
Towards End-to-End Quality of Service:
Controlling I/O Interference in Shared Storage

Servers

Gokul Soundararajan and Cristiana Amza

Department of Electrical and Computer Engineering
University of Toronto

Abstract. Due to the imperative need to reduce the costs of manage-
ment, power and cooling in large data centers, operators multiplex sev-
eral concurrent applications on each physical server of a server farm
connected to a shared network attached storage. Determining and en-
forcing per-application resource quotas on the fly in this context poses a
complex resource allocation and control problem spanning many levels
including the CPU, memory and storage resources within each physical
server and/or across the server farm. This problem is further complicated
by the need to provide end-to-end Quality of Service (QoS) guarantees
to hosted applications.
In this paper, we introduce a novel approach towards controlling applica-
tion interference for resources in shared server farms. Specifically, we de-
sign and implement a minimally intrusive method for passing application-
level QoS requirements through the software stack. We leverage high-
level per-application requirements for controlling I/O interference be-
tween multiple database applications, by QoS-aware dynamic resource
partitioning at the storage server. Our experimental evaluation, using
the MySQL database engine and OLTP benchmarks, shows the effec-
tiveness of our technique in enforcing high-level application Service Level
Objectives (SLOs) in shared server farms.

1 Introduction

As the costs of management, power and cooling in large data centers become
prohibitive, automated server consolidation techniques for better resource usage
while providing differentiated Quality of Service (QoS) to applications become in-
creasingly important. With server consolidation, several concurrent applications
are multiplexed on each physical server of a server farm connected to consoli-
dated network attached storage (see Figure 1). Such architectures are common
in large data centers and consist of multiple levels of software, including web and
application servers, database servers, operating systems and the storage server
at the lowest level. The challenge for providing QoS to applications in these en-
vironments lies in the complexity of the dynamic resource partitioning problem
for avoiding application interference at multiple levels, i.e., for CPU, memory
and storage.



Logical 
Volume

Logical 
Volume

Logical 
Volume

Machine-A Machine-B Machine-C

Gold Silver Bronze

STORAGE SERVER

DisksStorage Management 

Fig. 1. Modern enterprise architecture: Server farm with resource consolidation.

Previous work on dynamic resource partitioning in shared server environ-
ments focuses on partitioning a single resource within a single software tier at
a time. Specifically, resource virtualization through virtual machine monitors
(VMMs) has been used in both generic server systems [3] and database sys-
tems [14, 15] to enforce per-application CPU quotas. Similarly, memory quota
enforcement has been studied within the buffer pool of a database system running
several applications [4, 5]. Finally, several techniques have been studied for par-
titioning the I/O bandwidth between applications within the storage server [11,
12, 19]. However, the above approaches fall short of providing effective resource
partitioning due to the following two reasons.

The first reason is that application QoS is usually expressed as a high-level
Service Level Objective (SLO), e.g., desired latency or throughput, not as per-
resource priorities or quotas. There is currently no automatic mechanism to
assign the relative priority levels or resource quotas for applications correspond-
ing to a high-level application metric. A dynamic approach to resource allocation
is clearly more desirable than extensive off-line profiling in modern data center
environments, where the set of co-scheduled applications, and/or the type and
availability of hardware resources may change frequently and unpredictably.

The second reason that prevents current approaches from providing effective
resource partitioning is the absence of coordination between different resource
controllers. This absence of coordination might lead to situations where local
goals may conflict with each other, or with the high-level per-application goals.
For instance, the operating system may optimize fairness in thread scheduling
across applications, while the storage server may optimize I/O latency. Each
resource controller optimizes local goals, oblivious to the goals of other resource
controllers, and to the per-application SLO’s. There is little or no previous work
on correlating priority or quota enforcement across several resources or software
components.

To address the dynamic resource allocation problem in consolidated server
environments, we introduce a novel technique for controlling application interfer-



ence. Our technique determines per-application resource quotas on the fly, with
minimal application instrumentation. To achieve this, we monitor application-
level metrics relative to SLOs periodically and pass these as application utility
values down through all levels of the software stack i.e., from the DBMS to the
OS running on each physical server in a server farm, and then to the shared
storage server.

The monitored application-level metrics are utilized by a coordinated dis-
tributed learning technique, with one adaptive controller per software compo-
nent. Each resource controller uses a reinforcement learning algorithm, called
learning automata (LA) [13], for resource allocation. Specifically, each LA con-
troller employs a feedback loop to dynamically converge towards a resource par-
titioning setting that minimizes the perceived penalties for all applications.

Though our technique is general enough to be applied for partitioning all
shared resources, at all tiers, in this paper, we focus on dynamically partitioning
the storage bandwidth. Towards this goal, we implement our technique in a
prototype that enforces coordinated resource quotas per application at two levels:
i) at the operating system I/O scheduler within each physical server of the server
farm and ii) at the shared storage level. Our prototype implementation shows
that our approach can be integrated in existing environments and applications
with minimal changes to interfaces between components.

Specifically, we modify the Linux kernel and the Network Block Device
(NBD) protocol, a network block protocol that is bundled with the Linux kernel,
to allow passing the application-level utility on I/O calls, and to implement our
learning and I/O scheduling algorithms. Our technique is sufficiently flexible to
enforce resource quotas and to change them dynamically, for different applica-
tions, but also per application thread within the same application e.g., to enforce
differentiated QoS for performance-critical transactions or queries.

We perform experiments on a cluster of dual processor servers connected
to a storage server with external direct attached storage. We use the MySQL
database engine and two applications: DBT-2 and the ORION (Oracle IO Num-
bers) storage utility. DBT-2 is a classic OLTP workload similar to TPC-C. Orion
emulates part of the common I/O workload of the Oracle database server. We
run experiments in several configurations where instances of the two applica-
tions share physical servers as well as the storage server. We show convergence
to the per-application quotas that meet the high-level application SLO’s for each
application when using our coordinated dynamic learning technique.

The remainder of this paper is structured as follows. Section 2 describes the
role of each software component in servicing I/O requests and the motivation to
use end-to-end resource partitioning. Section 3 describes the architecture of our
system and introduces our coordinated learning and our I/O bandwidth parti-
tioning technique. Section 4 describes our prototype implementation. Section 5
presents our benchmarks and experimental platform, while Section 6 presents
the results of our experiments on this platform. Section 7 discusses related work
and Section 8 concludes the paper.



2 Background and Motivation

Enterprise storage servers (Figure 1) provide an abstraction of a single large
logical storage device carved into several logical volumes. An application, like a
database system or file system, mounts the logical volumes and uses the under-
lying storage. Within this storage hierarchy, we focus on the following two levels
of control: (1) the OS I/O scheduler, which schedules I/O requests from a storage
client to the underlying storage device, and (2) the storage server I/O scheduler,
which manages bandwidth allocations to different logical volumes.

The interactions between the storage client and server travel through the
operating system’s block layer. The block layer maps logical to physical accesses
on block devices e.g., in a RAID. It provides a wide range of functionality from
request sorting and merging, prefetching, to I/O scheduling i.e., reordering re-
quests to optimize the disk seek time. Due to this commonly used optimization
objective, physically sequential I/O will be preferentially scheduled, typically
regardless of its high-level application SLO. To counter starvation, implemen-
tations of I/O scheduling either attach a deadline for every request or provide
fairness among several streams. However, these approaches are typically unaware
of application SLOs. Similar to the operating system I/O scheduler, the storage
server schedules I/O requests from different logical volumes. While the operating
system I/O scheduler attempts to minimize seek times, the storage server I/O
scheduler controls when each workload’s request is sent to the disk firmware e.g.,
in order to meet a pre-specified I/O latency [12], but oblivious to the high-level
application SLO.

As we can see from our description of the storage hierarchy described above,
storage bandwidth allocations are influenced by both the operating system and
the storage server, in an uncoordinated, SLO unaware, and possibly conflicting
manner. In the following, we show through a motivating experiment that unpre-
dictably large performance degradation can occur for co-scheduled applications
due to I/O interference, whether or not CPU priorities are enforced at the OS
level.

2.1 Motivating Example

Using current I/O schedulers in existing operating systems, we show that the
performance of an application can be severely affected when paired with another
I/O intensive process, whether or not we enforce per-application CPU priorities
at the operating system level.

We run DBT-2, a TPC-C like workload, on MySQL, concurrently with OLTP-
A, an online transaction processing (OLTP) workload, generated using the ORION
(Oracle IO Numbers) tool. We configure DBT-2 to use 200 warehouses, result-
ing in a database size of 64GB. We provide additional details of our workloads
in Section 6. In our experiments, we run MySQL/InnoDB on direct-attached
storage and show the effects of I/O interference between applications. In our ex-
perimental setup, we use either the cfq scheduler, recently added to the Linux
kernel, which attempts to provide fair queuing among several processes, or the



0

200

400

600

800

1000

1200

1400

1600

Alone Equal Priority Favored

T
h

ro
u

gh
p

u
t 

(T
P

M
)

(a) Throughput

0

100

200

300

400

500

600

700

800

Alone Equal Priority Favored

L
at

e
n

cy
 (

s)

(b) Latency

Fig. 2. Co-scheduling DBT-2/OLTP-A on Direct-Attached Storage with CFQ schedul-
ing

more traditional deadline scheduler in Linux, which primarily targets mini-
mizing I/O seek time. Neither the cfq scheduler, nor the deadline scheduler
support enforcement of application SLOs.

Figure 2 shows the I/O interference between DBT-2 and OLTP-A when using
the cfq scheduler at the operating system. We see that, when DBT-2 runs alone,
it achieves 1498 TPM (transactions per minute) and its 90th percentile latency
is 78 seconds. However, when DBT-2 is co-scheduled with OLTP-A, there is a
significant slowdown. DBT-2’s throughput is only 13% of its throughput running
in isolation and the latency is 8.3x the original latency. In an attempt to achieve
better performance for DBT-2, we set the CPU nice levels for DBT-2 to -10
(high priority) and OLTP-A to +10 (low priority) and re-run the experiment.
We see a very small gain in DBT-2’s performance. The throughput increases
slightly from 196 TPM to 198 TPM.

The interference effect is even more pronounced when using the traditional
deadline scheduler in Linux. In this case, DBT-2’s throughput when co-scheduled
with OLTP-A is only 2.3% of its throughput when running in isolation i.e., 80
TPM compared to 3391 TPM. As before, setting the DBT-2 process to a higher
priority, by using the UNIX nice utility, does not significantly alleviate the prob-
lem.

These results show that there is currently no method of enforcing I/O re-
quirements of applications at the operating system level. Furthermore, there is
no method of communicating application SLO requirements and enforcing them
at the storage server. Since both the OS and the storage server perform I/O
scheduling in a per-application QoS oblivious manner, current architectures are
unable to enforce end-to-end quality of service. As we have shown, this results
in potentially high performance degradation for the high priority application.

In this paper, we address these issues by providing a method of transmitting
application SLO requirements throughout the storage hierarchy. This allows the
individual I/O controllers at each level to determine the bandwidth allocations
dynamically.



3 Providing End-to-End QoS via Coordinated Learning

In this section, we describe our approach to dynamic resource allocation in a
server farm with network attached storage. Our objective is to allocate each
application enough resources (i.e., bandwidth) to meet its SLO. Towards this, we
use coordinated learning to determine resource quotas dynamically, at two levels
in the system: the OS and the storage server. In the following, we first introduce
the overall architecture of our system and an overview of our approach. Then,
we describe our coordinated learning and dynamic quota enforcement algorithm
in detail. Finally, we discuss the trade-offs made in our design.

3.1 Architecture and Problem Statement

The architecture of our system is presented in Figure 1. We show the storage
server hosting a number of virtual devices connected to several physical servers
i.e., machines A, B, and C. Each physical server hosts a number of application
classes, e.g., gold, silver, and bronze hosted on Machine-B in the Figure.

In this environment, the problem of resource allocation can be described as
follows. For k servers hosting n application classes connected to s virtual volumes
hosted on the storage server, we need to find the following proportions in order
to meet the specified SLOs: i) We need to find proportions PS1 , PS2 , . . . , PSs

for enforcing disk bandwidth partitioning among the workload for the virtual
volumes at the storage server. and ii) At each machine m ∈ {1, 2, . . . , k}, we need
to determine the proportions Pm1 , Pm2 , . . . , Pmn for scheduling the respective
requests to the virtual device at the level of the OS I/O scheduler (e.g., PBgold

,
PBsilver

, and PBbronze
for the OS on Machine-B in Figure 1.

Finding an optimal solution to this problem is challenging since there is
no clear mapping from the specified SLOs to disk bandwidth. As such, we use
adaptive machine learning techniques as described next.

3.2 Overview of Approach

Towards achieving the specified SLOs, we embed resource controllers at the OS
and at the storage server. All resource controllers use a learning algorithm for
dynamic resource partitioning at its level. Specifically, each resource controller
changes its own per-workload proportions dynamically, converging to a local
solution based on application-level feedback values.

We coordinate learning between the OS and the storage server through a
token-passing scheme. The learners at the two levels take turns in making ac-
tions and observing the application feedback. In this way, each level can observe
the application feedback based only on its actions, thus converging to a solution.
We ensure convergence to a stable global resource partitioning solution for the
different learners by using the same feedback metric for learners at both the
OS and the storage server levels. This application-level feedback metric, called
Deviance from Target (dft), is periodically monitored for each application. The
most recent dft is then passed from the application level through all levels of the



software stack, including the OS, to the storage server on each I/O call of the
corresponding application. Finally, each resource controller enforces the learned
resource partitioning through quanta based scheduling for its workloads. Modi-
fications to existing interfaces between components are minimal; all information
exchanged between the two levels is piggybacked on regular communication.

In the following, we introduce the high-level application metric we use for
coordinated learning (the dft metric). Next, we introduce the learning algorithm
employed at each resource controller and the coordination between resource con-
trollers. Finally, we explain the quanta-based scheduling algorithm used by each
resource controller for enforcing the resource partitioning.

3.3 Deviance From Target (DFT) Metric

We use a single high-level application-level metric, called Deviance from Tar-
get (dft), for guided learning at all resource controllers. The dft represents the
utility to the service provider from meeting the service level objective (SLO) of
the corresponding application. This utility is typically mapped directly to an
expected monetary reward (or penalty) for hosting a particular application and
it may combine two factors: i) a performance indicator i.e., the relative distance
of a pre-specified application metric, such as transaction throughput, or latency
from a contracted SLO value over time and ii) the contracted client priority or
class for the corresponding application e.g., gold/silver/bronze or best-effort.

Without loss of generality, for the purposes of this paper, we use as perfor-
mance indicator a number that indicates the deviation from expected application
performance, where a 0.0 value corresponds to target achieved, a positive value
means we have exceeded the objective and a negative value means a violation
of the contracted performance, hence a penalty for the service provider. For
example, in order to compute the dft for a particular high priority OLTP ap-
plication, we periodically sample the transactions completed. Then we compute
the normalized distance between the average transaction throughput value over
the last sampling interval and the contracted/expected throughput value (the
SLO). To produce the dft, this value would be typically weighted to include the
priority class. For simplicity, for the purposes of this paper, we use only two
classes: priority and best effort. For a best effort application we always provide a
dft feedback value of 0.0 regardless of the performance indicator. For a priority
application, we provide its performance indicator as the dft feedback.

Finally, we also support assigning different dft values for different threads,
transactions or queries inside an application. Specifically, we support selectively
tagging fine-grained application contexts with the overall dft value of an appli-
cation, while all other I/O from that application should be classified as best
effort. For example, a database application may signal that a DBMS application
thread carries its overall utility rather than a DBMS statistics logger thread;
alternatively, the application may assign all its utility to a key transaction type
e.g., a payment transaction.

In the following, we describe our learning algorithm at each resource con-
troller. We then introduce a lightweight and minimally intrusive technique to



coordinate the multiple controllers implemented at different levels in order to
provide end-to-end QoS.

3.4 Learning at Each Resource Controller

We determine the workload proportions dynamically using a reinforcement learn-
ing algorithm [18]. In reinforcement learning, the learning agent learns how to use
various actions to maximize a numerical reward. We use a simple reinforcement
learning algorithm named learning automata (LA) [13].

Learning automata are adaptive decision-making devices that operate in un-
known environments. A learning automaton has a finite set of actions and each
action has a certain probability (unknown to the automaton) of getting rewarded
by the environment of the automaton. The aim is to learn to choose the optimal
action (i.e. the action with the highest probability of being rewarded) through re-
peated interactions with the system. If the environment is sufficiently stationary
during the learning period, the iterative process of interacting with the environ-
ment in the LA algorithm is guaranteed to converge to the optimal solution [13].
We use a linear reward-penalty learning automata, where an automaton can
probabilistically choose one of r actions {a1, a2, . . . , ar} with associated proba-
bilities {p1, p2, . . . , pr} respectively. Let p(k) denote the probability of an action
to be taken at iteration k and suppose action ai is taken at iteration k.

The result of an action ai is mapped to a range between 0.0 and 1.0, where
0.0 represents the maximum positive feedback and 1.0 represents the maximum
negative feedback. The feedback for the kth action is represented using the vari-
able f(k). The probabilities for taking each action are updated as follows. The
probability pi corresponding to action ai is updated to:

pi(k + 1) = pi(k)− βf(k)pi(k) + α(1− f(k))(1− pi(k)) (1)

All other actions, aj where i 6= j are updated to:

pj(k + 1) = pj(k) + f(k)(
β

r − 1
− βpj(k))− α(1− f(k))pj(k) (2)

The parameters α and β scale the reward and penalty. Typically, α > β for
faster convergence.

We describe how we adapt the LA learning algorithm to enable dynamic
allocations in our controller. The goal at each controller is to minimize the sum
of the squared deviations from 0.0 (error) for the dft of all applications. For
example, if the storage server was hosting s virtual volumes with each virtual
volume hosting n applications, then the error (e) would be computed as

e =
s∑

i=1

n∑
j=1

[dfti,j ]2 (3)

Each controller dynamically determines proportions between its workloads,
i.e., between applications in the operating system and between virtual devices



in the storage server scheduler, with the objective of minimizing the error (e).
For instance, consider a controller which schedules two workloads at the storage
server. Such a controller will simply have to determine the proportion 0 ≤ P ≤
1.0, such that one workload receives a fraction P and the other workload receives
1 − P of the resource. For that particular controller, in order to determine P ,
we define a number of actions for the LA learning algorithm representing band-
width allocations. The controller’s action sets the proportions by picking from a
collection of discrete choices. In our example here, a possible collection of choices
might be {10/90, 30/70, 50/50, 70/30, 90/10}.

At each learning iteration, the controller first measures the current error, ecur,
in the system. Then, it probabilistically selects an action to take. For example,
the controller may select the action corresponding to enforcing a proportion of
50/50. After selecting an action, the controller waits until the effects of its action
are visible, for either a fixed time interval or a fixed number of requests. It then
evaluates the application-level feedback, computes the new error value, enew, and
updates the variable f(k) with a new value between 0.0 and 1.0, depending on the
perceived benefit of its action. Finally, the controller updates the probabilities
corresponding to taking each action using the new value of f(k) in the formulas
above.

3.5 Coordinated Learning

While all controllers in our system have the same goal, i.e., to optimize the dft
error for all applications, each learns iteratively through trial and error. Thus, if
all learners actuate their proportions in parallel, the feedback received by each
learner is the result of actions taken by all controllers, not just by itself. To
enable accurate feedback, hence convergence towards an end-to-end solution, we
coordinate the multiple learners in the hierarchy using a simple token passing
scheme. We thus let either the OS-level controllers or the storage server controller
learn at a given time, while keeping the proportions fixed at the other level.
Token requests and replies are passed on regular requests and replies between
the two levels. Whenever holding the token, a learner takes a number of actions
actuating its per-workload proportions and observes the application feedback on
incoming requests.

3.6 Enforcing Proportions through Quanta-based Scheduling

We enforce proportions by using quanta-based scheduling [19] at both the OS
and storage resource controllers. Specifically, we partition a scheduling period
into time intervals and assign intervals to workloads to meet their respective
proportions. For example, let the scheduling period be 100 milliseconds with 100
slices. If two applications, A and B require equal proportions, then, each would
be given exclusive access to storage for 50 milliseconds in every 100 milliseconds
scheduling period. Scheduling based on time quanta allows for a good combina-
tion of enforcing proportions between workloads as well as taking advantage of
the usual storage optimizations for per-workload locality. This is because when



only one workload is allowed to run during a time interval, during that time,
both the OS/storage I/O schedulers can optimize disk seeks with the usual tech-
niques e.g., using elevator scheduling and also exploit the disk cache for that
workload.

3.7 Discussion

In this section we discuss the trade-offs in our scheduling technique. We then
present a theoretical argument for convergence to a global optimal solution for
our end-to-end approach.

Trade-offs in Scheduling Technique. While quanta-based scheduling ensures
that each workload receives a share of the disk bandwidth, there is an inherent
tradeoff between using coarse-grained versus fine-grained scheduling intervals,
hence quanta. At the limit, the scheduler can simply not use time quanta at
all, and issue requests proportionally from each workload. Using large quanta
may waste disk bandwidth if insufficient requests from the respective workload
are available to the scheduler during a particular quantum. On the other hand,
as mentioned before, using coarse-grained quanta has the advantage of reducing
the potential disk seeks and cache conflicts caused by switching between multiple
workloads.

We note that in many practical cases, the adaptivity inherent in our approach
will naturally alleviate penalties, by self-regulating the quanta granularity. For
example, assume that a sequential workload suffers due to increased disk seeks
when interleaved with a random-access workload at the storage. If these penal-
ties are significant, they will be reflected in the application’s high-level metrics.
Hence, the sequential workload will automatically receive a larger proportion of
I/O bandwidth. The larger bandwidth allocation will implicitly translate into a
larger quanta.

Global Convergence to an Optimal Solution. Our coordinated learning
technique will converge towards a state with the minimum penalties achievable
for the applications, hence for the service provider, if the application behavior
and environment does not substantially change during learning.

When using multiple learners with a common feedback signal, as in our case,
each environment state is determined by a combination of actions from all learn-
ers. In this case, the environment states form a composite environment which
is referred to as Markovian Switching Environment. In such an environment, it
can be theoretically shown [13] that a variable-structure automata with ergodic
techniques, such as the linear reward-penalty learning automata we use, con-
verges to the optimal set of actions by the multiple learners within a margin of
error due to the continuous learning and exploratory nature of LA controllers.

The ideal solution, where all application dft’s are 0.0 may be, however,
unattainable, e.g., because of insufficient overall I/O bandwidth, and dynamic
provisioning of additional resources may become necessary.



4 Prototype Implementation

In this section, we describe our prototype implementation for passing high-level
application metrics through the software stack to the storage controller, and our
virtual storage controller implementation.

4.1 Overview of Prototype Implementation

We embed our LA controller into Linux and our virtual storage prototype. We
leverage the Network Block Device (NBD) code available with Linux for this
purpose. NBD is a standard storage access protocol, similar to iSCSI, supported
by Linux. NBD provides a method for a storage client (in our case MySQL) to
communicate with a storage server over the network; specifically, NBD provides
a pair of client/server modules, which run on the same physical machines as the
storage client/server, respectively.

We implement a Linux-based virtual storage prototype, which we deploy on
top of our commodity storage (RAID) firmware. We modify the existing client
and server NBD protocol processing modules in order to pass high-level applica-
tion metrics to our LA storage bandwidth controller. Specifically, we piggyback
the application’s performance (dft), the application identifier, and a learning
token on the I/O call path. Our storage controller enforces bandwidth quota
allocations, maps virtual to physical block accesses and issues the appropriate
I/O requests to disk.

4.2 Code Changes

We instrument MySQL to capture the application-level metrics of interest, pe-
riodically, and to compute the dft metric relative to a predefined SLO for each
application context. For example, for DBT-2, we monitor transaction throughput
as application level metric and for Orion we use latency, which are the standard
QoS metrics for these applications.

For every I/O call made from MySQL on behalf of the application, we add
arguments to the corresponding system call and pass the application context
identifier and the periodically updated dft metric for that application context.
Context identifiers are assigned in such a way to be unique cluster-wide. In order
to support differentiated QoS for fine-grained and/or dynamic application-level
contexts, e.g., per application thread, or per-transaction, we also add a new sys-
tem call, ioprio_context(), to the Linux kernel. ioprio_context() signals
the beginning and end of an application context. We add corresponding system
calls in MySQL, reusing pre-existing begin and end markers in the application
structure e.g., for transaction begin and commit or thread creation and destruc-
tion. We modify the Linux kernel and the NBD packet format to tag each I/O
call with the application-level information and pass this information through the
respective software layers. In addition, for the coordinated learning algorithm,
we piggyback the learning token on request and reply NBD packets.



4.3 I/O Scheduling Implementation

When a workload is given a quantum, we first determine the number of requests
we can issue to disk such that they complete within the workload’s quantum. To
compute this value, we maintain an exponentially weighted average of the disk
service time and the application’s concurrency level. Using these two values, we
compute the number of requests that can be issued per workload such that all
requests finish within the quantum. First, we issue requests that were enqueued
while waiting for the quantum to begin. Then, we issue requests that arrive
during the scheduling quantum. We stop issuing requests if we determine that
by issuing a request, we will exceed the workload’s quantum. In this case, new
requests will be enqueued as we wait for the requests to return from disk before
the next quantum begins.

5 Experimental Methodology

STORAGE 
SERVER

MACHINE 
B

DISK

MACHINE 
A

A
0

A
1

B
0

B
1

PA

PB

PS

MACHINE 
S

Fig. 3. Experimental Multi-tier System with Shared Storage

We create a multi-tier system with shared storage using NBD, as shown
in Figure 3. We use three machines: a storage server (S) and two application
servers (A and B). In this system, we can run 4 applications, A0, A1, B0, and B1.
The storage server (S) serves two virtual block devices which are mounted by
machines A and B, respectively. The applications A0 and A1 share one virtual
block device and B0 and B1 share the other. In addition, each machine runs a LA
based controller that determines the bandwidth allocation for the two incoming
streams. Machine A determines PA, the fraction of the bandwidth allocated to
A0. Conversely, A1 receives (1−PA) bandwidth. Similarly, Machine B determines
PB and the storage server S determines PS .

The application servers are Dell PowerEdge SC1425 with dual Intel Xeon
processors running Ubuntu Linux 6.06 with our modifications, and connected by



Gigabit Ethernet. The storage server is a Dell PowerEdge PE1950 with 4 Intel
Xeon processors running at 3Ghz and 3GB of memory. The storage server is
connected to an external direct attached storage with 15 10K RPM SAS hard
drives. The attached storage is configured using RAID-0. We benchmark the
direct attached storage using ORION and found it provides 800 IOPS for our
microbenchmark OLTP-A. Our NBD based storage server increases the latency
by at most 10%.

We use MySQL/InnoDB and configure it to use a raw device and a buffer
pool of 512 MB. We use ORION (Oracle IO Numbers) as a I/O load gener-
ator. ORION is a calibration tool released by Oracle to benchmark different
storage architectures for database workloads. It allows the user to set different
parameters like block size, read/write ratio, and number of outstanding I/Os.
By changing the parameters, one can generate different types of database work-
loads. We set these parameters to generate an OLTP-like workload classified
with equal amount of reads and writes, many random I/O accesses (16KB block
size) and some large I/O (1MB blocks).

5.1 Benchmarks

OLTP-A: OLTP-A is an OLTP-like workloads we generate using the ORION
tool. It is characterized by many random I/O accesses of 16KB and some large
I/O of 1MB. The read/write ratio is 50%. We configure ORION to have 100
outstanding small I/O and 10 outstanding large I/O. OLTP-A issues I/O to a
64GB raw partition.
DBT-2: DBT-2 is an OLTP workload derived from TPC-C benchmark [16]. It
simulates a wholesale parts supplier that operates using a number of warehouse
and sales districts. Each warehouse has 10 sales districts and each district serves
3000 customers. The workload involves transactions from a number of terminal
operators centered around an order entry environment. There are 5 main trans-
actions for: (1) entering orders, (2) delivering orders, (3) recording payments,
(4) checking the status of the orders, and (5) monitoring the level of stock at
the warehouses. We scale DBT-2 by using 256 warehouses and the footprint of
the database is 60GB. In our experiments, we simulate 1000 users connected to
the system.

6 Experimental Results

We present an experimental evaluation of our end-to-end I/O bandwidth al-
location technique. All results are obtained on our experimental configuration
described in the previous section. We first evaluate our learning technique for
enforcing end-to-end resource allocations. We then show the benefits of coordi-
nated versus uncoordinated learning in two sharing scenarios, using the ORION
and DBT-2 benchmarks.



6.1 Benefits of Coordinated Learning

We show the benefits of coordinated versus uncoordinated learning with two
sharing scenarios. First, we run four instances of OLTP-A. Next, we co-schedule
DBT-2 with three instances of OLTP-A. For both scenarios, we compare both
coordinated and uncoordinated learning with two ideal scenarios, where propor-
tions are set manually for either i) one resource controller or ii) both resource
controllers. In more detail, we evaluate four schemes:

1. Optimal Settings: We set all proportions manually to the optimal config-
uration.

2. Single Storage Learner: We set the proportions manually in the OS sched-
ulers (PA and PB) but we determine PS at the storage through learning.

3. Uncoordinated Learning: We let all controllers find the optimal values
in parallel.

4. Coordinated Learning: We enable our token passing algorithm to coor-
dinate the controllers. For uncoordinated and coordinated learning, we ini-
tialize the probabilities in each controller to 1

5 = 0.2 such that each action
is equally likely.

In all experiments, we plot the dft (deviation from target) versus time. If
dft < 0 this signifies that the application did not meet its SLO and a dft > 0
indicates that the application performed better than its SLO. Ideally, the dft = 0
throughout the duration of the experiment.

0 500 1000 1500 2000 2500 3000 3500
time (s)

-150

-100

-50

0

50

df
t

A0

(a) A0

0 500 1000 1500 2000 2500 3000 3500
time (s)

-150

-100

-50

0

50

df
t

A1

(b) A1

0 500 1000 1500 2000 2500 3000 3500
time (s)

-150

-100

-50

0

50

df
t

B0

(c) B0

0 500 1000 1500 2000 2500 3000 3500
time (s)

-150

-100

-50

0

50

df
t

B1

(d) B1

Fig. 4. OLTP-A performance using Optimal Settings

OLTP-A: In the first experiment, we run 4 instances of OLTP-A, two on
each of our physical servers in our experimental setup. Since all workloads are
identical, the optimal configuration is 0.5 at PA, 0.5 at PB and 0.5 at PS . Figure 4
shows the performance of OLTP-A when allocations were optimally chosen. We



0 500 1000 1500 2000 2500 3000 3500
time (s)

-200
-100

0
100
200

df
t

A0

(a) A0

0 500 1000 1500 2000 2500 3000 3500
time (s)

-200
-100

0
100
200

df
t

A1

(b) A1

0 500 1000 1500 2000 2500 3000 3500
time (s)

-200
-100

0
100
200

df
t

B0

(c) B0

0 500 1000 1500 2000 2500 3000 3500
time (s)

-200
-100

0
100
200

df
t

B1

(d) B1

Fig. 5. OLTP-A performance using Single Learner

0 500 1000 1500 2000 2500 3000 3500
time (s)

-200
0

200
400
600

df
t

A0

(a) A0

0 500 1000 1500 2000 2500 3000 3500
time (s)

-200
0

200
400
600

df
t

A1

(b) A1

0 500 1000 1500 2000 2500 3000 3500
time (s)

-200
0

200
400
600

df
t

B0

(c) B0

0 500 1000 1500 2000 2500 3000 3500
time (s)

-200
0

200
400
600

df
t

B1

(d) B1

Fig. 6. OLTP-A performance using Uncoordinated Learning



0 500 1000 1500 2000 2500 3000 3500
time (s)

-200
-100

0
100
200
300

df
t

A0

(a) A0

0 500 1000 1500 2000 2500 3000 3500
time (s)

-200
0

200
400
600

df
t

A1

(b) A1

0 500 1000 1500 2000 2500 3000 3500
time (s)

-200
0

200
400
600

df
t

B0

(c) B0

0 500 1000 1500 2000 2500 3000 3500
time (s)

-200
0

200
400
600

df
t

B1

(d) B1

Fig. 7. OLTP-A performance, using Coordinated Learning

show the results of all four OLTP-A instances. Since there is no learning stage,
the allocations are met from the beginning of the experiment. In the second
experiment, we fixed PA = 0.5 and PB = 0.5 and we used our controller to
determine PS . Figure 5 shows that the storage controller initially explores the
solution space. At about the 300 second mark, the controller converges to the
optimal action. After convergence, each application is on target with slight vari-
ations due to the adaptive and exploratory nature of the controller.

As shown in Figure 6, the uncoordinated controllers are not able to converge
within the duration of the experiment. Given the duration of the experiment of
almost one hour, each SLO violation shown in the figure is of substantial ampli-
tude, on the order of minutes in duration, and occurs roughly every 5-10 minutes.
Hence, the QoS provided is unacceptable, and performance of all applications
is poor. In contrast, as Figure 7 shows, the token passing algorithm allows the
controllers to converge to an optimal allocation. At about the 2000 second mark,
the three controllers arrive at the optimal solution and the performance of each
application reaches its target. We observe that the token passing algorithm slows
the learning process since each controller can run only while holding the token.

DBT-2/OLTP-A: We run DBT-2 with one OLTP-A workload on one phys-
ical server and 2 OLTP-A workloads on the second server. For DBT-2, we set the
SLO at 80% percent its throughput running alone in the system (as measured
in transactions/minute, TPM) and we classify it as a high priority application.
We classify all OLTP-A workloads as best effort. With these requirements, our
goal is to satisfy the performance demands of DBT-2 and divide the remaining
bandwidth to the OLTP-A workloads.

We run the same four experiments as before. In the first experiment, we
set the values of PA = 0.9, PB = 0.5 and PS = 0.9 such that DBT-2 receives
PA ∗PS = 0.9∗0.9 = 0.81 = 81% of the available storage bandwidth. Figure 8(a)
shows that, after an initial warmup stage, DBT-2 quickly reaches the target
performance and stays on target for the duration of the experiment.



500 1000 1500 2000 2500 3000 3500
time (s)

-1500
-1000
-500

0
500

1000
1500

df
t

(a) Optimal Settings

500 1000 1500 2000 2500 3000 3500
time (s)

-1000
-500

0
500

1000

df
t

(b) Single Learner

0 1000 2000 3000
time (s)

-1500

-500

500

1500

2500

df
t

(c) Uncoordinated Learning

500 1000 1500 2000 2500 3000 3500
time (s)

-1500
-1000
-500

0
500

1000
1500

df
t

(d) Coordinated Learning

Fig. 8. DBT-2 performance

In the second experiment, we fixed PA = 0.9 and PB = 0.5 but we allow the
controller to determine the optimal value of PS . As shown in Figure 8(b), the
storage controller arrives at the optimal configuration after the initial learning
stage. This experiment also highlights the resilience of our controller. DBT-2 has
an initial warmup stage before it begins to run the measurement stage. In the
warmup stage, the workload uses fewer clients thus placing a smaller demand
on the system. Therefore, the controller chooses a proportion that is optimal for
the warmup stage. When DBT-2 begins the measurement stage, the controller
adapts by selecting a different proportion that is optimal for the measurement
stage of DBT-2. The results show that, even with the dynamic nature of DBT-2,
the controller is able to adapt and arrive at the optimal configuration by the
1000 second mark of the experiment.

As before, the uncoordinated learners are not able to converge to the optimal
configuration during our experiment (as shown in Figure 8(c). This results in
poor performance for DBT-2, which does not converge to its target performance.
In contrast, Figure 8(d) shows that with coordinated learning, the controllers
are able to converge to the ideal solution at about the 2000 second mark of the
experiment and are able to meet the DBT-2 performance target. The highest
probability actions at each level of control after convergence, are close to the ideal
proportion settings: 90/10 for DBT-2/OLTP-A, and 50/50 for OLTP-A/OLTP-
A for the proportions at the two OS controllers, respectively and 90/10 for the
proportions at the storage controller. Thus, while the DBT-2 performance target
is achieved, requests from the best effort OLTP-A applications are also serviced.

7 Related Work

Resource allocation is a well known technique for improving system performance.
Traditionally, resource scheduling has been achieved using either a priority-based



mechanism or a quanta-based mechanism. Under priority-based mechanisms, ap-
plications with low priority are prone to starvation. This makes such mechanisms
inappropriate when the objective is to provide per application QoS guarantees.
In contrast to priority-based mechanisms, quanta-based scheduling mechanisms
guarantee that each transaction acquires a fair portion of the shared resource
e.g., as in lottery scheduling where processes are assigned tickets proportional to
their share [21]. However, in this work, administrators need to manually spec-
ify the proportions for each application. Real-rate scheduling, is another policy
with similarities to our own, in which the applications provide the OS scheduler
a notion of progress through timestamps [9]. Using this information, the real-
rate scheduler employs a feedback loop to determine resource requirements and
specifies them to a proportion-period scheduler.

Dynamic allocation of the disk bandwidth has been studied to provide QoS at
the storage server. Just like in our prototype, SLEDS [8], Façade [12], SFQ [10],
and Argon [19] place a scheduling tier above the existing disk scheduler which
controls the I/Os issued to the underlying disk. Argon [19] uses a quanta-based
scheduler, while SLEDS [8] uses a leaky-bucket filter to throttle I/Os from clients
exceeding their given fraction. Similarly, SFQ dynamically adjusts the deadline
of I/Os to provide fair sharing of bandwidth. Furthermore, Cello [17] and YFQ [6]
build QoS-aware disk schedulers, which make low-level scheduling decisions that
strive to minimize seek times, as well maintain quality of service. All previous
work in this area has studied methods on disk bandwidth allocation at a sin-
gle level, either at the operating system level or at the storage level. We have
shown that layering of several controllers leads to oscillation, hence suboptimal
behavior. Through our context aware approach, we coordinate the controllers at
both the operating system and at the storage server to provide QoS guarantees.
Moreover, our technique is general and can easily be extended to coordinated
resource partitioning of different resources e.g., CPU and disk, and/or resource
controllers for the same resource located within different tiers.

Resource allocation has also been studied in database systems. Current im-
plementations of DBMS rely on simple policies like Round-Robin for scheduling
transaction access to CPU [7, 1]. More sophisticated adaptive algorithms provid-
ing per-class response time goals for queries of multiple classes have been studied
for dynamic buffer pool partitioning [4, 5]. On the other hand, I/O scheduling as
well as resource allocation to improve application defined metrics have not been
studied in detail in database systems.

Finally, resource containers and Virtual Machine Monitors (VMM) provide
mechanisms to enforce resource allocation [2]. For example, the VMWare ESX
server employs memory allocation algorithms to facilitate the execution of multi-
ple virtual machines on a system and offers a performance guarantee to each [20].
However, I/O performance isolation at the storage level, which is the main bot-
tleneck in modern enterprise environments, is currently not guaranteed with
these mechanisms.



8 Conclusion

We study techniques for enforcing end-to-end Quality of Service for applications
in shared server farms. We introduce a unifying approach for controlling appli-
cation interference for resources at all levels of the storage stack. Our approach
uses coordinated learning based on the degree of achievement of high-level per-
application service level objectives.

We implement our approach with minimal changes to existing interfaces in
a state-of-the-art shared infrastructure using commodity software and hardware
components. We focus on dynamically partitioning I/O bandwidth at two levels:
the operating system I/O scheduler and the shared storage scheduler.

We evaluate coordinated versus uncoordinated learning as well as coordi-
nated learning versus the optimal manually set configuration for enforcing I/O
bandwidth allocations. We show experimentally, using industry standard bench-
marks, that our technique converges towards the optimal configuration and is
effective in enforcing high-level application SLOs at the storage server.

References

1. R. K. Abbott and H. Garcia-Molina. Scheduling real-time transactions with disk
resident data. In VLDB, pages 385–396, 1989.

2. G. Banga, P. Druschel, and J. C. Mogul. Resource containers: A new facility for
resource management in server systems. In OSDI, pages 45–58, 1999.

3. P. T. Barham, B. Dragovic, K. Fraser, S. Hand, T. L. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield. Xen and the art of virtualization. In SOSP, pages 164–
177, 2003.

4. K. P. Brown, M. J. Carey, and M. Livny. Managing memory to meet multiclass
workload response time goals. In VLDB, pages 328–341, 1993.

5. K. P. Brown, M. J. Carey, and M. Livny. Goal-oriented buffer management revis-
ited. In H. V. Jagadish and I. S. Mumick, editors, SIGMOD Conference, pages
353–364. ACM Press, 1996.

6. J. L. Bruno, J. C. Brustoloni, E. Gabber, B. Özden, and A. Silberschatz. Disk
scheduling with quality of service guarantees. In ICMCS, Vol. 2, pages 400–405,
1999.

7. M. J. Carey, R. Jauhari, and M. Livny. Priority in DBMS Resource Scheduling.
In VLDB, pages 397–410, 1989.

8. D. D. Chambliss, G. A. Alvarez, P. Pandey, D. Jadav, J. Xu, R. Menon, and T. P.
Lee. Performance virtualization for large-scale storage systems. In SRDS, pages
109–118. IEEE Computer Society, 2003.

9. A. Goel, J. Walpole, and M. Shor. Real-rate scheduling. In IEEE Real-Time and
Embedded Technology and Applications Symposium, pages 434–441. IEEE Com-
puter Society, 2004.

10. P. Goyal, H. M. Vin, and H. Cheng. Start-time fair queueing: a scheduling algo-
rithm for integrated services packet switching networks. IEEE/ACM Trans. Netw.,
5(5):690–704, 1997.

11. A. Gulati, A. Merchant, and P. J. Varman. pclock: an arrival curve based approach
for qos guarantees in shared storage systems. In L. Golubchik, M. H. Ammar, and
M. Harchol-Balter, editors, SIGMETRICS, pages 13–24. ACM, 2007.



12. C. R. Lumb, A. Merchant, and G. A. Alvarez. Façade: Virtual storage devices with
performance guarantees. In FAST, 2003.

13. K. S. Narendra and M. A. L. Thathachar. Learning Automata: An Introduction.
Prentice Hall, Englewood Cliffs, NJ, 1989.

14. O. Ozmen, K. Salem, M. Uysal, and M. H. S. Attar. Storage workload estimation
for database management systems. In C. Y. Chan, B. C. Ooi, and A. Zhou, editors,
SIGMOD Conference, pages 377–388. ACM, 2007.

15. P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant, and
K. Salem. Adaptive control of virtualized resources in utility computing environ-
ments. In EuroSys, pages 289–302. ACM, 2007.

16. F. Raab. TPC-C - The Standard Benchmark for Online transaction Processing
(OLTP). In J. Gray, editor, The Benchmark Handbook. Morgan Kaufmann, 1993.

17. P. J. Shenoy and H. M. Vin. Cello: a disk scheduling framework for next generation
operating systems. SIGMETRICS Perform. Eval. Rev., 26(1):44–55, 1998.

18. R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, 1998. ISBN 0-262-19398-1, auch siehe http://www.cs.

ualberta.ca/~sutton/book/ebook/the-book.html.
19. M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R. Ganger. Argon: performance

insulation for shared storage servers. In FAST, pages 61–76, Berkeley, CA, USA,
2007. USENIX Association.

20. C. A. Waldspurger. Memory Resource Management in VMware ESX Server. In
OSDI, 2002.

21. C. A. Waldspurger and W. E. Weihl. Lottery Scheduling: Flexible Proportional-
Share Resource Management. In OSDI, pages 1–11, 1994.


