
Autonomic Provisioning of Backend Databases in
Dynamic Content Web Servers
Jin Chen

Department of Computer Science
University of Toronto

Toronto, Canada
Email: jinchen@cs.toronto.edu

Gokul Soundararajan, Cristiana Amza
Department of Electrical and Computer Engineering

University of Toronto
Toronto, Canada

Email: {gokul, amza}@eecg.toronto.edu

Abstract— In autonomic provisioning, a resource manager
allocates resources to an application, on-demand, e.g., during load
spikes. Modelling-based approaches have proved very successful
for provisioning the web and application server tiers in dynamic
content servers. On the other hand, accurately modelling the
behavior of the back-end database server tier is a daunting
task. Hence, automated provisioning of database replicas has
received comparatively less attention. This paper introduces a
novel pro-active scheme based on the classic K-nearest-neighbors
(KNN) machine learning approach for adding database replicas
to application allocations in dynamic content web server clusters.
Our KNN algorithm uses lightweight monitoring of essential
system and application metrics in order to decide how many
databases it should allocate to a given workload. Our pro-active
algorithm also incorporates awareness of system stabilization
periods after adaptation in order to improve prediction accuracy
and avoid system oscillations. We compare this pro-active self-
configuring scheme for scaling the database tier with a reactive
scheme. Our experiments using the industry-standard TPC-W
e-commerce benchmark demonstrate that the pro-active scheme
is effective in reducing both the frequency and peak level of
SLA violations compared to the reactive scheme. Furthermore, by
augmenting the pro-active approach with awareness and tracking
of system stabilization periods induced by adaptation in our
replicated system, we effectively avoid oscillations in resource
allocation.

I. I NTRODUCTION

Autonomic management of large-scale dynamic content
servers has recently received growing attention [1], [2], [3],
[4] due to the excessive personnel costs involved in managing
these complex systems. This paper introduces a new pro-active
resource allocation technique for the database back-end of
dynamic content web sites.

Dynamic content servers commonly use a three-tier archi-
tecture (see Figure 1) that consists of a front-end web server
tier, an application server tier that implements the business
logic, and a back-end database tier that stores the dynamic
content of the site. Gross hardware over-provisioning for
each workload’s estimated peak load can become infeasible
in the short to medium term, even for large sites. Hence, it
is important to efficiently utilize available resources through
dynamic resource allocation, i.e., on-demand provisioning for
all active applications. One such approach, the Tivoli on-
demand business solutions [3], implements dynamic provision-
ing of resources within the stateless web server and application

server tiers. However, dynamic resource allocation among
applications within the stateful database tier, which commonly
becomes the bottleneck [5], [6], has received comparatively
less attention.

����
������

�	��	

���
���
���
������

������	��
������

�����
�����	�	

���
���
���
�����
�������	

��������
�	

������	���	�	�����
���������	����
����	

Fig. 1. Architecture of Dynamic Content Sites

Recent work suggests that fully-transparent, tier-
independent provisioning solutions can be used in complex
systems that contain persistent state such as the database tier
as well [1], [4]. These solutions, similar to Tivoli, treat the
system as a set of black boxes and simply add boxes to a
workload’s allocation based on queuing models [1], utility
models [4], [7] or marketplace approaches [8]. In contrast,
our insight in this paper is that for a stateful system, such
as a database tier, off-line system training coupled with
on-line system monitoring and tracking system stabilization
after triggering an adaptation are key features for successful
provisioning.

We build on our previous work [9] in the area of database
provisioning. As in our previous work, our goal is to keep
the average query latency for any particular workload under
a predefined Service Level Agreement (SLA) value. Our pre-
vious work achieves this goal through areactivesolution [9],
where a new database replica is allocated to a dynamic
content workload in response to load or failure-induced SLA
violations.

In this paper, we introduce a novel pro-active scheme that
dynamically adds database replicas in advance of predicted
need, while removing them in underload in order to optimize
resource usage. Our pro-active scheme is based on a classic
machine learning algorithm, K-nearest-neighbors (KNN), for
predicting resource allocation needs for workloads. We use an
adaptive filter to track load variations, and the KNN classi-
fier to build a performance model of database clusters. The
learning phase of KNN uses essential system and application
metrics, such as, the average throughput, the average number

of active connections, the read to write query ratio, the CPU,
I/O and memory usage system-level statistics. We train the
performance model on these metrics during a variety of stable
system states using different client loads and different numbers
of database replicas. Correspondingly, our pro-active dynamic
resource allocation mechanism uses active monitoring of the
same database system and application metrics at run-time.
Based on the predicted load information and the trained KNN
classifier, the resource manager adapts on-line and allocates
the number of databases that the application needs in the next
time slot under varying load situations.

While pro-active provisioning of database replicas is appeal-
ing, it faces two inter-related challenges: 1) the unpredictable
delay of adding replicas and 2) the instability of the system
after triggering an adaptation. Adding a new database replica
is a time-consuming operation because the database state of
the new replica may be stale and must be brought up-to-date
via data migration. In addition, the buffer cache at the replica
needs to be warm before the replica can be used effectively.
Thus, when adding a replica, the system metrics might show
abnormal values during system stabilization e.g., due to the
load imbalance between the old and newly added replicas. We
show that a pro-active approach that disregards the needed
period of system stabilization after adaptation induces system
oscillations between rapidly adding and removing replicas. We
incorporate awareness of system instability after adaptation
into our allocation logic in order to avoid such oscillations.
Some form of system instability detection based on simple
on-line heuristics could be beneficial when incorporated even
in a reactive provisioning technique [9]. On the other hand,
our pro-active technique can detect and characterize periods
of instability with high accuracy due to its system training
approach. During training on a variety of system parameters,
the system learns their normal ranges and the normal correla-
tions between their values, resulting in more robust instability
detection at run-time.

Our prototype implementation interposes an autonomic
manager tier between the application server(s) and the
database cluster. The autonomic manager tier consists of an
autonomic manager component collaborating with a set of
schedulers (one per application). Each scheduler is respon-
sible for virtualizing the database cluster and for distributing
the corresponding application’s requests across the database
servers within that workload’s allocation.

We evaluate our pro-active versus reactive provisioning
schemes with the shopping and browsing mix workloads
of the TPC-W e-commerce benchmark, an industry-standard
benchmark that models an online book store. Our results are
as follows:

1) The pro-active scheme avoids most SLA violations un-
der a variety of load scenarios.

2) By triggering adaptations earlier and by issuing several
database additions in a batch, the pro-active scheme
outperforms the reactive scheme, which adds databases
incrementally and only upon SLA violations.

3) Our system is shown to be robust. First, our instability

detection scheme based on learning avoids unnecessary
oscillations in resource allocation. Second, our system
adapts quite well to load variations when running a
workload request mix different than the mix used during
system training.

The rest of this paper is organized as follows. We first in-
troduce the necessary background related to the KNN learning
algorithm in section II. We then introduce our system archi-
tecture and give a brief overview of our dynamic replication
environment in Section III. Then, we discuss our reactive
and pro-active approaches in Section IV and Section V,
respectively. Section VI describes our experimental testbed and
benchmark. Section VII illustrates our results for applying the
two approaches in the adaptation process of database clusters
under different workload patterns. We compare our work to
related work in Section VIII. Finally, we conclude the paper
and discuss future work in Section IX.

II. BACKGROUND

Classic analytic performance models [1], can predict
whether or not a system will violate the SLA given information
on future load. These modelling approaches are, however,
not ameanable to our problem. This is due to the typically
time consuming derivation of an analytic model for modelling
complex concurrency control mechanisms such as the one in
a replicated database system. Furthermore, in our complex
system, the average query latency is not only related to the
query arrival rate but is also related to the semantics of the
query and the particular query workload mix.

Instead, we use thek-nearest-neighbor(KNN) classifier, a
machine learning approach which considers multiple features
in the system. KNN is an instance-based learning algorithm
and has been widely applied in many areas such as text
classification [10]. In KNN, a classification decision is made
by using a majority vote ofk “nearest” neighbors based on a
similarity measure, as follows:

• For each target data set to be predicted the algorithm
finds thek nearest neighbors of the training data set. The
distance between two data points is regarded as a measure
of their similarity. The Euclidean distance is often used
for computing the distance between numerical attributes,
also called as features.

• The distance we use in this paper isweightedEuclidean
distance given by the following formula:

Dist(X, Y) =
√∑N

i=1 weighti ∗ (xi − yi)2
Here, X and Y represent two different data points, N
denotes the number of features of the data,xi, yi denote
the ith feature of X and Y respectively andweighti
denotes the weight of ourith feature. Each weight reflects
the importance of the corresponding feature.

• Find the majority vote of the k nearest neighbors. The
similarities of testing data to the k nearest neighbors are
aggregated according to the class of the neighbors, and
the testing data is assigned to the most similar class.

�

�

����

����	
��	
��

�������

�����

���������

	
�
���

�����������������������

�����������������

���������

���������

�������

Fig. 2. Cluster Architecture

• Cross validation of the training data is an often used
criterion that we also use to select the weights of the
features and the number of “nearest” neighbors -K.

One of advantages of KNN is that it is well suited for
problems with multi-modal classes (i.e., with objects whose
independent variables have different characteristics for differ-
ent subsets), and can lead to good accuracy for such problems.
In KNN, trained models are implicitly defined by the stored
training set and the observed attributes. Furthermore, KNN
is robust to noisy training data and effective if the training
data is sufficiently large. However, KNN’s computation cost
grows proportionately with the size of the training data, since
we need to compute the distance of each target attribute to
all training samples. Indexing techniques (e.g. K-D tree) can
reduce this computational cost.

III. SYSTEM ARCHITECTURE

Figure 2 shows the architecture of our dynamic content
server. In our system, a set of schedulers, one per application
is interposed between the application and the database tiers.
The scheduler tier distributes incoming requests to a cluster
of database replicas. Each scheduler1 upon receiving a query
from the application server sends the query using a read-one,
write-all replication scheme to the replica set allocated to the
application. The replica set is chosen by a resource manager
that makes the replica allocation and mapping decisions across
the different applications.

The scheduler uses ourConflict-Aware replication
scheme [12] for achieving one-copy serializability [13] and
scalability. With this scheme, each transaction explicitly
declares the tables it is going to access and their access
type. This information is used to detect conflicts between
transactions and to assign the correct serialization order to
these conflicting transactions. The transaction serialization
order is expressed by the scheduler in terms of version

1Each scheduler may itself be replicated for availability [11], [12].

numbers. The scheduler tags queries with the version
numbers of the tables they need to read and sends them to
the replicas. Each database replica keeps track of the local
table versions as tables are updated. A query is held at each
replica until the table versions match the versions tagged
with the query. As an optimization, the scheduler also keeps
track of versions of tables as they become available at each
database replica and sends read-only queries to a single
replica that already has the required versions. The scheduler
communicates with a database proxy at each replica to
implement replication. As a result, our implementation does
not require changes to the application or the database tier.

Since database allocations to workloads can vary dynami-
cally, each scheduler keeps track of the currentdatabase set
allocated to its workload. The scheduler is also in charge of
bringing a new replica up to date by a process we calldata
migrationduring which all missing updates are applied on that
replica.

Our goals for resource management in our system are that
the resource manager should be:

• Prompt. It should sense impending SLA violations accu-
rately and quickly, and it should trigger resource alloca-
tion requests as soon as possible in order to deal with the
expected load increase.

• Stable.It should avoid unnecessary oscillations between
adding and removing database servers, because such
oscillations waste resources.

A. Dynamic Replication

In this section, we provide an overview of the resource
manager that implements dynamic replication and briefly
introduce the replica addition, removal, mapping as well as
data migration mechanisms in our system.

The resource manager makes the replica allocation and map-
ping decisions for each application based on its requirements
and the current system state. The requirements are expressed
in terms of a service level agreement (SLA) that consists
of a latency requirement on the application’s queries. The
current system state includes the current performance of this
application and the system capacity. The allocation decisions
are communicated to the respective schedulers, which then
allocate or remove replicas from their replica sets.

1) Replica Addition and Removal:The resource manager
adds or removes a replica to/from an application allocation if
it determines that the application is in overload or underload,
respectively. Database replica removal needs to be performed
conservatively because adding a database to a workload has
high overheads. The replica addition process consists of two
phases: data migration and system stabilization (see Figure 3).
Data migration involves applying logs of missing updates on
the new replica to bring it up-to-date. System stabilization
involves load balancing and warmup of the buffer pool on
the new replica. While some of these stages may overlap,
replica addition can introduce a long period over which query
latencies are high.

���

�
�
��
�
�
	

����

�
����
��
�����

��������

��

������������

� �����

����

��������� �	�����

Fig. 3. Latency instability during replica addition.

2) Potential for Oscillations in Allocation:Oscillations in
database allocations to workloads may occur during system
instability induced by adaptations or rapidly fluctuating load.
Assume an adaptation is necessary due to a burst in client
traffic. Since our database scheduler cannot directly measure
the number of clients, it infers the load by monitoring various
system metrics instead. In the simplest case, the scheduler
infers the need to adapt due to an actual latency SLA violation.
However, during the adaptation phases, i.e., data migration,
buffer pool warmup and load stabilization, the latency will
be high or may even temporarily continue to increase as
shown in Figure 3. Latency sampling during this potentially
long time is thus not necessarily reflective of a continued
increase in load, but of system instability after an adaptation
is triggered. If the system takes further decisions based on
sampling latency during the stabilization time, it may continue
to add further replicas which are unnecessary, hence will need
to be removed later. This is an oscillation in allocation which
carries performance penalties for other applications running
on the system due to potential interference.

A similar argument may hold for other system metrics
measured during adaptation. Their values will not be indicative
of any steady-state system configuration even if the load
presented to the system remains unchanged. While rapid load
fluctuations may induce similar behavior, simple smoothing
or filtering techniques can offer some protection to very brief
load spikes. While all schemes presented in this paper use
some form of smoothing or filtering, which can dampen brief
load fluctuations, our emphasys is on avoiding tuning of any
system parameter, including smoothing coeficients. Instead we
develop techniques for automatically avoiding all cases of
allocation oscillation caused by system metric instability.

3) Replica Mapping:Dynamic replication presents an in-
herent trade-off between minimizing application interference
by keeping replica sets disjoint versus speeding replica addi-
tion by allowing overlapping replica sets. In this paper, we

use warm migration where partial overlap between replica
sets of different applications is allowed. Each application is
assigned a disjoint primary replica set. However, write queries
of an application are also periodically sent to a second set of
replicas. This second set may overlap with the primary replica
set of other applications. The resource manager sends batched
updates to the replicas in the secondary set to ensure that
they are within a staleness bound, which is equal to the batch
size or the number of queries in the batch. The secondary
replicas are an overflow pool that allow adding replicas rapidly
in response to temporary load spikes since data migrating onto
these replicas is expected to be a fast operation.

4) Data Migration: In this section, we describe the imple-
mentation of data migration in our system. Our data migration
algorithm is designed to bring the joining database replica up
to date with minimal disruption of transaction processing on
existing replicas in the workload’s allocation.

Each scheduler maintains persistent logs for all write queries
of past transactions in its serviced workload for the purposes
of enabling dynamic data replication. The scheduler logs the
queries corresponding to each update transaction and their
version numbers at transaction commit. The write logs are
maintained per table in order of the version numbers for the
corresponding write queries.

During data migration for bringing a stale database replica
up-to-date, the scheduler replays on it all missing updates from
its on-disk update logs. The challenge for implementing an
effective data migration is that new transactions continue to
update the databases in the workload’s allocation while data
migration is taking place. Hence, the scheduler needs to add
the new database replica to its workload’s replica mapping
before the end of data migration. Otherwise, the new replica
would never catch up. Unfortunately, new updates cannot
be directly applied to the (stale) replica before migration
completes. Hence, new update queries are kept in the new
replica’s holding queues during migration. In order to control
the size of these holding queues, the scheduler executes data
migration instages. In each stage, the scheduler reads a batch
of old updates from its disk logs and transfers them to the new
replica for replay without sending any new queries. Except for
pathological cases, such as sudden write-intensive load spikes,
this approach reduces the number of disk log updates to be sent
after each stage, until the remaining log to be replayed falls
below a threshold bound. During this last stage, the scheduler
starts to send new updates to the replica being added, in
parallel with the last batch of update queries from disk.

IV. REACTIVE REPLICA PROVISIONING

Figure 4, shows the replica allocation logic and the con-
ditions for triggering an addition of a database replica to an
application and for removing a replica from an application. In
the following we describe these adaptations in detail.

A. Reactive Replica Addition

In the Steady State , the resource manager monitors
the average latency received from each workload scheduler

Monitor

&

Control

Temp

Remove

Remove
Add

While Migrating

Migration

Finished

Done

 Remove

While

Removing

If latency <

LowSLAThreshold
If latency >

HighSLAThreshold

Fig. 4. Reactive Replication Provisioning Logic

during each sampling period. The resource manager uses a
smoothened latency average computed as an exponentially
weighted mean of the formWL = α × L + (1 − α) ×WL,
whereL is the current query latency. The larger the value of
the α parameter, the more responsive the average to current
latency.

If the average latency over the past sampling interval for
a particular workload exceeds theHighSLAThreshold ,
hence an SLA violation is imminent, the resource manager
places a request to add a database to that workload’s allocation.

B. Reactive Replica Removal

If the average latency is below aLowSLAThreshold , the
resource manager triggers a replica removal. The right branch
of Figure 4 shows that the removal path is conservative and
involves a tentative remove state before the replica is finally
removed from an application’s allocation. The allocation al-
gorithm enters the tentative remove state when the average
latency is below the low threshold. In the tentative remove
state, a replica continues to be updated, but is not used for load
balancing read queries for that workload. If the application’s
average latency remains below the low threshold for a period
of time, the replica is removed from the allocation for that
workload. This two-step process avoids system instability by
ensuring that the application is indeed in underload, since a
mistake during removal would soon require replica addition,
which is expensive. For a forced remove during overload, we
skip the tentative removal state and go directly to the removal
state. In either case, the database replica is removed from a
application’s replica set only when ongoing transactions finish
at that replica.

C. Enhancement of Reactive Approach with System Instability
Detection

The resource manager makes several modifications to this
basic allocation algorithm in order to account for replica
addition delay and protect against oscillations. First, it stops
making allocation decisions based on sampling query latency
until the completion of the replica addition process. Com-
pletion includes both data migration and system stabilization

Fig. 5. Pro-active Replication Provisioning Scheme

phases. The scheduler uses a simple heuristic for determining
when the system has stabilized after a replica addition. In
particular, it waits, for aboundedperiod of time, for the
average query latency at the new replica to become close
(within a configurableImbalanceThreshold value) to the
average query latency at the old replicas. Finally, since this
wait time can be long and can impact reaction to steep load
bursts, the resource manager uses the query latency at the
new replica in order to improve its responsiveness. Since this
replica has little load when it is added, we use its average
latency exceeding the high threshold as an early indication of
a need for even more replicas for that application. The resource
manager triggers an extra replica addition in this case.

V. PRO-ACTIVE REPLICATION PROVISIONING

In our pro-active approach, the controller predicts perfor-
mance metrics and takes actions in advance of need to add
databases such that the SLA is not violated while resources
are used close to optimally.

A. Overview

Our approach can be summarized as follows.We predict
the status of the application in the next time interval and
classify it into two categories: SLA violation or within SLA for
a given number of database servers. By iterating through all
possible database set configurations, we decide the minimum
size database set that is predicted to have no SLA violations.

In more detail, Figure 5 shows the main process of our
pro-active provisioning scheme. The scheduler of each ap-
plication works as the application performance monitor and
is responsible for collecting various system load metrics and
reporting these measured data to the global resource manager
(controller). The controller consists of three main components.
First, the adaptive filter predicts the future load based on the
current measured load information. Next, the classifier finds

out whether the SLA is broken given the predicted load and the
number of active databases. The classifier directs the resource
allocation component to adjust the number of databases to
the proper number of databases for this application according
to its prediction. The resource allocation component decides
how to map this request onto the real database servers by
considering the requests of all applications and the available
system capacity.

B. Enhancement of Pro-active Approach with System Instabil-
ity Detection

Our classifier is trained under stable states; our training
data is gathered for several constant loads. When the system
triggers an adaptation to add a new database or remove
a database from a workload’s allocation, the system goes
through a transitional (unstable) state. At this time, the system
metric values are quite different from the ones measured
during stable system states that we use as the training data. As
a result many wrong decisions could be made if the classifier
uses the system metrics sampled during a period of instability.
This could in its turn lead to oscillations between rapidly
adding and removing database replicas, hence unnecessary
adaptation overheads and resource waste.

To overcome this unstable phenomenon, we enhance our
pro-active provisioning algorithm to be aware of the instability
after adaptation. The system automatically detects unstable
states by using two indicators: the load imbalance ratio and the
ratio of average query throughput versus the average number
of active connection. During our training process, we record
the normal range of variations of the load imbalance ratio
among different databases. If the measured ratio is beyond
the normal range, we decide that the system is in an unstable
state. Second, we select the two features assigned the highest
weights during our training phase, which, as we will show,
are the throughput and number of connections. If we observe
that the ratio of the two metrics is beyond the normal range,
we also decide that the system is in an unstable state.

In our approach, if the system is detected to be in an
unstable state, we suppress taking any decisions until the
system is stable.

C. Implementation Details

There are various filter and classifier algorithms that can fit
into our pro-active replication provisioning scheme. We take
the ease of the implementation and their promptness as our
selection principles.

1) Filter: We use a critically damped g-h filter [14] to track
the variations of our load metrics. This filter minimizes the
sum of the weighted errors with the decreasing weights as the
data gets older; i.e., the older the error, the less it matters. It
does this by weighting the most recent error by unity, the next
most recent error by a factorΘ (whereΘ < 1), the next error
by Θ2, the next error byΘ3, and so on.

The filtering equations are as follows:

ẋ∗n+1,n = ẋ∗n,n−1 + hn

T (yn − x∗n,n−1),

x∗n+1,n = x∗n,n−1 + T ẋ∗n+1,n + gn(yn − x∗n,n−1),

The equations provide an update estimate of the predicted
gradient ẋ∗n+1,n and predicted valuex∗n+1,n. T denotes the
sampling interval,x is the metric we are interested in,y is its
corresponding measured value andẋ denotes the gradient of
x. The first subscript is used to indicate the estimated time and
the second subscript is used to indicate the last measurement
time. Thus,x∗n+1,n denotes an estimate ofx during the next
time slot n + 1 based on the measurements made at current
time n and before.

The parametersg and h are related toΘ by the formulas
g = 1−Θ2, h = (1−Θ)2, whereΘ is decided by the standard
deviation of the measurement error and the desired prediction
error.

This filter uses a simple recursive equation calculation for
the constantsg and h. Thus it is fast in tracking speed
compared to more advanced adaptive filters, such as extended
Kalman Filters [14].

2) KNN Classifier: We select several application metrics
and system metrics as the features used by our KNN classifier
in order to enhance our confidence about the automatically
inferred load information. These system metric are readily
available from our environment. They are as follows:

1) Average query throughput - denotes the number of
queries completed during a measurement interval.

2) Average number of active connections - counts the
average number of active connections as detected by our
event-driven scheduler within its select loop. An active
connection is a connection used to deliver one or more
queries from application servers to the scheduler during
a measurement interval.

3) Read write ratio - shows the ratio of read queries
versus write queries during a measurement interval. This
feature reflects the workload mix.

4) Lock ratio - shows the ratio of locks held versus total
queries during a measurement interval.

5) CPU, Memory and I/O usage reported byvmstat .
Metrics 1 to 4 are gathered by the scheduler of each

application. The traditional system metrics in 5 are measured
on each database server.

Although a single metric may reflect the load information
to some degree, basing decisions on a single metric could
be seriously skewed e.g, if the composition of queries in the
mix changes or if the system states are not fully reproducible.
We use cross validation techniques in KNN to identify the
importance (i.e., weight) of each metric. The weights are
automatically determined and they reflect the usefulness of
features. Not all features are always useful during on-line
load situations. Their usefulness depends on the characteristics
of the current workload mix. For example, for a CPU-bound
workload mix, I/O metrics will be irrelevant for the purposes
of load estimation.

During our training phase, we run 10-fold cross validation
for weight combinations varying within a finite range, and
pick the weight setting whose accuracy is higher than our

target accuracy (95%) or achieves the highest accuracy in
the given range. We can continue to expand the search space
by gradient methods until we achieve a good accuracy. This
training process assigns weights for all features off-line. Less
important features automatically get lower weights.

VI. EXPERIMENTAL SETUP

To evaluate our system, we use the same hardware for all
machines running the client emulator, the web servers, the
schedulers and the database engines. Each is a dual AMD
Athlon MP 2600+ computer with 512MB of RAM and 2.1GHz
CPU. All the machines use the RedHat Fedora Linux operating
system. All nodes are connected through 100Mbps Ethernet
LAN.

We run the TPC-W benchmark that is described in more
detail below. It is implemented using three popular open source
software packages: the Apache web server [15], the PHP
web-scripting/application development language [16] and the
MySQL database server [17]. We use Apache 1.3.31 web-
servers that run the PHP implementation of the business logic
of the TPC-W benchmark. We use MySQL 4.0 with InnoDB
tables as the database backend.

All experimental numbers are obtained running an imple-
mentation of our dynamic content server on a cluster of 8
database server machines. We use a number of web server
machines sufficient for the web server stage not to be the bot-
tleneck. The largest number of web server machines used for
any experiment is 3. We use one scheduler and one resource
manager. The thresholds we use in the reactive experiments
are a HighSLAThreshold of 600ms and a LowSLAThreshold
of 200ms. The SLA threshold used in our pro-active approach
is 600ms. The SLA threshold was chosen conservatively to
guarantee an end-to-end latency at the client of at most 1
second for the TPC-W workload. We use a latency sampling
interval of 10 seconds for the scheduler.

A. TPC-W E-Commerce Benchmark

The TPC-W benchmark from the Transaction Processing
Council [18] is a transactional web benchmark designed for
evaluating e-commerce systems. Several interactions are used
to simulate the activity of a retail store such as Amazon.
The database size is determined by the number of items in
the inventory and the size of the customer population. We
use 100K items and 2.8 million customers which results in a
database of about 4 GB.

The inventory images, totaling 1.8 GB, are resident on
the web server. We implemented the 14 different interactions
specified in the TPC-W benchmark specification. Of the 14
scripts, 6 are read-only, while 8 cause the database to be
updated. Read-write interactions include user registration, up-
dates of the shopping cart, two order-placement interactions,
two involving order inquiry and display, and two involving
administrative tasks. We use the same distribution of script
execution as specified in TPC-W. In particular, we use the
TPC-W shopping mix workload with 20% writes which is
considered the most representative e-commerce workload by

the Transactional Processing Council. The complexity of the
interactions varies widely, with interactions taking between 20
ms and 1 second on an unloaded machine. Read-only interac-
tions consist mostly of complex read queries in auto-commit
mode. These queries are up to 30 times more heavyweight
than read-write transactions.

B. Client Emulator

To induce load on the system, we have implemented a
session emulator for the TPC-W benchmark. A session is
a sequence of interactions for the same customer. For each
customer session, the client emulator opens a persistent HTTP
connection to the web server and closes it at the end of
the session. Each emulated client waits for a certain think
time before initiating the next interaction. The next interaction
is determined by a state transition matrix that specifies the
probability of going from one interaction to another. The
session time and think time are generated from a random
distribution with a given mean. For each experiment, we use a
load function according to which we vary the number of clients
over time. However, the number of active clients at any given
point in time may be different from the actual load function
value at that time, due to the random distribution of per-client
think time and session length. For ease of representing load
functions, in our experiments, we plot the input load function
normalized to a baseline load.

VII. E XPERIMENTAL RESULTS

A. System Training

In this section, we describe our training phase and its effect
on the assigned weights for our pre-selected system features.

We train our system on the TPC-W shopping mix with
database configurations of 1 through 8 replicas and client
loads from 30 to 220 clients under stable states. The weights
of features in the TPC-W shopping mix obtained from the
training phase on this mix are listed here in the order of
importance: the average number of active connections, the
average query throughput, the read/write ratio, the CPU usage,
the Lock ratio, the memory usage and the I/O usage. The TPC-
W shopping mix has significant locality of access. Hence, it is
not an I/O intense workload. This explains the low relevance
of I/O usage. Furthermore, the MySQL database management
system does not free the memory pages for TPC-W even if
it is in under-load, so memory usage also has low relevance
for inferring the load level. On the other hand, contrary to our
intuition, the lock ratio does not show a high association with
the load level. The lock ratio could, however, show higher
relevance for larger cluster configurations.

B. Pro-active Approach without Stability Awareness

In this section, we show the influence of system metric
instability during adaptation. Figure 7(b) shows an example
of such oscillations that happen under the continuous load
function shown in Figure 7(a). The oscillations happen due to
(incorrect) adaptation decisions taken during system instability

0 100 200 300 400 500 600
0

1

2

3

4

Time (seconds)

N
or

m
al

iz
ed

 lo
ad

(a) Sine load function

0 100 200 300 400 500 600 700
1

2

3

4

5
Proactive Provisioning without Stability Awareness

Time (seconds)

N
um

be
r

of
 D

at
ab

as
es

(b) Average query latency for Pro-active without Stability

0 100 200 300 400 500 600 700
1

2

3

4

Comparison of Proactive v.s. Reactive

Time (seconds)

N
um

be
r

of
 D

at
ab

as
es

Proactive
Reactive

(c) Machine allocation

0 100 200 300 400 500 600 700 800
0

200

400

600

800

1000

1200

1400

Time (seconds)

A
ve

ra
ge

 Q
ue

ry
 L

at
en

cy
 (

m
s)

Proactive
Reactive
SLA

(d) Average query latency for Pro-active versus Reactive

Fig. 7. Scenario with sine load

 0

 200

 400

 600

 800

 1000

 1200

 1400

 220 225 230 235 240 245 250 255 260

L
at

en
cy

 (
m

ill
i-

se
co

nd
s)

Time (seconds)

Start Add

End Migration

Latency
SLA

Fig. 6. Latency variation while the system adapts from 2 to 3 databases.

when system metrics are varying wildly immediately after an
adaptation.

In order to explain the oscillations, Figure 6 zooms into a
small time period of the previous adaptation graph (between

TABLE I

AN ILLUSTRATION OF INSTABILITY

No. of db (time) Throughput Avg. Active Conn.

Just before addition
2db (t1) 80.80 118

After addition
3db (t2) 142.20 105
3db (t3) 167.10 89
3db (t4) 211.40 70

In stable state
3db 170 70

times 220 and 260 seconds of the experiment) to illustrate
the variation of latency during an adaptation. It shows the
latency pattern when the system adapts from a configuration of
2 databases to a configuration of 3 databases i.e., one database
addition. We can see that the latency initially increases during
the data migration phase, until End Migration, then stays flat
while the buffer pool warms up on the new replica and finally
decreases and stabilizes thereafter.

In addition, table I shows the variation of our highest
weighted system metrics, the number of active incoming
connections and the throughput just before and just after
adding the new database (during 4 time steps). The table
also shows the corresponding stable state values in the target
configuration. During stable states, the average number of
active connections at the scheduler is closely correlated with
the total load on the system induced by active clients. In
contrast, as we can see from the table, the number of active
connections might register a sudden decrease immediately af-
ter adding a new database even while the throughput increases.
These effects are due to the various factors at play during
system stabilization. For example, as the new replica gets more
requests, the overload on existing replicas starts to normalize
and many client requests that were delayed due to overload
finally complete. As a result, a larger than usual number of
clients may get their responses at this time. These clients will
be in the thinking state during the next interval explaining the
lower number of active incoming conections after adaptation.

These abnormal system metric variations after an adaptation
may induce wrong load and latency estimates or predic-
tions. For example, our KNN predictor might interpret the
low number of active incoming connections as underload.
Wrong decisions, such as removing a database immediately
after adding it or vice versa may result. In the rest of the
experiments, our KNN-based prediction algorithm is enhanced
to suppress taking decisions during intervals when system
instability is detected.

C. Performance Comparison of the Pro-active and Reactive
Approaches

In the following, we evaluate the two autonomic provi-
sioning approaches: reactive and pro-active. We first consider
a scenario with continuously changing load, where the load
variation follows a sinusoid (sine) function. Then we consider
a sudden change scenario with a large load spike.

1) Load with Continuous Change Scenario:We use our
client emulator to emulate a sinusoid load function, shown
in Figure 7(a). As we can see from Figure 7(c), the pro-
active approach triggers replica adding actions earlier than the
reactive approach, because it performs future load prediction.
In contrast, the pro-active removal is slightly slower than
the reactive database removal because we use a conservative
decision regarding when the system is sufficiently stable to
accurately decide on removal. Figure 7(d) shows the compar-
ison of average query latency for these two approaches. As
a result of the earlier resource adaptations of the pro-active
provisioning, this approach registers fewer SLA violations
than the reactive approach. Furthermore, the degree of SLA
violations, reflected in the average latency peaks, is also
reduced compared to the reactive approach.

2) Sudden Load Spike Scenario:We use our client emulator
to emulate a load function with a sudden spike, shown in
Figure 8(a).

From Figure 8(c), we see that neither scheme can avoid SLA
violations when the load jump happens, since the change is too

abrupt to predict. However, the pro-active provisioning has a
lower SLA violation peak and duration than the reactive provi-
sioning approach. Specifically, the pro-active approach reaches
a query latency peak of 2 seconds, and the SLA violations
last around 50 seconds while the reactive approach reaches a
query latency peak of 5 seconds, and its corresponding SLA
violations last more than 2 minutes.

The reactive provisioning is much slower in its adaptation
because it needs to obtain feedback from the system after each
database addition. It does not know how many databases it
should add, so it has to add the databases one at a time.
In contrast, the pro-active approach can predict how many
databases the system needs for the current and predicted
load and it is able to trigger several simultaneous additions
in advance of need. Figure 8(b) shows that the pro-active
scheme adds 3 databases in a batch by requesting 3 databases
simultaneously, while the reactive approach needs to add the
3 databases sequentially.

D. Robustness of the Pro-active Approach

In this section, we show that our pro-active scheme is rela-
tively robust to some degree of on-line variation in workload
mix and different load patterns given a fixed training data set.

Figures 9(a) and 9(b) show how our pro-active approach
adapts on-line under a workload request mix different than
the one it has been trained with. In particular, we train the
system on a data set corresponding to stable load scenarios
for the TPC-W shopping mix as before. We then show on-
line adaptations for running TPC-W with the browsing mix.
The browsing mix contains a different query mix composition
than the shopping mix (with 5% versus 20% write queries).
We use the same sine load function as before. We can see
that our pro-active scheme adapts quite well to load increases,
minimizing the number of SLA violations. It adapts less well
to load decreases, however, by retaining more databases than
strictly necessary. This effect is most obvious towards the end
of the run.

Figure 10 shows the robustness of our learning-based ap-
proach under a step load function. Figure 10(a) shows the
step function and the evolution of the instantaneous number
of active client connections (as opposed to thinking clients) as
measured at the emulator induced by this load function. Fig-
ure 10(b) shows that the allocation of the pro-active scheme is
stable while the reactive scheme may register some oscillations
in allocation if the thresholds it uses are not tuned. We run the
reactive scheme in two configurations, pre-tuned and untuned
by using to different values for the ImbalanceThreshold, which
governs the scheme’s heuristic instability detection. We use
a threshold of 10% load imbalance with a time-out of 2
minutes for a pre-tuned reactive approach and a random value
of these parameters for the other reactive graph shown in the
Figure. We can see that the reactive scheme registers allocation
oscillations which also incur latency SLA violations for both
parameter settings with more oscillations for the untuned
configuration. More sensitivity analysis results and oscillations
induced by different parameters for the reactive scheme, e.g.,

0 100 200 300 400 500 600
0

1

2

3

4

Time (seconds)

N
or

m
al

iz
ed

 L
oa

d

(a) Load function

0 100 200 300 400 500 600
1

2

3

4

Time (seconds)

N
um

be
r

of
 D

at
ab

as
es

Comparison of Proactive v.s. Reactive

Proactive
Reactive

(b) Machine allocation

0 100 200 300 400 500 600
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time (seconds)

A
ve

ra
ge

 Q
ue

ry
 L

at
en

cy
 (

m
s)

Proactive
Reactive
SLA

(c) Average query latency

Fig. 8. A scenario with sudden load change

LowSLAThreshold values are shown elsewhere [9]. Since our
pro-active scheme learns the normal imbalance range and uses
highly relevant system metrics according to the learning phase
to determine instability, it is inherently more robust and has
no allocation oscillations.

Finally, although the step function makes it slightly harder
to predict the load trend compared to the sine load function,
for the pro-active approach latency SLA violations are mostly
avoided in this load scenario as well.

VIII. R ELATED WORK

This paper addresses the hard problem of autonomic re-
source provisioning within the database tier, advancing the
research area of autonomic computing [2]. Autonomic com-
puting is the application of technology to manage technology,
materialized into the development of automated self-regulating
system mechanisms. This is a very promising approach to
dealing with the management of large scale systems, hence
reducing the need for costly human intervention.

Resource prediction is important to adjust parameters of
utility functions or decide the mapping between SLA and
the amount of resources in autonomic resource provision-
ing. A related paper [7] uses a table-driven approach that
stores response time values from offline experiments with
different workload density and different numbers of servers.
Interpolation is used to obtain values not in the table. This
method is simple, but it may become infeasible for highly
variable workload where it is hard to collect sufficient data if
the number of available resources is large. Different queuing
models [1] [19] are presented as analytic performance models
of web servers and demonstrate good accuracy in simulations.

To the best of our knowledge, current performance predic-
tion techniques [7] [1] [19] for large data centers assume a
single database server as back-end, hence their performance
is unknown for database clusters. The applicability of generic
queuing models to database applications needs further inves-
tigation to understand modelling accuracy for the complex
concurrency control situations in database clusters.

Various scheduling policies for proportional share resource
allocation can be found in the literature, such as STFQ [20].
Steere et al. [21] describe a feedback-based real-time scheduler
that provides reservations to applications based on dynamic
feedback, eliminating the need to reserve resources a priori.
In other related papers discussing controllers [22], [23] the
algorithms use models by selecting various parameters to fit a
theoretical curve to experimental data. These approaches are
not generic and need cumbersome profiling in systems running
many workloads. An example is tuning various parameters in a
PI controller [22]. The parameters are only valid for the tuned
workload and not applicable for controlling other workloads.
In addition, none of these controllers incorporate the fact that
the effects of control actions may not be seen immediately
and the fact that the system may be instable immediately after
adaptation.

Cohen et al. [24] propose using a tree-augmented Bayesian
network (TAN) to discover correlations between system met-
rics and service level objectives (SLO). Through training,
the TAN discovers the subset of system metrics that lead
to SLO violations. While this approach predicts violations
and compliances with good accuracy, it does not provide any
information on how to adapt to avoid SLO violations. In
contrast, our prediction scheme determines how many replicas
must be added to maintain SLO compliance.

Our study builds on recently proposed transparent scaling
through content-aware scheduling in replicated database clus-
ters [25], [26], [27]. On the other hand, these systems do
not investigate database replication in the context of dynamic
provisioning. While Kemme et al. [25] proposes algorithms
for database cluster reconfiguration, the algorithms are not
evaluated in practice. Our paper studies efficient methods
for dynamically integrating a new database replica into a
running system and provides a thorough system evaluation
using realistic benchmarks.

Finally, our work is related but orthogonal to ongoing
projects in the areas of self-managing databases that can self-

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 100 200 300 400 500 600

of

 R
ep

lic
as

 A
llo

ca
te

d

Time (seconds)

(a) Machine allocation

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 100 200 300 400 500 600

L
at

en
cy

 (
m

ill
i-

se
co

nd
s)

Time (seconds)

Latency
SLA

(b) Average query latency

Fig. 9. A browsing workload scenario with sine load

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600

N
or

m
al

iz
ed

 lo
ad

Time (milliseconds)

Load Function
 # of active connections at the client emulator

(a) Load function

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 100 200 300 400 500 600

of

 R
ep

lic
as

 A
llo

ca
te

d

Time (seconds)

Proactive
Reactive with tuned setting

Reactive with random setting

(b) Machine allocation

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 100 200 300 400 500 600

L
at

en
cy

 (
m

ill
i-

se
co

nd
s)

Time (seconds)

Proactive
Reactive with random seting

SLA

(c) Average query latency

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 100 200 300 400 500 600

L
at

en
cy

 (
m

ill
i-

se
co

nd
s)

Time (seconds)

Proactive
Reactive with tuned setting

SLA

(d) Average query latency

Fig. 10. A scenario with a step load function

optimize based on query statistics [28], and to recent work in
automatically reconfigurable static content web servers [29]
and application servers [30].

IX. CONCLUSIONS ANDFUTURE WORK

In this paper, we address autonomic provisioning in the
context of dynamic content database clusters. We introduce
a novel pro-active scheme based on the classic K-nearest-
neighbors (KNN) machine learning approach for adding

database replicas to application allocations based on: i) load
predictions, ii) extensive off-line measurements of system and
application metrics for stable system states and iii) lightweight
on-line monitoring that does not interfere with system scaling.

We use a full prototype implementation of both our pro-
active approach and a previous reactive approach to dynamic
provisioning of database replicas. Overall, our experimental
results show that our KNN-based pro-active approach is a

promising approach for autonomic resource provisioning in
dynamic content servers. Compared to the previous reac-
tive approach, the pro-active approach has the advantage of
promptness in sensing the load trend and its ability to trigger
several database additions in advance of SLA violations. By
and large our pro-active approach avoids SLA violations under
load variations. For unpredictable situations of very sudden
load spikes, the pro-active approach can alleviate the SLA
violations faster than the reactive approach even if SLA
violations do occur in this case. Finally, off-line training on
system-level information is also useful for recognizing periods
of instability after triggering adaptations. Detecting unstable
system states reduces the prediction errors of the pro-active
approach in such cases.

The assumption of our prediction algorithm (KNN) is that
the distribution of real data is similar to our training data.
Hence, if the incoming traffic and our training set differ
greatly, our scheme is unable to make informed decisions. In
our future work, we will explore advanced machine learning
algorithms which can effectively do outlier detection, hence
can identify whether the current workload is similar with our
training set. If no match is detected, our resource manager
will disable the pro-active scheme, and revert to a more
conservative reactive scheme. On the other hand, we would
like to explore online training algorithms that automatically
use the most recent workload features as training data. In
addition, we will explore advanced adaptive filters to smooth
measurement errors and transient load variations.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their detailed com-
ments and suggestions for improvement on the earlier ver-
sion of this paper. We further acknowledge the generous
support of IBM Toronto Lab through a student and faculty
fellowship with the IBM Centre for Advanced Studies (CAS),
IBM Research for a faculty award, the Natural Sciences and
Engineering Research Council of Canada (NSERC), Commu-
nications and Information Technology Ontario (CITO) and
Canadian Foundation for Innovation (CFI) through discovery
and infrastructure grants.

REFERENCES

[1] M. N. Bennani and D. A. Menasce, “Resource allocation for autonomic
data centers using analytic performance models,” inIn Proceedings of
the 2nd International Conference on Autonomic Computing (ICAC),
2005.

[2] IBM, “Autonomic Computing Manifesto,”
http://www.research.ibm.com/ autonomic/manifesto, 2003.

[3] IBM Corporation, “Automated provisioning of re-
sources for data center environments,” http://www-
306.ibm.com/software/tivoli/solutions/provisioning/, 2003.

[4] G. Tesauro, R. Das, W. E. Walsh, and J. O. Kephart, “Utility-function-
driven resource allocation in autonomic systems .” inICAC, 2005, pp.
70–77.

[5] C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety, R. Gil, J. Mar-
guerite, K. Rajamani, and W. Zwaenepoel, “Specification and imple-
mentation of dynamic web site benchmarks,” in5th IEEE Workshop on
Workload Characterization, Nov. 2002.

[6] “The ”Slashdot effect”: Handling the Loads on 9/11,”
http://slashdot.org/articles/01/09/13/154222.shtml.

[7] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das, “Utility functions
in autonomic systems,” inIn Proceedings of the 1st International
Conference on Autonomic Computing (ICAC), 2004.

[8] K. Coleman, J. Norris, G. Candea, and A. Fox, “Oncall: Defeating
spikes with a free-market server cluster,” inIn Proceedings of the 1st
International Conference on Autonomic Computing (ICAC), 2004.

[9] G. Soundararajan, C. Amza, and A. Goel., “Database replication policies
for dynamic content applications,” inIn Proceedings of the First ACM
SIGOPS EuroSys, 2006.

[10] E.-H. S. Han, G. Karypis, and V. Kumar, “Text categorization using
weight adjusted k -nearest neighbor classification,” inLecture Notes in
Computer Science, vol. 2035, 2001.

[11] C. Amza, A. Cox, and W. Zwaenepoel, “Conflict-aware scheduling for
dynamic content applications,” inProceedings of the Fifth USENIX
Symposium on Internet Technologies and Systems, Mar. 2003, pp. 71–84.

[12] C. Amza, A. L. Cox, and W. Zwaenepoel, “Distributed versioning:
Consistent replication for scaling back-end databases of dynamic content
web sites.” inMiddleware, ser. Lecture Notes in Computer Science,
M. Endler and D. C. Schmidt, Eds., vol. 2672. Springer, 2003, pp.
282–304.

[13] P. Bernstein, V. Hadzilacos, and N. Goodman,Concurrency Control and
Recovery in Database Systems. Addison-Wesley, 1987.

[14] E. Brookner, Tracking and Kalman Filtering Made Easy. Wiley
Interscience.

[15] “The Apache Software Foundation,” http://www.apache.org/.
[16] “PHP Hypertext Preprocessor,” http://www.php.net.
[17] “MySQL,” http://www.mysql.com.
[18] “Transaction Processing Council,” http://www.tpc.org/.
[19] T. Zheng, J. Yang, M. Woodside, M. Litoiu, and G. Iszlai, “Tracking

time-varying parameters in software systems with ex-tended Kalman
filters,” in Proceedings of CASCON, 2005.

[20] P. Goyal, X. Guo, and H. M. Vin, “A Hierarchical CPU Scheduler
for Multimedia Operating System,” inProceedings of the 2nd USENIX
Symposium on Operating Systems Design and Implementation, Seattle,
WA, Oct. 1996.

[21] D. C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and J. Walpole,
“A Feedback-driven Proportion Allocator for Real-Rate Scheduling,”
in Proceedings of the 3rd USENIX Symposium on Operating Systems
Design and Implementation, Feb. 1999.

[22] Y. Diao, J. L. Hellerstein, and S. Parekh, “Optimizing quality of
service using fuzzy control,” inDSOM ’02: Proceedings of the 13th
IFIP/IEEE International Workshop on Distributed Systems: Operations
and Management. Springer-Verlag, 2002, pp. 42–53.

[23] B. Li and K. Nahrstedt, “A control-based middleware framework for
quality of service adaptations,”IEEE JSAC, 1999.

[24] I. Cohen, J. S. Chase, M. Goldszmidt, T. Kelly, and J. Symons,
“Correlating instrumentation data to system states: A building block
for automated diagnosis and control.” inOSDI, 2004, pp. 231–244.

[25] B. Kemme, A. Bartoli, andÖ. Babaoglu, “Online reconfiguration in
replicated databases based on group communication.” inDSN. IEEE
Computer Society, 2001, pp. 117–130.

[26] E. Cecchet, J. Marguerite, and W. Zwaenepoel, “C-JDBC: Flexible
database clustering middleware,” inProceedings of the USENIX 2004
Annual Technical Conference, Jun 2004.

[27] J. M. Milan-Franco, R. Jimenez-Peris, M. Patio-Martnez, and
B. Kemme, “Adaptive middleware for data replication,” inProceedings
of the 5th ACM/IFIP/USENIX International Middleware Conference,
Oct. 2004.

[28] P. Martin, W. Powley, H. Li, and K. Romanufa, “Managing database
server performance to meet Qos requirements in electronic commerce
systems,”International Journal on Digital Libraries, vol. 3, pp. 316–
324, 2002.

[29] S. Ranjan, J. Rolia, H. Fu, and E. Knightly, “QoS-Driven Server
Migration for Internet Data Centers,” in10th International Workshop
on Quality of Service, May 2002.

[30] E. Lassettre, D. W. Coleman, Y. Diao, S. Froehlich, J. L. Hellerstein,
L. Hsiung, T. Mummert, M. Raghavachari, G. Parker, L. Russell,
M. Surendra, V. Tseng, N. Wadia, and P. Ye, “Dynamic surge protection:
An approach to handling unexpected workload surges with resource
actions that have lead times.” inDSOM, ser. Lecture Notes in Computer
Science, M. Brunner and A. Keller, Eds., vol. 2867. Springer, 2003,
pp. 82–92.

