ECE1747: Parallel Programming

Assignment 1

1. Introduction

Using SimMud, a massively multiplayer game simulator, implement and evaluate one of the dynamic load balancing algorithms: “Lightest” or “Spread”. A presentation of these algorithms can be found in Locality Aware Dynamic Load Management for Massively Multiplayer Games (http://www.eecg.toronto.edu/~amza/papers/f87-chen.pdf). The source code for SimMud can be found at: http://www.eecg.toronto.edu/~amza/ece1747h/homeworks/hw1/game_benchmark_1747.tgz
2. SimMud

SimMud follows a client-server architecture. The map of the game is represented as a matrix of cells, a cell being the smallest unit of the world. There a 3 types of entities: players, game objects (resources, apples) and blocks (walls). The players can perform a series of actions: move one cell at a time, eat resources (apples) and attack another player. At any point in time a player can only see as far as a square area around him defined as his “area of interest” (CLIENT_MATRIX_SIZE). From time to time players receive quests from the server. A quest is defined as a position on the map, and lasts for a limited amount of time. If by the end of the quest a player is near the quest's location it gets rewarded. Quests are a way of reproducing flocking behaviour inside the benchmark.

The server has a multithreaded design and each thread executes a 3-staged loop divided by barriers. In the first stage requests coming from clients get processed and the world map gets updated accordingly. This stage lasts for a fixed amount of time, the “regular_update_interval”. The second stage, which needs to be executed by only one thread, does load balancing and quest planning. Finally, in the last stage each thread sends world updates back to its clients with their area of interest. These stages are implemented in “src/server/WorldUpdateModule.cpp”

3. Load Balancing

For the purpose of load balancing and synchronization the map is divided in a grid of regions. Consequently, all the entities of the map (players, resources) are associated with a region corresponding to their position. Each region is assigned to a thread which is in charge with processing requests coming from the clients from that region as well as sending them updates. The goal of load balancing is making sure that all threads do a fairly similar amount of work such that the maximum number of clients can be hosted by the server.

The default load balancing algorithm is “static” which simply divides the map between the threads in contiguous sequences of regions.

4. Deliverables

Provide a report in which you analyze the performance of the “static” vs. “dynamic” schemes in two scenarios: a) there is no active quest and the players are moving more or less randomly, b) there is an active quest and as a result all the players are concentrated in one area the map. Consider your evaluation in terms of the moving averages of the following metrics collected by each thread in every iteration:

· number of client requests and the time spent processing them (make sure not to include the time waiting for requests but the time spent actually processing them)

· number of client updates sent to clients and the time spent sending them.

5. Account Information

In general, I recommend you work on the ug machines located in the GB 243 lab. They are accessible by ssh -- hostnames are ugxyz.eecg.toronto.edu (ug245 for instance is one of those machines). The

ug machines run Debian; they are multicore and have plenty of RAM.

Here's some info on accounts: http://www.eecg.toronto.edu/~exec/student_guide/ComputerResources/comp_network_accounts.shtml

As I mentioned in class, you can email ecehelp@eecg.toronto for a general EECG account. However, the ug machines (UGSPARC on the page above) are managed separately – Please send an email to Tim Trant at tim@eecg.toronto.edu regarding accounts on these machines – again mentioning your need for the account for the ECE 1747 class. Please copy the code I provided into your account and measure your code execution time on one of the ug machines.
