Designing Modern Web-Scale Applications

Ashvin Goel

Electrical and Computer Engineering University of Toronto

ECE1724

Topics

- Overview of the course
- Class format
- Introduction to the course

My Research Background

- Systems software
 - Operating systems
 - Storage systems
 - Dependable systems
 - Distributed systems
- Recent focus
 - Distributed storage systems
 - Big data analytics
 - Course reflects this focus

What are Web-Scale Apps?

- Applications that are hosted in massive-scale computing infrastructures such as data centers
- Used by millions of geographically distributed users
 - Via web browsers, mobile clients, etc.

- Produce, store, consume massive amounts of data
 - Scale is hard to comprehend

Focus of Course

- Web-scale applications are large scale systems
 - They require massive infrastructure for storing their data and for their computation needs
- Course focuses on
 - Infrastructure needed for web-scale applications
 - Big data computation models and analytics
- Core concerns
 - Efficiency, scalability, availability, reliability, consistency, programmability, flexibility

Key Issues

- How to store data at scale
- How to serve data with low latency
- How to index and analyze data at scale
 - Unstructured and structured data
 - Streaming data
 - Graph data
 - Model training data

Course Goals

- Understand challenges in designing systems and infrastructure for web-scale applications
- Understand the design of data storage systems
- Understand the design of data analytics applications
- (Optional) Gain experience with system development with a large software project

Relation to Other Courses

- ECE1779: Intro to cloud computing teaches you to be a cloud application developer
 - Gain experience with cloud technologies
 - Use Microsoft Azure, Google App Engine, Amazon AWS Lambda, etc.
 - Many jobs available (hopefully!)
- ECE1724: This course teaches you to be the cloud provider's application developer
 - Understand the design of the provider's infrastructure
 - Use it to design big data applications
 - In-demand jobs

Industrial Relevance

- Many papers in the reading list are from industry
 - GFS, MapReduce, Bigtable, Spanner, Twine, Millwheel, Pregel, TensorFlow (Google)
 - Dynamo (Amazon)
 - Spark, Spark Streaming (Databricks)
 - Zookeeper (Yahoo)
- Similarly, for optional reading list
 - Chubby, Omega, Borg (Google)
 - Azure, Apollo, Quincy (Microsoft)
 - Storm (Twitter)
 - Akkio, Flighttracker, SVE (Facebook)

Course Prerequisites

- Operating systems
- Distributed systems
- Preferably taken courses in database systems, networking
- For course project
 - Developed large software project
 - Languages like Java, C, C++

Main Topics

- Consensus and coordination
- Cluster storage systems
- Wide-area storage systems
- Data parallel frameworks
- Scheduling and resource management
- Stream processing systems
- Graph processing systems
- Machine learning systems (if time permits)

Class Format

Overview

- Course web site
- Course readings
- Course project and presentation
- Quizzes
- Grading policy

Course Website

- Course website available from my home page
 - http://www.eecg.toronto.edu/~ashvin
 - This website contains reading material, project ideas, etc.
- Quercus
 - Course announcements on Quercus Announcements
 - Please ask general questions on Quercus Discussions
 - Quizzes
- Email
 - If you want to contact me directly

Course Readings

- Advanced, discussion-oriented seminar course
 - Course discusses seminal and recent research papers
- Background in distributed systems, databases, OS
- Typically, we will discuss 2 papers per week
- Expect to spend 4-6 hours reading these papers

Course Project and Presentation

- Choose a project based on topics covered
- Sample topics will be posted on website
- Background reading material available on website
- Options
 - Implement and evaluate a system
 - Evaluate existing system
 - Write a research paper
- Write up your work
 - 8-10 pages
- Present your work

- Three quizzes
- Roughly every 3 weeks
- Quiz will cover topics discussed in previous 3 weeks
- Questions will vary, some straight forward, some open ended, will assess conceptual and critical understanding of course content
- Exact format and dates will be announced later
 - Likely a take home (open notes) Quercus quiz

Grading Policy

- No assignments
- No final exam

- Two options
 - Course Project
 - All Quizzes

Grading Policy: Course Project

- Take two out of four quizzes, each quiz is 25%
- Course project: 50%
 - Description: 5%
 - Mid-term report: 10%
 - Final report: 35%
 - Feedback and mark provided for each report
- This option is required for MASc and PhD students
- Please make sure to discuss your potential project ideas with the instructor

Grading Policy: All Quizzes

- Take four quizzes, each quiz is 25%
- This option is suggested for MEng students