
11

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

ECE1724

Introduction to Designing Modern
Web-Scale Applications

These slides are lightly modified versions of slides from Prof. Ken
Birman’s course on Cloud Computing

22

How did Today’s Cloud Evolve?

• Prior to ~2005, data centers claimed to be designed for
high scalability and availability

• Amazon had especially large ones, to serve its web requests

• The real goal was just to support online shopping

• Their system wasn’t very reliable

• Core problem was scaling

• Everything ran slowly

• Amazon’s computers were overloaded and often crashed

33

Amazon Experiment

• At Amazon, they tried an “alpha/beta” experiment

• When web page was rendered fast (< 100ms), customers were
happy

• For every 100ms delay, purchase rates dropped 1%

• Conclusion: speed at scale determines revenue

• And revenue shapes technology

• An arms race to speed up the cloud

A sprint to render

your web page!

44

Starting around 2006, Amazon led in
Reinventing Data Center Computing

• Amazon reorganized their whole approach

• Requests arrived at a “first tier” of lightweight servers

• These dispatched work requests on a message bus or queue

• The requests were selected by “microservices”, executing in
parallel using elastic pools

• One web request might involve tens or hundreds of
microservices!

• They also began to guess your next action and
precompute what they would need to answer your next
query or link click

55

Old Approach (2005)

Product List

Computers were

mostly desktops

Internet

routing was

pretty

static,

except

for load

balancing

Web Server

built the page… in

Seattle

Image Database

Billing and Account
Info

remote

data center

66

New Approach (2008)

Product List

Computers

became

lightweight, yet

faster

Image Database

Billing and Account
Info

Databases held

the real

product inventory

Web Server built

the page… ten

miles from the

usersnearby

data center

77

New Approach (2008)

Product List

Computers

became

lightweight, yet

faster

Image Database

Billing and Account
Info

Databases held

the real

product inventory

Web Server built

the page… ten

miles from the

users

More and more

mobile apps

88

New Approach (2008)

Desktops with

snappier

response

More and more

mobile apps

Message Bus

Racks of highly parallel

workers do much of the

data fetching and

processing, ideally ahead of

need… The old databases

are split into smaller and

highly parallel services.

Web Server

becomes simpler

and does less of

the real work

GeoReplication

99

Tier one / Tier Two

• We often talk about the cloud as a “multi-tier”
environment

• Tier one: programs that generate the web page you see

• Tier two: services that support tier one

1010

Today’s Cloud

• Tier one runs on lightweight servers:

• They use small amounts of computer memory

• They don’t need a lot of compute power either

• They have limited needs for storage, or network I/O

• Tier two run on somewhat “beefier” computers:

• Provide many different microservices

• Each microservice specializes in various aspects of the content
delivered to the end-user

1111

Microservices for Social Network

from Christina Delimitrou

1212

Microservices for Media Service

from Christina Delimitrou

1313

Netflix Twitter Amazon

Microservices Visualized

1414

Each Microservice is a Parallel Pool!

• Every one of those little nodes is itself a small elastic
pool of processes

• A microservice is a program designed so that the data
center can run one or many instances “elastically” to
deal with dynamically varying demand

• The idea is that any instance can handle any request
equally well, so there is no need for very careful
“routing” of specific requests to specific instances

• This lets the data center adapt to changing loads easily!

• Load can vary significantly over time, so elasticity is
critical, perhaps key defining feature of modern cloud

1515

Pools are Managed Automatically

• In Azure, for example, there is a tool called the “App
Service” that manages a large collection of compute
resources in the cloud

• Developers can install their own services as
“containers”

• Configuration files tell App Service when to launch
service automatically

• App Service can watch the queue of requests and
automatically add instances or shut instances down to
match loads

1616

Benefits of Microservices

• Advantages of microservices

• Modular, so easier to understand

• Helps speed development & deployment

• On-demand provisioning, elasticity

• Language/framework heterogeneity

webserver

databases

recommender

ads
photos

posts

ads
posts

photos
recommender

webserver databases

from Christina Delimitrou

1717

Questions about Data

• All the microservices access data, cache data, update
data, replicate data

• Can we ensure that data is accessed correctly and
consistently, even in the presence of failures?

• Solution: use a single BIG database, replicate it for fault
tolerance

1818

Single Big Service Performs Poorly

• Until 2005 “one server” was able to scale and keep up,
like for Amazon’s shopping cart

• A 2005 server often ran on a small cluster with, perhaps, 2-16
machines in the cluster

• This worked well

• But suddenly, as the cloud grew, this form of scaling
didn’t work

• Companies threw unlimited money at the issue but
critical services like databases still became hopelessly
overloaded and crashed or fell far behind

1919

Jim Gray’s Famous Paper

• At Microsoft, Jim Gray anticipated this scaling issue as
early as 1996

• He and colleagues wrote a wonderful paper based on
their insights:

• Basic message: divide and conquer is really the only
option

The dangers of replication and a solution. Jim Gray,

Pat Helland, Patrick O'Neil, and Dennis Shasha. 1996.

In Proceedings of the 1996 ACM SIGMOD Conference.

Jim Gray

(Jan 1944 – Jan 2007)

2020

Approach in the Paper

• The paper uses a “chalkboard analysis” to analyze
scaling for a replicated system that behaves like a
database

• Analysis based on asymptotic costs, similar to complexity
analysis

• System could be an actual database like SQL Server or
Oracle

• But their “model” also covered any other storage layer
that provides strong guarantees of data consistency

2121

System Model

• The paper assumes that the service provides some form
of lock-based consistency, which they model as
database serializability

• Applications use read locks, and write locks

• System uses a pool of replicated servers

• Work is spread across servers

• Enables handling increasing application load

2222

Their Setup

The database

Applications using the database are client processes

During the run, T
concurrent transaction

requests are issued.

Here, 3 are running right
now, but T could be

much larger.

2323

Their Setup

Applications using the database are client processes

For scalability, the number of replicated
servers (N) can be increased

Server 1 Server 2 Server N

2424

Their Analysis

• Goal: A scalable system with N servers should be able to
handle N times more transactions (T)

• Instead, they found that the work the servers must do
increases non-linearly with N

• One reason is that each update must be replicated to all
N servers

• So, node update rate (across all nodes) grows as N2

• Worse, deadlocks occur as N3, causing feedback
(because reissued transactions get done multiple times)

• Example: if 3 servers (N=3) could do 1000 TPS, with 5 servers
the rate might drop to 300 TPS, purely because of deadlocks
forcing abort/retry

2525

Why do Services Slow Down at
Scale?

• The paper pointed to several main issues:

• Lock contention: with more concurrent transactions, they are
more likely to try to access the same object and wait for locks

• Abort: deadlock also causes abort/retry sequences. some
consistency mechanisms use optimistic behavior, but now and
then, they must back out and retry

• The paper explores many options for replication
schemes but ends up with similar negative conclusions

• These conclusions may seem database-specific, but
these issues arise in any service that provides consistent
data

2626

So, How Should Services be Scaled?

• Back in 1996, Jim’s paper concluded that you need to shard
the database into a large set of much smaller databases,
with each storing distinct data

• Jim set out to do this for a massive database of astronomy
data

• By the time he died in 2007, Jim had shown that for every
problem he ran into, it was possible to devise a sharded
solution in which transactions mostly touched a single shard
at a time

• In 1996, it wasn’t clear that every important service could be
sharded, by the 2007 period, Jim had made the case that in
fact, this is feasible!

2727

Sharding Data

Sharded storage service with N shards,
2 replicated servers per shard

A shard with 2
replicas

A transaction

A read or write to some
(key,value) tuple. Here,

Hash(key) % N =1, so
read/write Shard 1

Shard 0 Shard 1 Shard N

2828

Sharding with Single Node
Transactions

If each transaction does all its work at just one shard, never needing
to access two or more, then sharding scales well

Shard 0 Shard 1 Shard N

Each transaction
accesses one shard

2929

Sharding with General Transactions

Transactions that touch multiple shards hold locks for long time,
need 2-phase commit (agreement protocol) for atomicity

In this case, Jim Gray’s analysis applies, as we scale up,
performance suffers

Shard 0 Shard 1 Shard N

A transaction reads
or writes one or

more shards, needs
atomic operation

3030

Example: A Microservice for Caching

• Let’s look at the concept of caching as it arises in the
cloud, and at how we can make such a service elastic

• This is just one example, but is a good example because
key-value data structures are very common in the cloud

• E.g., facebook uses elastic caching to cache binary large
objects (i.e., pictures)

3131

Sharded Caching

Key=Birman Value=

Hash(“Birman”) % N

Each machine stores a
set of (key,value)
tuples in a local hash
table, stored in DRAM
or on SSD storage

In effect, two levels of hashing!

Store(Key, Value)

3232

Failures with Sharded Caching

• What if process or machine
storing cached data fails?

• A portion of the cache would
not be available

• Data can still be fetched from
backend database server, but
this adds load on the backend,
increases tail latency

Failed

Each machine stores a
set of (key,value)
tuples in a local hash
table, stored in DRAM
or on SSD storage

3333

Replicated, Sharded Caching

Key=Birman Value=

Hash(“Birman”) % N

Store(Key, Value)

N shards, each shard shored on two machines,
i.e., two machines store the same set of (key,value) tuples

3434

Terminology

• This design is called a key value store (KVS) or a
distributed hash table (DHT)

• A distributed KVS contains shards or partitions of data,
and each shard may be replicated

3535

Typical KV Store API

• The MemCached API was the first widely popular KV
Store

• Today there are many important KV store, e.g.,
MemCached, RocksDB, TigerDB, DynamoDB, BigTable,
Cassandra, and the list just goes on and on

• Most support some form of

• Some hide these basic operations behind file system
APIs, or “computer-to-computer email” APIs (publish-
subscribe or queuing) or database APIs

put(key, value) // store (key, value)
value = get(key) // get the value associated with key
watch(key) // notify when the value is updated

3636

Load Balance in KVS

• Hashing stores keys on different servers

• So, do all servers stores similar number of keys?

• Depends on the hash function?

• Secure hash functions such as SHA-256 are relatively fast and
generate random output, so keys are spread uniformly

• Other hash functions may not spread data uniformly

• Even if keys are stored uniformly across server, can
there be load imbalance?

• Yes, some keys may be heavily accessed, causing hot spots

• One solution is to have N (replicated servers) storing KN shards

• It is unlikely that all K shards on a server will be loaded

3737

Elasticity Adds Another Dimension

• If we expect changing load patterns, the cache may
need a way to dynamically change sharding policy

• Since a cache “works” even when empty, we could
simply shut it down and restart with a different number
of servers and another sharding policy.

• But cold caches perform poorly

• Instead, we should ideally “shuffle” or reconfigure
cached data across servers

3838

Elastic Shuffle

• Say, we initially had the cache data spread over 4 shards

Shard 0 Shard 1 Shard 4Shard 3

3939

Low Load

• During low load, we could move the cached data into 2
shards, while dropping half the cached items

• Hopefully, keep the more popular items

Shard 0 Shard 1 Shard 4Shard 3

Shard 0 Shard 1

Enables utilizing
machines
associated with
Shards 3 and 4 for
other purposes,
e.g., data
analytics

4040

High Load

• During high load, we could add machines and shuffle
data to expand the cache

Shard 0 Shard 1 Shard 4Shard 3

Shard 0 Shard 1

4141

Where is the Cache?

• How can applications or other services that use the
cache find out the location of the caching machines?

• Typically, big data centers have a management
infrastructure service that keeps this type of
configuration information

• E.g., list of processes@machines that cache the data,
parameters needed to compute the mapping from the key to
the shard, shard replicas, etc.

• When this configuration information changes,
applications are told to re-read the configuration

• Later, we will learn about one such service, Zookeeper

4242

Data Consistency Issues

• Many reasons for inconsistent data accesses

• Caches are inconsistent with storage, e.g., some clients bypass
cache and access storage directly

• Storage replicas are inconsistent

• Caches are replicated and inconsistent

• Strong consistency ensures that reads return the latest
write, making it easier to write applications

• While data sharding helps scaling the database, strong
consistency can limit availability and scalability

4343

What About Weak Consistency?

• Some tasks may precompute data (“last night”) and use
this read-only data

• Read potentially stale data, better than read no data

• They can also enqueue update tasks for offline
processing

• Allow delayed updates, better than disallow updates

• Tasks might also guess the effect of updates, but the
offline version will “win” if a conflict occurs

• Buy an item, eventually told it was sold out, get refund

4444

In the Cloud, Not Every Subsystem
Needs the Strongest Guarantees

• At Berkeley, Eric Brewer argued that
strong consistency delays response

• For example, conflicting database updates can be forced into
an agreed order, but this takes time and involves node-node
dialog, and if there is a network partition, the system provides
no availability

• But services make money only when they always
provide fast response

• Eric concluded that this means cloud services may need
to relax consistency

• This insight is captured in his CAP rule (Consistency,
Availability and Partition Tolerance)

4545

Definitions, Slightly Informal!

• Consistency: Updates are performed in some system-
selected order by all replicas. Queries return most up-
to-date values. Users see a single system.

• Availability: The system responds to every user request,
even when some machines are down.

• Partition Tolerant: The system can tolerate network
failures between subsystems. E.g., machines are
partitioned into separate subnets and the switch
between the subnet fails.

4646

Cap Rule

• You cannot achieve all three of:

• Consistency

• Availability

• Partition-Tolerance

• Popular interpretation: choose 2-out-of-3

• CA: Assumes partitions don’t occur, not realistic

• CP: poor availability, users unhappy

• AP: hard to program, possibly confusing to users

• None of these options are appealing!

Consisten
cy

Availabilit
y

Partition
Tolerance

CA

CP AP

4747

CAP rule in practice

• Partitions do occur, so systems must be partition
tolerant

• You cannot not choose partition tolerance …

• But you can design systems to make them rare

• When there are no partitions,
provide both consistency and availability

• When there is a partition, systems need to choose
between consistency vs. availability

• E.g., design systems that are best suited for application’s
consistency and availability needs

• When partition is fixed, restore consistency and
availability

4848

BASE Methodology

• BASE: A set of rules for implementing CAP-based
solutions

• Invented at eBay, adopted by Amazon, others

• Basic Availability: provide continuous availability, despite
failures or temporary inconsistency

• Soft State: use state that can be regenerated (e.g., cached
data) for efficiency

• Eventual Consistency: assuming no further updates to an item,
all users will eventually see the same value of the item

• Soft state and eventual consistency help recovery from
failures, network partitions, data inconsistency, etc.

4949

BASE Example

• For example, if product photos rarely change, cache
them, do not check for staleness with each cache
access, let them expire after a few weeks

• Avoids all cache refresh traffic

• If a photo does change, you do see a stale product photo, but
this is rare

• BASE “CAP in practice”
 “Use CAP. You can clean up later.”

• BASE encourages developers to think about when they
need or do not need consistency

5050

Thanks!

• Please go over the class web page available from
http://www.eecg.toronto.edu/~ashvin

• Please use Quercus Discussions for any class related
questions

http://www.eecg.toronto.edu/~ashvin

	Slide 1: Introduction to Designing Modern Web-Scale Applications
	Slide 2: How did Today’s Cloud Evolve?
	Slide 3: Amazon Experiment
	Slide 4: Starting around 2006, Amazon led in Reinventing Data Center Computing
	Slide 5: Old Approach (2005)
	Slide 6: New Approach (2008)
	Slide 7: New Approach (2008)
	Slide 8: New Approach (2008)
	Slide 9: Tier one / Tier Two
	Slide 10: Today’s Cloud
	Slide 11: Microservices for Social Network
	Slide 12: Microservices for Media Service
	Slide 13: Microservices Visualized
	Slide 14: Each Microservice is a Parallel Pool!
	Slide 15: Pools are Managed Automatically
	Slide 16: Benefits of Microservices
	Slide 17: Questions about Data
	Slide 18: Single Big Service Performs Poorly
	Slide 19: Jim Gray’s Famous Paper
	Slide 20: Approach in the Paper
	Slide 21: System Model
	Slide 22: Their Setup
	Slide 23: Their Setup
	Slide 24: Their Analysis
	Slide 25: Why do Services Slow Down at Scale?
	Slide 26: So, How Should Services be Scaled?
	Slide 27: Sharding Data
	Slide 28: Sharding with Single Node Transactions
	Slide 29: Sharding with General Transactions
	Slide 30: Example: A Microservice for Caching
	Slide 31: Sharded Caching
	Slide 32: Failures with Sharded Caching
	Slide 33: Replicated, Sharded Caching
	Slide 34: Terminology
	Slide 35: Typical KV Store API
	Slide 36: Load Balance in KVS
	Slide 37: Elasticity Adds Another Dimension
	Slide 38: Elastic Shuffle
	Slide 39: Low Load
	Slide 40: High Load
	Slide 41: Where is the Cache?
	Slide 42: Data Consistency Issues
	Slide 43: What About Weak Consistency?
	Slide 44: In the Cloud, Not Every Subsystem Needs the Strongest Guarantees
	Slide 45: Definitions, Slightly Informal!
	Slide 46: Cap Rule
	Slide 47: CAP rule in practice
	Slide 48: BASE Methodology
	Slide 49: BASE Example
	Slide 50: Thanks!

