnd_Cntr -1 1=0) Then MPC <--NIAD,

RIWI {Win_Reg,m_Reg} <--shifted_lefi({Win_Reg,m_Reg, 1); Shift left {Win_reg, m_Reg}by one bit and jump if shifted bit is “1”,
If(shifted_bit ==1) Then MPC <--NIAD, continue otherwise

JNXLTA MPC <--MPC+1, Temp_Reg <--NIAD Jump NeXt and Load Temp reg from address

JPALTR MPC <--NIAD, Temp_Reg <--Rnd_Cntr JumP And Load Temp reg from Rnd_Cntr

JPALTW MPC <--NIAD, Temp_Reg <--Win_Reg JumP And Load Temp reg from Win_Reg

CALL MPC <--NIAD, SBR1<--MPC+1, SBR2<--SBRI CALL subroutine

RET MPC<--SBR1, SBRI1<--SBR2 RETurn from subroutine

DTINZ f;(;i:ji;:}iff;‘;j-}fépc <--NIAD, Else MPC <—-MPC+1 Decrement Temp register and Jump if NonZero

IMPA MPC <--NIAD Jump Always

JNXLRA Xf}({:e;-;]‘:/-{;(-jf]‘;Jﬁric{ifgnir-;--NIAD, Jump Next, and Load Round Counter

JPLRm MPC <--NIAD, Rnd_Cnir <--m_Reg JumP and Load Round counter from m_Register

DRINZ E‘E‘Ig;gjgn;_-llh:if)()}’}:;’ MPC <-NIAD, Else MPC <~MPC+1 Decrement Round counter and Jump if NonZero

RIW1 {Wix}_Reg,{n_Reg} <--shifted_left({Win_Reg,m_Reg, 1); Shift left {Win_reg, m_Reg}by one bit and jump if shifted bit is “17,
If(shifted_bit ==1) Then MPC <--NIAD, Else MPC <--MPC+1 continue otherwise

INXLTA MPC <--MPC+1, Temp_Reg <--NIAD Jump NeXt and Load Temp reg from address

JPALTR MPC <--NIAD, Temp_Reg <-Rnd_Cnir JumP And Load Temp reg from Rnd_Cntr

JPALTW MPC <-NIAD, Temp_Reg <-Win_Reg JumP And Load Temp reg from Win_Reg

CALL MPC <--NIAD, SBR1<--MPC+1, SBR2<-SBR1 CALL subroutine

RET MPC<--SBR1, SBR1<-SBR2 RETurn from subroutine

DTINZ Temp_Reg <-TerE{) S‘}f&é’iﬁ&?&%{ cg -1 1=0) Then MPC <-NIAD, Decrement Temp register and Jump if NonZero

JMPA MPC <--NIAD Jump Always

JNXLRA MPC <-MPC+1, Rnd_Cntr <~NIAD, m_Reg <-m-1, Win_Reg<-0 Jump Next, and Load Round Counter

JPALTR MPC <--NIAD, Temp_Reg <--Rnd_Cntr JumP And Load Temp reg from Rnd_Cntr

JPALTW MPC <--NIAD, Temp_Reg <--Win_Reg JumP And Load Temp reg from Win_Reg

CALL MPC <--NIAD, SBRI<--MPC+1, SBR2<--SBRI CALL subroutine

RET MPC<--SBR1, SBR1<--SBR2 RETurn from subroutine

DTINZ Temp_Reg <--Temp_Reg -1, If{Temp_reg -1/=0) Then MPC <--NIAD, Decrement Temp register and Jump if NonZero

Else MPC <--MPC+1

SKEQ if(Rnd_Cntr == NIAD) Then MPC <--MPC+1 Else MPC<--MPC+2 SKip if EQual

SKCY if(CY_in==0) Then MPC<--MPC+1, Else MPC<--MPC+2 Store carry input and sKip if CY_in is “1”

JNCF if(CF=="0") Then MPC<--NIAD, Else MPC<--MPC+1 Jump if Not Carry Flag set

DONE Assert DONE signal -Processor halt

write the memory and register contents using the 32-b bidirec-
tional data bus, 9-b address bus, and the four control signals.
When the RESET signal is at logic “1,” the cryptoprocessor is in
run mode and acts as an ASIC, implementing one of the three al-
gorithms based on the preloaded contents of the memory blocks.

The private and public keys are kept in the registers of the
register file of the cryptoprocessor and are available to the host
CPU in reset mode only. Thus, in a typical scenario, the cryp-
toprocessor, which is configured as an ECC engine, receives a
private key using one of the key exchange protocols (such as

Authorized licensed use limited to: The University of Toronto. Downloaded on January 2, 2010 at 11:21 from |IEEE Xplore. Restrictions apply.

ESLAMI et al.: AREA-EFFICIENT UNIVERSAL CRYPTOGRAPHY PROCESSOR FOR SMART CARDS 51

Diffie-Hellman) and stores it in one of its registers. Then, the
cryptoprocessor is reconfigured in AES (or DES) mode by the
host CPU, and the stored key is used for a data transfer ses-
sion in a private-key data-exchange mode (DES or AES). Note
that, for this implementation, there is no need to move the keys
among the registers by the main processor, and, hence, less in-
formation will leak compared to the software implementations
for the attackers who use the side-channel information to detect
the algorithm keys.

C. Microinstruction Set and Microprograms

There are 24 data manipulation and 15 program control mi-
croinstructions defined for the designed cryptoprocessor, which
are presented in Tables V and VI, respectively. Data manipu-
lation microinstructions may need up to three operands (two
source operands and one destination operand) which are always
found in the cryptoprocessor register file, DO to D15.

Each line of the microcode fits in one word (32 b) of the mi-
croprogram memory. The DES microcode is the shortest and
has 46 lines of code (23 for encryption and 23 for decryption).
The microcode for AES needs 150 lines of code (68 for encryp-
tion and 82 for decryption) and is the longest microcode among
the three, mainly because of the key scheduler. It uses one level
of subroutine call. ECC needs 60 lines of microcode to imple-
ment the point multiplication algorithm and uses two levels of
subroutine call. The amount of time it takes to do a point multi-
plication depends on the field size. Table VII compares the time
requirements of the three algorithms. The numbers presented for
ECC are based on the assumption that all of the bits in the point
multiplier £ are “1.” Obviously, this is not a valid assumption
during normal operation and provides very pessimistic perfor-
mance results, but presents the performance in the case where
the processor needs to pretend that all the bits in £ are “1”” to pre-
vent any side-channel attack. The anti-side-channel attack fea-
ture is not implemented in this version of the cryptoprocessor,
but can easily be incorporated should it be confirmed that the
current implementation leaks information about the key value.

V. IMPLEMENTATION DETAILS

This section highlights the implementation techniques used
in the hardware and/or the microcodes of DES, AES, and ECC
algorithms.

A. DES

The parameters used in the main flow of DES depicted in
Fig. 1 are 32 b wide and the implementation of the operations
in each round is straightforward [1]. However, the operations
required for the f()-box shown in Fig. 2 are slightly modified
to match the architecture. Note that the key scheduler is also
modified to have its output match the changes in the f()-box.

B. AES

Section II along with Fig. 4 introduced AES operations. This
section focuses on the subtleties of three fundamental operations
(and their inverses) that are critical to their area-efficient imple-
mentation.

TABLE VII
No. OF CLOCK CYCLES REQUIRED PER ALGORITHM.

Encryption Decryption
DES 248 248
AES 951 2036
ECC-83 1,367,114
ECC-83 3,414,850
ECC-83 5,739,898
ECC-83 15,945,058
ECC-83 19,297,332

Input |b7‘ b6| b5| b4‘ b3| b2| bl | b0|

|0 |0 |o |b7 b7|0 |b7|b7| |b6‘b5|b4|b3 b2|bl|b0|0|

Output = {02} Input

Fig. 9. AES X-times ({2} times) operation.

1) AddRoundKey and InvAddRoundKey: The key genera-
tion for AES encryption (decryption) can be done either in one
step or in every round [2]. The former approach generates all
of the required key bits for all rounds and needs some extra
space to store them until they are consumed. The benefit is
that the generated bits can be reused for consecutive blocks.
The latter approach produces the key bits of a round when they
are required and hence does not need extra space but needs
to reproduce the key bits from the input key for each block.
Our design uses the latter approach to keep the area as small
as possible. Obviously, this approach degrades the throughput
and the degradation is more severe for decryption than for
encryption, but the throughput is still within the specifications
for this application. Once the key bits for a round are ready,
the AddRoundKey (InvAddRoundKey) operation is performed
on all columns of the state matrix per clock using the XOR
operation.

2) ShiftRow and InvShiftRow: Both of these operations are
performed by ByteMove (BMOV) microinstruction that allows
byte transfers among the registers in the register file.

3) MixColumn and InvMixColumn: These operations are
the most complex operations in this algorithm and their direct
implementation needs an 8-b Galois field multiplier, GF(2%).
However, due to special selection of the parameters of the
operation used in the algorithm, the operations can be imple-
mented using shift and XOR operations only. For example, the

Authorized licensed use limited to: The University of Toronto. Downloaded on January 2, 2010 at 11:21 from |IEEE Xplore. Restrictions apply.

52 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 1, JANUARY 2006

{02}S.d
{02}S,
22 g1 {02} times 32
{02}S,
{03}Sp {03}S; ¢
{02383
{0338, . N {03}S,
Input 32 otate
P i > (8bits) *
{03385 {03385
sO.c 1
4 32
{03}S; {03}Sy /]
Sl,c
SZc
S2,c
S3.C
SS.c
1322 gl Rotate (16bits) i -
SO.C
Sl,c
32
Output
S3c S0e
SO.C S‘I,c
2 gl Rotate (8bits) 2 -
S].c SVZ,L
Soc S’3,c

Fig. 10. AES MixColumn implementation on one column.

MixColumn operation on column ¢ (¢ = 0,1, 2, and 3) of the
state can be represented by the following matrix multiplication:

5h o 02 03 01 017 [so.
sio| _ |01 02 03 01 sy
sho| |01 01 02 03| |sa.
s 03 01 01 02] Lss,.

It can be seen that, to evaluate a new column, both {02} times
and {03} times of the column in addition to the original column
are required. Note that {02} times (or X-times) operation in
AES is a special operation which is visualized in Fig. 9. We have
implemented the MixColumn operation as depicted in Fig. 10. It
can be seen that the microoperations are performed on a column
(32 b) and not on a byte at a time which utilizes the hardware
more efficiently and preforms the operation faster than a direct
byte-by-byte evaluation. Parhi ef al. [22] have also proposed a
method for sharing the required hardware for the evaluation of
each element S; . when each element is evaluated separately. In
our implementaﬁon, however, we are using a fixed hardware that
is optimized to keep the overall area of the design small. The In-
vMixColumn is also implemented using the same approach but

takes longer because we need to evaluate {09}, {Ob}, {0d}, and
{Oe} (all values in Hexadecimal) times each column to evaluate
the new state column. Each of these terms is evaluated in a sys-
tematic manner using the {02} times and XOR operations. For
example, {Ob} times any operand a is calculated, using the ex-
pansion {0b} = {08} & {02} & {01} = ({02}({02}({02})))®
{02} & {01}, as {0b}a = ({02}({02}({02}a))) ® {02}a & a,
where @ represents the XOR operation.

C. ECC

The point multiplication) = K - P in ECC is the basic op-
eration of this algorithm, and, instead of k times the addition of
the point P to itself, it is more efficient to use the binary ex-
pansion of k and use a set of doubling and addition to find @, as
presented in [11]. The point-doubling operation (Q = Q+Q) is
carried out by the point-doubling microcode and the point addi-
tion operation (Q = P + Q) is performed by the point addition
microcode. Both of these microcodes use field multiplication
and inversion subroutine microcodes. Field addition and dou-
bling is cheap (XOR and Circular shift left) and is done in the
point multiplication main routine. It should be emphasized that,

Authorized licensed use limited to: The University of Toronto. Downloaded on January 2, 2010 at 11:21 from |IEEE Xplore. Restrictions apply.

ESLAMI et al.: AREA-EFFICIENT UNIVERSAL CRYPTOGRAPHY PROCESSOR FOR SMART CARDS 53

Standard
cells

Standard
cells

]
I

Mcroprom Mem;ry

1.5 mm

Fig. 11.
CMOS).

Cryptoprocessor chip layout—SRAM version. (TSMC 0.18-ym

TABLE VIII
CRYPTOPROCESSOR CORE POWER CONSUMPTION ESTIMATES PER
ALGORITHM (POST-LAYOUT @VDD = 1.8 V)

Core power Consumption Core power Consumption (mW)

(mW) for 847.5 Kbps throughput
@fCLK=13.56MHz @fCLK<13.56MHz
DES 15.9 3.85
AES 16.3 7.55 (Encryption), 16.3 (Decryption)
ECC 18.3 not applicable

since all of the computations are performed in a single basis
(ONB), there is no need for the basis conversion, and, hence, no
basis conversion overhead is associated with this design.

VI. AREA AND POWER REQUIREMENTS

We used the Verilog Hardware Description Language to
realize the cryptoprocessor and Synopsys to synthesize the
RTL code using TSMC 0.18-pm CMOS standard cell library
and SRAM memory blocks. In addition to five memory blocks
(Microprogram-+4 LUTSs), 27 874 standard cells and 18350
nets are present in the design. Cadence First Encounter was
then used to place and route the layout of the cryptoprocessor,
resulting in the layout shown in Fig. 11 with a core area of 2.25
mm? (1.5 mm x 1.5 mm), which is 9% of total available chip
area.

The estimated core power consumption of the design for dif-
ferent algorithms is presented in Table VIII for a 1.8-V power
supply and 13.56-MHz clock frequency. The last column in this
table presents the core power consumption at a reduced clock
frequency (lower than 13.56 MHz) that provides the required
throughput of 847.5 kb/s for contactless smart cards. The power
consumption is estimated by the Synopsys Power Analysis tool,
using the postlayout netlist of the cryptoprocessor along with the
node activity data for each algorithm. The power consumption
can be further reduced by running the processor at lower volt-
ages than the nominal voltage of 1.8 V (as long as the speed and

Microprogram Memory

Controller
&

DataP ath
&
Re gister File

2.3 mm

(Standard Cells)

ToRUpT EOle
L

2.1 mm

Fig. 12. Cryptoprocessor chip layout—FeRAM version. (Fujitsu 0.18-pm
CMOS + 0.35 pm Ferro).

throughput requirements are satisfied). In Section VIII, we will
discuss how the power consumption can be further reduced in
future versions of the cryptoprocessor.

To obtain an estimate of the chip area using FeERAM tech-
nology, the layout of the same design using Fujitsu’s 0.18-um
CMOS + 0.35 pum Ferro process with FeRAM as the main
memory and SRAM as shadow back-up was generated with the
same set of tools. The resulting layout is shown in Fig. 12. The
core area for this implementation is 4.83 mm? (2.1 mm x 2.3
mm), which is 19.32% of total available chip area. Compiled
FeRAM memory modules were not available at the time of de-
veloping this layout, and hence experimental FeERAM blocks
which contain test structures and SRAM blocks were used in-
stead. It is possible to further reduce the core area of the FeRAM
implementation to less than 2.5 mm? (less than 10% of total
chip area) for more area-constrained applications by removing
the SRAM blocks and replacing the present FeRAM blocks with
production FeRAM blocks. As mentioned before, the FeRAM
implementation of the cryptoprocessor enjoys from the non-
volatile configuration storage. For both implementations, a seri-
alization of the operation of the main processor and the cryp-
toprocessor can satisfy the power requirements. Obviously, a
power-optimized version of the cryptoprocessor can be run con-
currently with the main processor.

VII. DESIGN PERFORMANCE

We used Verilog-XL to simulate both the RTL and gate-level
netlists of the designed cryptoprocessor. The simulated perfor-
mance of the post-layout design is summarized in Table IX (for
all three algorithms) and in Fig. 13 (for ECC only). The first
two rows of Table IX show that the throughput of encryption
and decryption of DES and encryption of AES algorithms are
much higher than the maximum data transfer rate for contact-
less smart cards, at 847.5 kb/s [8]; hence, for more power-re-
stricted applications, the clock frequency can be lowered for
these cases to reduce the power consumption. Also, note that,

Authorized licensed use limited to: The University of Toronto. Downloaded on January 2, 2010 at 11:21 from |IEEE Xplore. Restrictions apply.

54 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 1, JANUARY 2006

A Point Multiplication time (ms)

(254, 1418)

1400 F ~~ ~~ """ - - - - - - - —-— - ———- .

(239,1205) / !

1200~~~ —-~------------------ !

[} I

|

1000 - ! :

Legend: (bits, time) : X

I I

800 - U

[

I I

600 - [

(155,417) Do

404" """ T T T T T T T -
|

(131,250) | ! !

200 4 : Lo

_____ (83, 100) | Lo

1 1 | |]

o '—4 ittt
32 64 96 128 160 192 224 256
ECC Key Length (bits)

Fig. 13. ECC point-multiplication time for various key lengths.

TABLE IX
THROUGHPUT ESTIMATES FOR THE CRYPTOPROCESSOR OPERATING AT
fCLK = 13.56 MHz

Encryption = Decryption
DES 3.50Mb/s 3.50Mb/s
AES 1.83Mb/s 0.85Mb/s
ECC-83 9.92 PM/s
ECC-83 3.97PM/s
ECC-83 2.36PM/s
ECC-83 0.85PM/s
ECC-83 0.70PM/s

(PM/s: No. of Point Multiplications per Second)

for ECC, the performance is measured in point multiplication
per second (PM/s) rather than bits per second (b/s), because
ECC is mainly used for secret key exchange and authentication
purposes which both use point multiplication as the basic oper-
ation. The ECC performance plot in Fig. 13 shows that highly
secure applications (239 254 b ECC) need to spend around 1.5 s
for secret key exchange or a point multiplication, while medium
(131, 155 b) and low (83 b) security applications can perform the
same operations in less than a second. Moreover, it is possible
to trade performance with area and power in this implementa-
tion. For example, higher performance can be obtained by run-
ning the processor at higher frequencies—up to 25 MHz for the
current design—(increasing power consumption) and/or using
pipelining (increasing area), for more performance-demanding
applications. It is worth mentioning that the performance listed
in Table IX and Fig. 13 for ECC are based on the worst case
scenario mentioned in Section IV-C.

As mentioned in Section I, there is no published work of a
single hardware implementation that supports DES, AES, and
ECC available for comparison. Table I lists several recent pub-
lications of hardware and software implementations of cryptog-
raphy algorithms contrasted with the implementation described
in this paper. Moreover, the original proposal documents of Ri-
jndael to the AES selection committee by the algorithm de-
signers indicates that the fastest implementation of AES-128 on
Intel 8051 needs 3168 CPU cycles (each CPU cycle is 12 clock
cycles) [33] and 1016 bytes of code, and its implementation on
Motorola 68HCO8 needs 8390 clock cycles and 919 bytes of
memory [33]. Our implementation, however, needs 248 clock
cycles and uses 92 bytes of microcode only, which is abut 40
times faster and 10 times more code-size efficient compared to
the referenced implementations.

VIII. DISCUSSION

In this section, we address a few extra features that can be
added to the design in the future to enhance its capabilities.

First, the design currently uses a 256 X 32 microprogram
memory, while the maximum number of microcode words
needed by DES, AES, and ECC are 46, 150, and 60, respec-
tively. Thus, in the current design, the microcode for all three
algorithms can be stored in the microprogram memory and
the algorithm instantiation is accomplished by changing the

LUT contents only. In a more area-limited application, the
2

~

memory size can be reduced to 150 words (41% =2 0.05 mm
reduction). In this case, the microprogram memory contents, in
addition to the LUT contents, need to be updated by the host
CPU during an algorithm change.

Second, the ECC multiplication is currently performed in a
firmware loop which degrades the performance due to the reg-
ular fetching of the loop microcode. A hardware implementa-
tion of this instruction can improve the ECC performance by
200%-300%, with negligible area overhead. This can also re-
duce the power consumption by reducing the memory access
rate.

Third, the current implementation of AES decryption is much
slower than AES encryption, mainly because of the inverse-key-
generation algorithm. This could be greatly improved by recon-
sidering the inverse-key-generation algorithm and by making
the registers in the register file byte-addressable.

Fourth, although the cryptoprocessor is designed to support
DES, AES, and ECC only, it provides basic micro-operations
that are used in other cryptography algorithms. Therefore, other
algorithms such as Serpent (which was also a NIST finalist
during AES selection [28]) that use the same basic micro-op-
erations can also be implemented on the same hardware by
developing a suitable microcode for each algorithm.

Finally, for the current design, we have been mainly
concerned about the feasibility, area requirements, and the
performance of the cryptoprocessor, which are important for
all types of smart cards, and less concerned about the power
consumption, which is a constraint specific to contactless smart
cards only. However, we have used several implementation
techniques, such as using keeper cells on the bus lines and clock
gating for the registers in the register file, to keep the power

Authorized licensed use limited to: The University of Toronto. Downloaded on January 2, 2010 at 11:21 from |IEEE Xplore. Restrictions apply.

ESLAMI et al.: AREA-EFFICIENT UNIVERSAL CRYPTOGRAPHY PROCESSOR FOR SMART CARDS 55

consumption low. To reduce power consumption further, the
following techniques are available to the designers: 1) reducing
the bus wire lengths by using a hierarchical implementation,
instead of a flat implementation and 2) using a selective
clock signal for the registers to clock the active portion of the
registers for cases where operands occupy less than the full
register width.

IX. CONCLUSION

This design presents, for the first time, a universal cryptog-
raphy processor for smart-card applications that supports both
private and public key cryptography algorithms. We achieved
this by expressing the primitives of three important algorithms
for smart cards (DES, AES, and ECC) in terms of simple log-
ical operations that maximize the number of common blocks
among them. This approach resulted in a cryptoprocessor that
meets the power consumption and performance specifications
of smart cards and occupies 2.25 mm? in 0.18-zm CMOS when
SRAM memory blocks are used. This area represents just 9% of
the maximum available smart-card die area of 25 mm?. Using
FeRAM instead of SRAM memory blocks provides nonvolatile
configuration at no extra area overhead.

ACKNOWLEDGMENT

The authors would like to thank the Canadian Microelec-
tronics Corporation (CMC) for technical support and the use of
the Advanced Digital Test Collaboratory located at the Univer-
sity of Toronto, Toronto, ON, Canada.

REFERENCES
[1

[—

Data Encryption Standard (DES), Oct. 1999. Fed. Inf. Process. Stan-

dards Pub..

Advanced Encryption Standard (AES), Nov. 2001. Fed. Inf. Process.

Standards Pub..

[3] IEEE Standard Specifications for Public-Key Cryptography, Jan. 2000.

[4] T.S.Messerges, E. A. Dabbish, and R. H. Sloan, “Investigation of power
analysis attacks on smartcards,” in Proc. USENIX Workshop Smartcards
Technology, Chicago, IL, May 1999, p. 151 and 161.

[5] K. Okeya and K. Sakurai, “A multiple power analysis breaks the ad-
vanced version of the randomized addition-subtraction chains counter-
measure against side channel attacks,” in Proc. IEEE Inf. Theory Work-
shop, 2003, pp. 175-178.

[6] S. B. Ors, F. Gurkaynak, E. Oswald, and B. Preneel, “Power-analysis
attack on an ASIC AES implementation,” in Proc. Inf. Technol.: Coding
Computing, vol. 2, 2004, pp. 546-552.

[71 Smart Cards Standards, 1995-2004. Int. Standard Org..

[8] International Standard Organization/International Electrotechnical
Commission ISO/IEC 14 443 standard.

[9] [Online]. Available: http://www.mips.com/ProductCat-
alog/P_MIPS324KFamily/productBrief

[10] J. Goodman and A. P. Chandrakasan, “An energy-efficient reconfig-
urable public-key cryptography processor,” IEEE J. Solid-State Circuits,
vol. 36, no. 11, pp. 1808-1820, Nov. 2001.

[11] P. H. W. Leong and I. K. H. Leung, “A microcoded elliptic curve pro-
cessor using FPGA technology,” IEEE Trans. Very Large Scale Integr:
(VLSI) Syst., vol. 10, no. 5, pp. 550-559, Oct. 2002.

[12] J. H. Kim and D. H. Lee, “A compact finite field processor over GF(2

m) for elliptic curve cryptography,” in Proc. ISCAS, vol. 2, pp. 340-343.

S. Masui, T. Ninomiya, M. Oura, W. Yokozeki, K. Mukaida, and S.

Kawashima, “A ferroelectric memory-based secure dynamically pro-

grammable gate array,” IEEE J. Solid-State Circuits, vol. 38, no. 5, pp.

715-725, May 2003.

[2

—

[13]

[14] I. Verbauwhede, P. Schaumont, and H. Kuo, “Design and performance
testing of a 2.29-GB/s rijndael processor,” IEEE J. Solid-State Circuits,
vol. 38, no. 3, pp. 569-572, Mar. 2003.

S. S. Raghuram and C. Chakrabarti, “A programmable processor for

cryptography,” in Proc. ISCAS, pp. V-685-V-688.

[16] K. Eguro and S. Hauck, “Issues and approaches to coarse-grain recon-
figurable architecture development,” in Proc. 11th Annu. IEEE Symp.
Field-Programmable Custom Computing Machines, 2003, pp. 111-120.

[17] M. Rosing, Implementing Elliptic Curve Cryptography. Greenwich,
CT: Manning, 1999.

[18] 1. Blake et al., Elliptic Curves in Cryptography. Cambridge, U.K.:
Cambridge Univ. Press, 1999.

[19] A.Menesez, Elliptic Curve Public Key Cryptosystems.
Netherlands: Kluwer, 1993, ch. 6, pp. 83-99.

[20] N. Biggs, Discrete Mathematics. Oxford, U.K.: Oxford Univ. Press,
2002.

[21] M.J. Wiener, “Efficient DES key search—An update,” RSA Labs. Cryp-
tosyst., vol. 3, no. 2, pp. 6-8, 1997.

[22] X.Zhang and K. K. Parhi, “Implementation approaches for the advanced
encryption standard algorithm,” IEEE Circuits Syst. Mag., vol. 2, no. 4,
pp. 24-46, Apr. 2002.

[23] G.V.S. Raju and R. Akbani, “Elliptic curve cryptosystem and its appli-
cations,” in Proc. IEEE Int. Conf. Syst., Man Cybern., vol. 2, 2003, pp.
1540-1543.

[24] H. Eberle, N. Gura, and S. Chang-Shantz, “A cryptographic processor
for arbitrary elliptic curves over GF(2 m),” in Proc. IEEE Int. Conf. Ap-
plication-Specific Syst., Architectures, Processors, 2003, pp. 444-454.

[25] V. C. Hamacher, Z. G. Vranesic, and S. G. Zaky, Computer Organiza-
tion, Sthed. New York: McGraw-Hill, 1996, pp. 429-445.

[26] D. A. Patterson and J. L. Hennessy, Computer Organization & De-
sign—The Hardware/Software Interface, 2nd ed. San Mateo, CA:
Morgan Kaufmann, 1998, pp. 336-432.

[27] Y. Eslami, A. Sheikholeslami, S. Masui, T. Endo, and S. Kawashima,
“Circuit implementations of the differential capacitance read scheme
(DCRS) for ferroelectric random-access memories (FERAM),” IEEE J.
Solid-State Circuits, vol. 39, no. 11, pp. 2024-2031, Nov. 2004.

[28] [Online]. Available: http://www.cl.cam.ac.uk/~rjal4/serpent.html

[29] N. S. Kim, T. Mudge, and R. Brown, “A 2.3 Gb/s fully integrated and
synthesizable aes rijndael core,” in Proc. IEEE Custom Integrated Cir-
cuits Conf., 2003, pp. 193-196.

[30] M. Aydos, T. Yanik, and C. K. Koc, “High-speed implementation of
an ECC-based wireless authentication protocol on an ARM micropro-
cessor,” Proc. IEE Commun., vol. 148, no. 5, pp. 273-279, Oct. 2001.

[31] E. Trichina, M. Bucci, D. De Seta, and R. Luzzi, “Supplemental crypto-
graphic hardware for smart cards,” IEEE Micro, pp. 26-35, Nov.—Dec.
2001.

[32] J. H.Han, Y.J. Kim, S. I. Jun, K. I. Chung, and C. H. Seo, “Implemen-

tation of ECC/ECDSA cryptography algorithms based on java card,” in

Proc. 22nd Int. Conf. Distrib. Comput. Syst. Workshop, 2002.

Document Version2. 03/09/99.

[15]

Dordrecht, The

[33]

Yadollah Eslami (S’00-M’05) received the B.Sc.
degree in electrical engineering from Shiraz Uni-
versity, Shiraz, Iran, in 1985, the M.Sc. degree in
communication systems from Isfahan University of
Technology, Isfahan, Iran, in 1987, and the Ph.D.
degree in electrical and computer engineering from
the University of Toronto, Toronto, ON, Canada, in
2005.

He was a Lecturer with the Electrical and Com-
puter Engineering Department, Isfahan University of
Technology, from 1987 to 1999. He is currently a De-
sign Engineer with the Department of DRAM Research and Development, Mi-
cron Technology Inc., Boise, ID. His research interests are in the areas of VLSI
memories, VLSI implementation of cryptography algorithms, and micropro-
cessor architecture.

Dr. Eslami was the recipient of the Ontario Graduate Scholarship in Science
and Technology, the University of Toronto Open Fellowship, and the Edwards
S. Rogers Sr. Scholarship from 1999 to 2005.

Authorized licensed use limited to: The University of Toronto. Downloaded on January 2, 2010 at 11:21 from |IEEE Xplore. Restrictions apply.

56 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 1, JANUARY 2006

Ali Sheikholeslami (S’98-M’99-SM’02) received
the B.Sc. degree from Shiraz University, Shiraz, Iran,
in 1990 and the M. A.Sc. and Ph.D. degrees from the
University of Toronto, Toronto, ON, Canada, in 1994
and 1999, respectively, all in electrical and computer
engineering.

In 1999, he joined the Department of Electrical and
Computer Engineering, University of Toronto, where
he is currently an Associate Professor. His research
interests are in the areas of analog and digital inte-
grated circuits, high-speed signaling, VLSI memory
design (including SRAM, DRAM, and CAM), and ferroelectric memories. He
has collaborated with industry on various VLSI design projects in the past few
years, including work with Nortel, Canada, in 1994, with Mosaid, Canada, since
1996, and with Fujitsu Laboratories, Japan, since 1998. He is currently spending
the first half of his sabbatical year with Fujitsu Laboratories, Kawaski, Japan.
He presently supervises three active research groups in the areas of ferroelec-
tric memory, content-addressable memory (CAM), and high-speed signaling.
He has coauthored several journal and conference papers (in all three areas), in
addition to two U.S. patents on CAM and one U.S. patent on ferroelectric mem-
ories.

Dr. Sheikholeslami has served on the Memory Subcommittee of the IEEE
International Solid-State Circuits Conference (ISSCC) from 2001 to 2004 and
on the Technology Directions Subcommittee of the same conference from 2002
to 2005. He presented a tutorial on ferroelectric memory design at the ISSCC
2002. He was the Program Chair for the 34th IEEE International Symposium on
Multiple-Valued Logic (ISMVL 2004) held in Toronto, Toronto, ON, Canada.
He is a Registered Professional Engineer in the Province of Ontario, Canada.
He was the recipient of the Best Professor of the Year Award in 2000, 2002, and
2005 by the popular vote of the undergraduate students in the Department of
Electrical and Computer Engineering, University of Toronto.

P. Glenn Gulak (S’82-M’83-SM’96) received the
Ph.D. degree from the University of Manitoba, Win-
nipeg, MB, Canada.

While at the University of Mannitoba, he held
a Natural Sciences and Engineering Research
Council of Canada Postgraduate Scholarship. He
is a Professor with the Department of Electrical
and Computer Engineering, University of Toronto,
Toronto, ON, Canada. His present research inter-
ests are in the areas of algorithms, circuits, and
system-on-chip architectures for digital commu-
nications. He has authored or coauthored more than 100 publications in
refereed journal and refereed conference proceedings. In addition, he has
received numerous teaching awards for undergraduate courses taught in both
the Department of Computer Science and the Department of Electrical and
Computer Engineering at the University of Toronto. He held the L. Lau Chair
in Electrical and Computer Engineering for the five-year period 1999-2004.
He currently holds the Canada Research Chair in Signal Processing Systems.
From January 1985 to January 1988, he was a Research Associate with the
Information Systems Laboratory and the Computer Systems Laboratory,
Stanford University, Stanford, CA. From March 2001 to March 2003, he was
the Chief Technical Officer and Senior Vice President of LSI Engineering, a
fabless semiconductor startup headquartered in Irvine, CA, with $85M USD of
financing that focused on wireline and wireless communication ICs.

Dr. Gulak served on the ISSCC Signal Processing Technical Subcommittee
from 1990 to 1999, was ISSCC Technical Vice-Chair in 2000, and served as
the Technical Program Chair for ISSCC 2001. He was the recipient of the IEEE
Millenium Medal in 2001.

Shoichi Masui (M’90) received the B.S. and M.S.
degrees from Nagoya University, Nagoya, Japan in
1982 and 1984, respectively.

From 1984 to 1999, he was with Nippon Steel
Corporation, Sagamihara, Japan, where he was
engaged in research on SOI devices, nonvolatile
memory circuit design, and its application to radio
frequency identification (RFID) ICs. From 1990
to 1992, he was a Visiting Scholar with Stanford
University, Stanford CA, where he was involved with
research on substrate-coupling noise in mixed-signal
ICs. In 1999, he joined Fujitsu Ltd., and, since 2000, he has been with Fujitsu
Laboratories Ltd., Kawasaki, Japan, where he is currently a Research Fellow
engaged in design of ferroelectric random access memory (FeRAM) for smart
cards, RFIDs, and reconfigurable logic LSIs. In 2001, he was a Visiting Scholar
with the University of Toronto, Toronto, ON, Canada, where he researched
FeRAM design and its application to reconfigurable logic LSIs.

Mr. Masui was the recipient of a commendation by the Minister of Educa-
tion, Culture, Sports, Science, and Technology, Japan, in 2004 for his research
achievements on FeRAM.

Kenji Mukaida received the B.S. degree from the
Science University of Tokyo, Tokyo, Japan, in 1990.

From 1990 to 1999, he was with Nippon Steel Cor-
poration, Sagamihara, Japan, where he was engaged
in the design of logic LSIs and computer systems. In
1999, he joined Fujitsu Laboratories Ltd., Kawaski,
Japan, where, since 2001, he has been engaged in the
design of reconfigurable logic LSIs.

Authorized licensed use limited to: The University of Toronto. Downloaded on January 2, 2010 at 11:21 from |IEEE Xplore. Restrictions apply.

	toc
	An Area-Efficient Universal Cryptography Processor for Smart Car
	Yadollah Eslami, Member, IEEE, Ali Sheikholeslami, Senior Member
	I. I NTRODUCTION

	TABLE I S OME R ECENT C RYPTOGRAPHY A LGORITHM I MPLEMENTATION S
	II. C RYPTOGRAPHY A LGORITHMS
	A. Data Encryption Standard (DES)

	Fig.€1. DES block diagram (K1, K2, \cdots, K16 refer to the ke
	B. Advanced Encryption Standard (AES)

	Fig.€2. DES f()-box details.
	Fig.€3. 3DES (TDEA) block diagram.
	Fig.€4. AES block diagram.
	C. Elliptic Curve Cryptography (ECC)

	Fig.€5. ECC secret-key-exchange algorithm block diagram.
	III. C RYPTOGRAPHY E NGINE

	TABLE II O PERATIONS R EQUIRED BY DES, AES, AND ECC FOR D IRECT
	TABLE III O PERATIONS R EQUIRED BY DES, AES, AND ECC A FTER R EO
	Fig.€6. Detailed cryptoprocessor architecture.
	IV. C RYPTOPROCESSOR S PECIFICATIONS
	A. Architecture

	Fig.€7. Cryptoprocessor controller and its subblock interconnect
	Fig.€8. Cryptoprocessor microinstruction format.
	TABLE IV T YPICAL FeRAM AND SRAM C HARACTERISTICS IN 0.18- μ
	TABLE V D AT A M ANIPULATION M ICROINSTRUCTIONS OF THE C RYPTOPR
	B. Initializations

	TABLE VI P ROGRAM C ONTROL M ICROINSTRUCTIONS OF THE C RYPTOPROC
	C. Microinstruction Set and Microprograms
	V. I MPLEMENTATION D ETAILS
	A. DES
	B. AES

	TABLE VII N O . OF C LOCK C YCLES R EQUIRED P ER A LGORITHM .
	Fig. 9. AES X-times ({2} times) operation.
	1) AddRoundKey and InvAddRoundKey: The key generation for AES en
	2) ShiftRow and InvShiftRow: Both of these operations are perfor
	3) MixColumn and InvMixColumn: These operations are the most com

	Fig.€10. AES MixColumn implementation on one column.
	C. ECC

	Fig.€11. Cryptoprocessor chip layout SRAM version. (TSMC 0.18- $
	TABLE VIII C RYPTOPROCESSOR C ORE P OWER C ONSUMPTION E STIMATES
	VI. A REA AND P OWER R EQUIREMENTS

	Fig.€12. Cryptoprocessor chip layout FeRAM version. (Fujitsu 0.1
	VII. D ESIGN P ERFORMANCE

	Fig.€13. ECC point-multiplication time for various key lengths.
	TABLE IX T HROUGHPUT E STIMATES FOR THE C RYPTOPROCESSOR O PERAT
	VIII. D ISCUSSION
	IX. C ONCLUSION

	Data Encryption Standard (DES), Oct. 1999. Fed. Inf. Process. St
	Advanced Encryption Standard (AES), Nov. 2001. Fed. Inf. Process
	IEEE Standard Specifications for Public-Key Cryptography, Jan. 2
	T. S. Messerges, E. A. Dabbish, and R. H. Sloan, Investigation o
	K. Okeya and K. Sakurai, A multiple power analysis breaks the ad
	S. B. Ors, F. Gurkaynak, E. Oswald, and B. Preneel, Power-analys

	Smart Cards Standards, 1995 2004. Int. Standard Org..
	International Standard Organization/International Electrotechnic
	J. Goodman and A. P. Chandrakasan, An energy-efficient reconfigu
	P. H. W. Leong and I. K. H. Leung, A microcoded elliptic curve p
	J. H. Kim and D. H. Lee, A compact finite field processor over G
	S. Masui, T. Ninomiya, M. Oura, W. Yokozeki, K. Mukaida, and S.
	I. Verbauwhede, P. Schaumont, and H. Kuo, Design and performance
	S. S. Raghuram and C. Chakrabarti, A programmable processor for
	K. Eguro and S. Hauck, Issues and approaches to coarse-grain rec
	M. Rosing, Implementing Elliptic Curve Cryptography . Greenwich,
	I. Blake et al., Elliptic Curves in Cryptography . Cambridge, U.
	A. Menesez, Elliptic Curve Public Key Cryptosystems . Dordrecht,
	N. Biggs, Discrete Mathematics . Oxford, U.K.: Oxford Univ. Pres
	M. J. Wiener, Efficient DES key search An update, RSA Labs. Cryp
	X. Zhang and K. K. Parhi, Implementation approaches for the adva
	G.V.S. Raju and R. Akbani, Elliptic curve cryptosystem and its a
	H. Eberle, N. Gura, and S. Chang-Shantz, A cryptographic process
	V. C. Hamacher, Z. G. Vranesic, and S. G. Zaky, Computer Organiz
	D. A. Patterson and J. L. Hennessy, Computer Organization & Desi
	Y. Eslami, A. Sheikholeslami, S. Masui, T. Endo, and S. Kawashim
	N. S. Kim, T. Mudge, and R. Brown, A 2.3 Gb/s fully integrated a
	M. Aydos, T. Yanik, and C. K. Koc, High-speed implementation of
	E. Trichina, M. Bucci, D. De Seta, and R. Luzzi, Supplemental cr
	J. H. Han, Y. J. Kim, S. I. Jun, K. I. Chung, and C. H. Seo, Imp
	Document Version2 . 03/09/99.

