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Goal: Replicated Log

• Replicated log enables replicated state machine

• All servers execute same commands in same order

• Consensus module ensures proper log replication
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Raft Overview

• Raft is a library that uses a leader-based consensus 
scheme to implement fault-tolerant state machine 
replication

• Leader Election: ensures one leader at any time

• Log Replication: leader broadcasts messages to replicas 
in order (normal operation)

• Choosing Leader: ensures safety and consistency

• Client Interaction: ensures exactly-once semantics
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Leader Election
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Terms (aka Epochs)

• Raft divides time into terms

• Each term starts with leader election

• If election fails, a term has no leader (e.g., Term 3)

• Otherwise, a term has one leader that performs log replication

• Each replica maintains latest known term value

• Key role of terms: identify obsolete information

Term 1 Term 2 Term 3 Term 4 Term 5

time

Elections Log replication

(normal operation)

Split Vote



66

Server States

• At any given time, each server is either:

• Leader: handles all client interactions, log replication

• Follower: completely passive

• Candidate: used to elect a new leader

• Normal operation: 1 leader, N-1 followers

Follower Candidate Leader
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Liveness Validation

• Servers start as followers

• Leaders send heartbeats (empty AppendEntries RPCs) 
to maintain authority over followers

• If electionTimeout elapses with no RPCs (100-500ms), 
follower assumes leader has crashed and starts new 
election
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Elections

• Start election:

• Increment current term, change to candidate state, 
vote for self

• Send RequestVote to all other servers, retry until either:

• Receive votes from majority of servers:

• Become leader

• Send AppendEntries heartbeats to all other servers

• Receive RPC from valid leader (with same or higher term):

• Return to follower state

• No-one wins election (election timeout elapses):

• Increment term, start new election
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Safety & Liveness

• Safety: allow at most one winner per term

• Each server votes only once per term (persists on disk)

• Two different candidates can’t get majorities in same term

• Liveness: some candidate eventually wins

• Each candidate chooses election timeouts randomly in [T, 2T]

• One usually initiates and wins election before others start

• Works well if T >> network RTT 
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Log Replication
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Log Structure

• Log entry = < index, term, command >

• Log stored on stable storage (disk); survives crashes

• Entry created in current term is committed when it is 
stored on majority of servers

• Committed entry stored durably, eventually executed 
by state machines
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Normal Operation

• Client sends command to leader

• Leader appends command to its log

• Leader sends AppendEntries RPCs to followers

• Once new entry committed:

• Leader passes command to its state machine, sends result to client

• Leader piggybacks commitment to followers in later AppendEntries

• Followers pass committed commands to their state machines
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Normal Operation

• Crashed / slow followers?

• Leader retries RPCs until they succeed

• Performance is “optimal” in common case:

• One successful RPC to any majority of servers
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Log Operation:  Highly Coherent

• If log entries on different servers have same index and 
term:

• They store the same command

• Logs are identical in all preceding entries

• If given entry is committed, all preceding entries are 
also committed
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Log Operation:  Consistency Check

• AppendEntries has <index,term> of entry preceding 
new ones

• Follower must contain matching entry, or else it rejects

• Implements an induction step, ensures coherency
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Choosing Leader
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After Leader Change

• New leader’s log is truth, no additional steps needed

• Starts normal operation

• Will eventually make follower’s logs identical to leader’s

• Old leader may have left entries partially replicated

• Multiple crashes can leave many extraneous log entries
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Choosing the Leader

• Raft leader completeness property: if log entry is 
committed in a term, entry will be present in logs of 
future term leaders

• Problem: how to determine which entries are 
committed?
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Choosing the Best Leader

• Elect candidate that contains all potentially committed 
entries

• In RequestVote, candidates incl. index + term of last log entry

• Voter V denies vote if its log is “more complete”:                                             
last entry has (higher term) or (higher index with same term)

• Leader will have “most complete” log among electing majority
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Leader’s Commitment Rule

• Two cases:

• Entries in current term

• Entries in previous terms
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Leader Commits Current Term Entry

• Leader knows entry in current term is committed when 
it is stored durably on a majority

• This is safe because leader for Term 3 must contain 
Entry 4
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Leader Commits Earlier Term Entry

• In Term 2, Entry 3 replicated to S1 and S2

• Leader 4 finishes replicating Entry 3 (from Term 2) to S3

• Entry 3 is now on a majority of servers

• Is Entry 3 safely committed?

• S5 can be elected as leader for Term 5 (how?)

• If elected, it will overwrite Entry 3 on S1, S2, and S3
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New Commit Rules

• For leader to decide that an entry (in current or 
previous term) is committed:

• Entry stored on a majority

• At least 1 new entry from leader’s term is also in majority

• E.g., once Entry 4 is committed, S5 cannot be elected 
leader for Term 5, and Entry 3 and 4 are both safe
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Client Interaction
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Client Protocol

• Clients send commands to leader, if leader unknown, 
contact any server, which redirects client to leader

• Leader only responds after command logged (locally), 
committed, and executed by leader

• Problem: A leader could execute command and then fail 
before returning response to client

• Client retries the same command with another leader, so 
command executed twice

• To ensure exactly-once semantics, state machines must 
perform duplicate detection

• Client embeds unique request ID in each command

• State machine checks request ID and returns previous result
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Discussion
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Q1

• A lease serves as a lock with a timeout

• Say, a leader is elected using leases as follows:

• An external server stores

• Server location of the current leader

• Leader’s lease, i.e, a time until which this server will serve as leader

• Leader sends periodic heartbeats to external server

• Each heartbeat renews the leader’s lease, i.e., extends the time for 
which server will remain the leader

• Other servers contact the external server to find leader

• If the lease has expired, the first server to contact the external server 
becomes the leader 

• What safety issues can occur with this leader election 
mechanism?
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Q2

• Raft also uses heartbeats. Why doesn’t it have these 
safety issues? Why can heartbeats cause liveness 
and/or availability issues?
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Q3

• Besides the log, each server maintains the following 
persistently (on disk):

• currentTerm (latest term that the server has seen)

• votedFor (candidate that received vote in current term)

• Why are these values maintained on disk?
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Q4

• When a new leader is elected, it may delete extraneous 
entries in a follower:

• Intuitively, why doesn’t this cause data loss?

1 41 1 4 5 5 6 6 6Leader for term 7

1 2 3 4 5 6 7 8 9 10 11 12

1 1 1Followers 2 2 33 3 3 32
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Q5

• What is exactly-once semantics and why is it useful? 
Why is it hard to enforce?
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