
11

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

ECE1724

Consensus with RAFT

These slides are modified versions of slides from Diego Ongaro, John Ousterhout
and Michael Freedman

22

Goal: Replicated Log

• Replicated log enables replicated state machine

• All servers execute same commands in same order

• Consensus module ensures proper log replication

add jmp mov shl

Log

Consensus
Module

add jmp mov shl

State
Machine

Log

Consensus
Module

add jmp mov shl

State
Machine

Log

Consensus
Module

Servers

Clients

State
Machine

shl

33

Raft Overview

• Raft is a library that uses a leader-based consensus
scheme to implement fault-tolerant state machine
replication

• Leader Election: ensures one leader at any time

• Log Replication: leader broadcasts messages to replicas
in order (normal operation)

• Choosing Leader: ensures safety and consistency

• Client Interaction: ensures exactly-once semantics

44

Leader Election

55

Terms (aka Epochs)

• Raft divides time into terms

• Each term starts with leader election

• If election fails, a term has no leader (e.g., Term 3)

• Otherwise, a term has one leader that performs log replication

• Each replica maintains latest known term value

• Key role of terms: identify obsolete information

Term 1 Term 2 Term 3 Term 4 Term 5

time

Elections Log replication

(normal operation)

Split Vote

66

Server States

• At any given time, each server is either:

• Leader: handles all client interactions, log replication

• Follower: completely passive

• Candidate: used to elect a new leader

• Normal operation: 1 leader, N-1 followers

Follower Candidate Leader

77

Liveness Validation

• Servers start as followers

• Leaders send heartbeats (empty AppendEntries RPCs)
to maintain authority over followers

• If electionTimeout elapses with no RPCs (100-500ms),
follower assumes leader has crashed and starts new
election

Follower Candidate Leader

start
timeout,
start election

receive votes from
majority of servers

timeout,
new election

discover server with
 higher termdiscover current leader

or higher term

“step
down”

88

Elections

• Start election:

• Increment current term, change to candidate state,
vote for self

• Send RequestVote to all other servers, retry until either:

• Receive votes from majority of servers:

• Become leader

• Send AppendEntries heartbeats to all other servers

• Receive RPC from valid leader (with same or higher term):

• Return to follower state

• No-one wins election (election timeout elapses):

• Increment term, start new election

99

Safety & Liveness

• Safety: allow at most one winner per term

• Each server votes only once per term (persists on disk)

• Two different candidates can’t get majorities in same term

• Liveness: some candidate eventually wins

• Each candidate chooses election timeouts randomly in [T, 2T]

• One usually initiates and wins election before others start

• Works well if T >> network RTT

Servers

Voted for

candidate A

B can’t also

get majority

1010

Log Replication

1111

Log Structure

• Log entry = < index, term, command >

• Log stored on stable storage (disk); survives crashes

• Entry created in current term is committed when it is
stored on majority of servers

• Committed entry stored durably, eventually executed
by state machines

1
add

1 2 3 4 5 6 7 8

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

3
sub

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

3
sub

1
add

1
cmp

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

leader

log index

followers

committed entries

term

command

1212

Normal Operation

• Client sends command to leader

• Leader appends command to its log

• Leader sends AppendEntries RPCs to followers

• Once new entry committed:

• Leader passes command to its state machine, sends result to client

• Leader piggybacks commitment to followers in later AppendEntries

• Followers pass committed commands to their state machines

add jmp mov shl

Log

Consensus
Module

add jmp mov shl

State
Machine

Log

Consensus
Module

add jmp mov shl

State
Machine

Log

Consensus
Module

Servers

Clients

State
Machine

shl

1313

Normal Operation

• Crashed / slow followers?

• Leader retries RPCs until they succeed

• Performance is “optimal” in common case:

• One successful RPC to any majority of servers

add jmp mov shl

Log

Consensus
Module

add jmp mov shl

State
Machine

Log

Consensus
Module

add jmp mov shl

State
Machine

Log

Consensus
Module

Servers

Clients

State
Machine

shl

1414

Log Operation: Highly Coherent

• If log entries on different servers have same index and
term:

• They store the same command

• Logs are identical in all preceding entries

• If given entry is committed, all preceding entries are
also committed

1
add

1 2 3 4 5 6

3
jmp

1
cmp

1
ret

2
mov

3
div

4
sub

1
add

3
jmp

1
cmp

1
ret

2
mov

server1

server2

1515

Log Operation: Consistency Check

• AppendEntries has <index,term> of entry preceding
new ones

• Follower must contain matching entry, or else it rejects

• Implements an induction step, ensures coherency

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

1
cmp

1
ret

2
mov

leader

follower

1 2 3 4 5

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

1
cmp

1
ret

1
shl

leader

follower

AppendEntries succeeds:

matching entry

AppendEntries fails:

mismatch

1616

Choosing Leader

1717

After Leader Change

• New leader’s log is truth, no additional steps needed

• Starts normal operation

• Will eventually make follower’s logs identical to leader’s

• Old leader may have left entries partially replicated

• Multiple crashes can leave many extraneous log entries

1 2 3 4 5 6 7log index

1 1

1 1

5

5

6 6 6

6

1 1 5 5

1 41

1 1

7 7

2 2 3 3 3

2

7

term s1

s2

s3

s4

s5

1818

Choosing the Leader

• Raft leader completeness property: if log entry is
committed in a term, entry will be present in logs of
future term leaders

• Problem: how to determine which entries are
committed?

1 21 1 2

1 2 3 4 5

1 21 1

1 21 1 2 Unavailable during

leader transition

Committed?
Can’t tell

which entries

committed!

s1

s2

s3

1919

Choosing the Best Leader

• Elect candidate that contains all potentially committed
entries

• In RequestVote, candidates incl. index + term of last log entry

• Voter V denies vote if its log is “more complete”:
last entry has (higher term) or (higher index with same term)

• Leader will have “most complete” log among electing majority

1 21 1 2

1 2 3 4 5

1 21 1

1 21 1 2 Unavailable during

leader transition

Committed?
Can’t tell

which entries

committed!

s1

s2

s3

2020

Leader’s Commitment Rule

• Two cases:

• Entries in current term

• Entries in previous terms

2121

Leader Commits Current Term Entry

• Leader knows entry in current term is committed when
it is stored durably on a majority

• This is safe because leader for Term 3 must contain
Entry 4

1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

2

2

2

2

2
Can’t be elected as

leader for term 3

AppendEntries just succeeded

Leader for term 2

2222

Leader Commits Earlier Term Entry

• In Term 2, Entry 3 replicated to S1 and S2

• Leader 4 finishes replicating Entry 3 (from Term 2) to S3

• Entry 3 is now on a majority of servers

• Is Entry 3 safely committed?

• S5 can be elected as leader for Term 5 (how?)

• If elected, it will overwrite Entry 3 on S1, S2, and S3

1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

3

4

3

AppendEntries just succeeded

Leader for term 4

3

2323

New Commit Rules

• For leader to decide that an entry (in current or
previous term) is committed:

• Entry stored on a majority

• At least 1 new entry from leader’s term is also in majority

• E.g., once Entry 4 is committed, S5 cannot be elected
leader for Term 5, and Entry 3 and 4 are both safe

4

4

1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

3

4

3

Leader for term 4

3

2424

Client Interaction

2525

Client Protocol

• Clients send commands to leader, if leader unknown,
contact any server, which redirects client to leader

• Leader only responds after command logged (locally),
committed, and executed by leader

• Problem: A leader could execute command and then fail
before returning response to client

• Client retries the same command with another leader, so
command executed twice

• To ensure exactly-once semantics, state machines must
perform duplicate detection

• Client embeds unique request ID in each command

• State machine checks request ID and returns previous result

2626

Discussion

2727

Q1

• A lease serves as a lock with a timeout

• Say, a leader is elected using leases as follows:

• An external server stores

• Server location of the current leader

• Leader’s lease, i.e, a time until which this server will serve as leader

• Leader sends periodic heartbeats to external server

• Each heartbeat renews the leader’s lease, i.e., extends the time for
which server will remain the leader

• Other servers contact the external server to find leader

• If the lease has expired, the first server to contact the external server
becomes the leader

• What safety issues can occur with this leader election
mechanism?

2828

Q2

• Raft also uses heartbeats. Why doesn’t it have these
safety issues? Why can heartbeats cause liveness
and/or availability issues?

2929

Q3

• Besides the log, each server maintains the following
persistently (on disk):

• currentTerm (latest term that the server has seen)

• votedFor (candidate that received vote in current term)

• Why are these values maintained on disk?

3030

Q4

• When a new leader is elected, it may delete extraneous
entries in a follower:

• Intuitively, why doesn’t this cause data loss?

1 41 1 4 5 5 6 6 6Leader for term 7

1 2 3 4 5 6 7 8 9 10 11 12

1 1 1Followers 2 2 33 3 3 32

3131

Q5

• What is exactly-once semantics and why is it useful?
Why is it hard to enforce?

	Slide 1: Consensus with RAFT
	Slide 2: Goal: Replicated Log
	Slide 3: Raft Overview
	Slide 4: Leader Election
	Slide 5: Terms (aka Epochs)
	Slide 6: Server States
	Slide 7: Liveness Validation
	Slide 8: Elections
	Slide 9: Safety & Liveness
	Slide 10: Log Replication
	Slide 11: Log Structure
	Slide 12: Normal Operation
	Slide 13: Normal Operation
	Slide 14: Log Operation: Highly Coherent
	Slide 15: Log Operation: Consistency Check
	Slide 16: Choosing Leader
	Slide 17: After Leader Change
	Slide 18: Choosing the Leader
	Slide 19: Choosing the Best Leader
	Slide 20: Leader’s Commitment Rule
	Slide 21: Leader Commits Current Term Entry
	Slide 22: Leader Commits Earlier Term Entry
	Slide 23: New Commit Rules
	Slide 24: Client Interaction
	Slide 25: Client Protocol
	Slide 26: Discussion
	Slide 27: Q1
	Slide 28: Q2
	Slide 29: Q3
	Slide 30: Q4
	Slide 31: Q5

