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How did Today’s Cloud Evolve?

• Prior to ~2005, data centers claimed to be designed for 
high scalability and availability

• Amazon had especially large ones, to serve its web requests

• The real goal was just to support online shopping

• Their system wasn’t very reliable

• Core problem was scaling

• Everything ran slowly

• Amazon’s computers were overloaded and often crashed
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Amazon Experiment

• At Amazon, they tried an “alpha/beta” experiment

• When web page was rendered fast (< 100ms), customers were 
happy

• For every 100ms delay, purchase rates dropped 1%

• Conclusion: speed at scale determines revenue

• And revenue shapes technology

• An arms race to speed up the cloud

A sprint to render 

your web page!
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Starting around 2006, Amazon led in 
Reinventing Data Center Computing

• Amazon reorganized their whole approach

• Requests arrived at a “first tier” of lightweight servers

• These dispatched work requests on a message bus or queue

• The requests were selected by “microservices”, executing in 
parallel using elastic pools

• One web request might involve tens or hundreds of 
microservices! 

• They also began to guess your next action and 
precompute what they would need to answer your next 
query or link click
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Old Approach (2005)

Product List

Computers were 

mostly desktops

Internet 

routing was 

pretty 

static, 

except

for load 

balancing

Web Server 

built the page… in 

Seattle

Image Database

Billing and Account 
Info

remote

data center
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New Approach (2008)

Product List

Computers 

became 

lightweight, yet 

faster

Image Database

Billing and Account 
Info

Databases held 

the real 

product inventory

Web Server built 

the page… ten 

miles from the 

usersnearby

data center
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New Approach (2008)

Product List

Computers 

became 

lightweight, yet 

faster

Image Database

Billing and Account 
Info

Databases held 

the real 

product inventory

Web Server built 

the page… ten 

miles from the 

users

More and more 

mobile apps
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New Approach (2008)

Desktops with

snappier 

response

More and more 

mobile apps

Message Bus

Racks of highly parallel 

workers do much of the 

data fetching and 

processing, ideally ahead of 

need… The old databases 

are split into smaller and 

highly parallel services.

Web Server 

becomes simpler 

and does less of 

the real work

GeoReplication
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Tier one / Tier Two

• We often talk about the cloud as a “multi-tier” 
environment

• Tier one: programs that generate the web page you see

• Tier two: services that support tier one
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Today’s Cloud

• Tier one runs on lightweight servers:

• They use small amounts of computer memory

• They don’t need a lot of compute power either

• They have limited needs for storage, or network I/O

• Tier two run on somewhat “beefier” computers:

• Provide many different microservices

• Each microservice specializes in various aspects of the content 
delivered to the end-user
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Microservices for Social Network

from Christina Delimitrou
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Microservices for Media Service

from Christina Delimitrou
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Netflix Twitter Amazon

Microservices Visualized
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Each Microservice is a Parallel Pool!

• Every one of those little nodes is itself a small elastic 
pool of processes

• A microservice is a program designed so that the data 
center can run one or many instances “elastically” to 
deal with dynamically varying demand

• The idea is that any instance can handle any request 
equally well, so there is no need for very careful 
“routing” of specific requests to specific instances

• This lets the data center adapt to changing loads easily!

• Load can vary significantly over time, so elasticity is 
critical, perhaps key defining feature of modern cloud
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Pools are Managed Automatically

• In Azure, for example, there is a tool called the “App 
Service” that manages a large collection of compute 
resources in the cloud

• Developers can install their own services as 
“containers”

• Configuration files tell App Service when to launch 
service automatically

• App Service can watch the queue of requests and 
automatically add instances or shut instances down to 
match loads
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Benefits of Microservices

• Advantages of microservices

• Modular, so easier to understand

• Helps speed development & deployment

• On-demand provisioning, elasticity

• Language/framework heterogeneity

webserver

databases

recommender

ads
photos

posts

ads
posts

photos
recommender

webserver databases

from Christina Delimitrou
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Questions about Data

• All the microservices access data, cache data, update 
data, replicate data

• Can we ensure that data is accessed correctly and 
consistently, even in the presence of failures?

• Solution: use a single BIG database, replicate it for fault 
tolerance
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Single Big Service Performs Poorly

• Until 2005 “one server” was able to scale and keep up, 
like for Amazon’s shopping cart

• A 2005 server often ran on a small cluster with, perhaps, 2-16 
machines in the cluster

• This worked well

• But suddenly, as the cloud grew, this form of scaling 
didn’t work

• Companies threw unlimited money at the issue but 
critical services like databases still became hopelessly 
overloaded and crashed or fell far behind
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Jim Gray’s Famous Paper

• At Microsoft, Jim Gray anticipated this scaling issue as 
early as 1996

• He and colleagues wrote a wonderful paper based on 
their insights:

• Basic message: divide and conquer is really the only 
option

The dangers of replication and a solution. Jim Gray, 

Pat Helland, Patrick O'Neil, and Dennis Shasha. 1996. 

In Proceedings of the 1996 ACM SIGMOD Conference.

Jim Gray

(Jan 1944 – Jan 2007)
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Approach in the Paper

• The paper uses a “chalkboard analysis” to analyze 
scaling for a replicated system that behaves like a 
database

• Analysis based on asymptotic costs, similar to complexity 
analysis

• System could be an actual database like SQL Server or 
Oracle

• But their “model” also covered any other storage layer 
that provides strong guarantees of data consistency
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System Model

• The paper assumes that the service provides some form 
of lock-based consistency, which they model as 
database serializability

• Applications use read locks, and write locks

• System uses a pool of replicated servers

• Work is spread across servers

• Enables handling increasing application load
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Their Setup

The database

Applications using the database are client processes

During the run, T 
concurrent transaction 

requests are issued. 

Here, 3 are running right 
now, but T could be 

much larger.
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Their Setup

Applications using the database are client processes

For scalability, the number of replicated 
servers (N) can be increased

Server 1 Server 2 Server N
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Their Analysis

• Goal: A scalable system with N servers should be able to 
handle N times more transactions (T)

• Instead, they found that the work the servers must do 
increases non-linearly with N

• One reason is that each update must be replicated to all 
N servers

• So, node update rate (across all nodes) grows as N2

• Worse, deadlocks occur as N3, causing feedback 
(because reissued transactions get done multiple times)

• Example: if 3 servers (N=3) could do 1000 TPS, with 5 servers 
the rate might drop to 300 TPS, purely because of deadlocks 
forcing abort/retry
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Why do Services Slow Down at 
Scale?

• The paper pointed to several main issues:

• Lock contention: with more concurrent transactions, they are 
more likely to try to access the same object and wait for locks

• Abort: deadlock also causes abort/retry sequences. some 
consistency mechanisms use optimistic behavior, but now and 
then, they must back out and retry

• The paper explores many options for replication 
schemes but ends up with similar negative conclusions

• These conclusions may seem database-specific, but 
these issues arise in any service that provides consistent 
data
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So, How Should Services be Scaled?

• Back in 1996, Jim’s paper concluded that you need to shard 
the database into a large set of much smaller databases, 
with each storing distinct data

• Jim set out to do this for a massive database of astronomy 
data

• By the time he died in 2007, Jim had shown that for every 
problem he ran into, it was possible to devise a sharded 
solution in which transactions mostly touched a single shard 
at a time

• In 1996, it wasn’t clear that every important service could be 
sharded, by the 2007 period, Jim had made the case that in 
fact, this is feasible!
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Sharding Data

Sharded storage service with N shards,
2 replicated servers per shard

A shard with 2 
replicas

A transaction

A read or write to some 
(key,value) tuple.  Here, 

Hash(key) % N =1, so 
read/write Shard 1

Shard 0 Shard 1 Shard N
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Sharding with Single Node 
Transactions

If each transaction does all its work at just one shard, never needing 
to access two or more, then sharding scales well

Shard 0 Shard 1 Shard N

Each transaction 
accesses one shard
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Sharding with General Transactions

Transactions that touch multiple shards hold locks for long time, 
need 2-phase commit (agreement protocol) for atomicity 

In this case, Jim Gray’s analysis applies, as we scale up, 
performance suffers

Shard 0 Shard 1 Shard N

A transaction reads 
or writes one or 

more shards, needs 
atomic operation
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Example: A Microservice for Caching

• Let’s look at the concept of caching as it arises in the 
cloud, and at how we can make such a service elastic

• This is just one example, but is a good example because 
key-value data structures are very common in the cloud

• E.g., facebook uses elastic caching to cache binary large 
objects (i.e., pictures)
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Sharded Caching

Key=Birman Value=

Hash(“Birman”) % N

Each machine stores a 
set of (key,value) 
tuples in a local hash 
table, stored in DRAM 
or on SSD storage

In effect, two levels of hashing!

Store(Key, Value)
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Failures with Sharded Caching

• What if process or machine 
storing cached data fails?

• A portion of the cache would 
not be available

• Data can still be fetched from 
backend database server, but 
this adds load on the backend, 
increases tail latency

Failed

Each machine stores a 
set of (key,value) 
tuples in a local hash 
table, stored in DRAM 
or on SSD storage
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Replicated, Sharded Caching

Key=Birman Value=

Hash(“Birman”) % N

Store(Key, Value)

N shards, each shard shored on two machines, 
i.e., two machines store the same set of (key,value) tuples
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Terminology

• This design is called a key value store (KVS) or a 
distributed hash table (DHT)

• A distributed KVS contains shards or partitions of data, 
and each shard may be replicated



3535

Typical KV Store API

• The MemCached API was the first widely popular KV 
Store

• Today there are many important KV store, e.g., 
MemCached, RocksDB, TigerDB, DynamoDB, BigTable, 
Cassandra, and the list just goes on and on

• Most support some form of

• Some hide these basic operations behind file system 
APIs, or “computer-to-computer email” APIs (publish-
subscribe or queuing) or database APIs

put(key, value)  // store (key, value)
value = get(key) // get the value associated with key
watch(key)       // notify when the value is updated
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Load Balance in KVS

• Hashing stores keys on different servers

• So, do all servers stores similar number of keys?

• Depends on the hash function?

• Secure hash functions such as SHA-256 are relatively fast and 
generate random output, so keys are spread uniformly

• Other hash functions may not spread data uniformly

• Even if keys are stored uniformly across server, can 
there be load imbalance?

• Yes, some keys may be heavily accessed, causing hot spots

• One solution is to have N (replicated servers) storing KN shards

• It is unlikely that all K shards on a server will be loaded



3737

Elasticity Adds Another Dimension

• If we expect changing load patterns, the cache may 
need a way to dynamically change sharding policy

• Since a cache “works” even when empty, we could 
simply shut it down and restart with a different number 
of servers and another sharding policy.

• But cold caches perform poorly

• Instead, we should ideally “shuffle” or reconfigure 
cached data across servers
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Elastic Shuffle

• Say, we initially had the cache data spread over 4 shards

Shard 0 Shard 1 Shard 4Shard 3
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Low Load

• During low load, we could move the cached data into 2 
shards, while dropping half the cached items

• Hopefully, keep the more popular items

Shard 0 Shard 1 Shard 4Shard 3

Shard 0 Shard 1

Enables utilizing 
machines 
associated with 
Shards 3 and 4 for 
other purposes, 
e.g., data 
analytics
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High Load

• During high load, we could add machines and shuffle 
data to expand the cache

Shard 0 Shard 1 Shard 4Shard 3

Shard 0 Shard 1
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Where is the Cache?

• How can applications or other services that use the 
cache find out the location of the caching machines?

• Typically, big data centers have a management 
infrastructure service that keeps this type of 
configuration information

• E.g., list of processes@machines that cache the data, 
parameters needed to compute the mapping from the key to 
the shard, shard replicas, etc.

• When this configuration information changes, 
applications are told to re-read the configuration

• Later, we will learn about one such service, Zookeeper
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Data Consistency Issues

• Many reasons for inconsistent data accesses

• Caches are inconsistent with storage, e.g., some clients bypass 
cache and access storage directly

• Storage replicas are inconsistent

• Caches are replicated and inconsistent

• Strong consistency ensures that reads return the latest 
write, making it easier to write applications

• While data sharding helps scaling the database, strong 
consistency can limit availability and scalability
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What About Weak Consistency?

• Some tasks may precompute data (“last night”) and use 
this read-only data

• Read potentially stale data, better than read no data

• They can also enqueue update tasks for offline 
processing

• Allow delayed updates, better than disallow updates

• Tasks might also guess the effect of updates, but the 
offline version will “win” if a conflict occurs

• Buy an item, eventually told it was sold out, get refund
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In the Cloud, Not Every Subsystem 
Needs the Strongest Guarantees

• At Berkeley, Eric Brewer argued that 
strong consistency delays response

• For example, conflicting database updates can be forced into 
an agreed order, but this takes time and involves node-node 
dialog, and if there is a network partition, the system provides 
no availability

• But services make money only when they always 
provide fast response

• Eric concluded that this means cloud services may need 
to relax consistency

• This insight is captured in his CAP rule (Consistency, 
Availability and Partition Tolerance)
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Definitions, Slightly Informal!

• Consistency: Updates are performed in some system-
selected order by all replicas. Queries return most up-
to-date values. Users see a single system.

• Availability: The system responds to every user request, 
even when some machines are down.

• Partition Tolerant:  The system can tolerate network 
failures between subsystems. E.g., machines are 
partitioned into separate subnets and the switch 
between the subnet fails.
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Cap Rule

• You cannot achieve all three of:

• Consistency

• Availability

• Partition-Tolerance

• Popular interpretation: choose 2-out-of-3

• CA: Assumes partitions don’t occur, not realistic

• CP: poor availability, users unhappy

• AP: hard to program, possibly confusing to users

• None of these options are appealing!

Consisten
cy

Availabilit
y

Partition
Tolerance

CA

CP AP
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CAP rule in practice

• Partitions do occur, so systems must be partition 
tolerant

• You cannot not choose partition tolerance …

• But you can design systems to make them rare

• When there are no partitions, 
provide both consistency and availability

• When there is a partition, systems need to choose 
between consistency vs. availability

• E.g., design systems that are best suited for application’s 
consistency and availability needs

• When partition is fixed, restore consistency and 
availability
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BASE Methodology

• BASE: A set of rules for implementing CAP-based 
solutions

• Invented at eBay, adopted by Amazon, others

• Basic Availability: provide continuous availability, despite 
failures or temporary inconsistency

• Soft State: use state that can be regenerated (e.g., cached 
data) for efficiency

• Eventual Consistency: assuming no further updates to an item, 
all users will eventually see the same value of the item

• Soft state and eventual consistency help recovery from 
failures, network partitions, data inconsistency, etc.
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BASE Example

• For example, if product photos rarely change, cache 
them, do not check for staleness with each cache 
access, let them expire after a few weeks

• Avoids all cache refresh traffic

• If a photo does change, you do see a stale product photo, but 
this is rare

• BASE  “CAP in practice”
           “Use CAP. You can clean up later.”

• BASE encourages developers to think about when they 
need or do not need consistency
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Thanks!

• Please go over the class web page available from 
http://www.eecg.toronto.edu/~ashvin

• Please use Quercus Discussions for any class related 
questions

http://www.eecg.toronto.edu/~ashvin
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