
1

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

ECE1724

ZooKeeper:
Wait-Free Coordination for

Internet-Scale systems

These slides are slightly modified versions from the original slides by:

Patrick Hunt and Mahadev (Yahoo! Grid)
Flavio Junqueira and Benjamin Reed (Yahoo! Research)



2

Why Coordination?

• Group membership

• Leader election

• Dynamic configuration

• Status monitoring

• Queuing

• Barriers

• Critical sections



3

Classic coordination

Coordinator

Worker Worker Worker Worker



4

Fault-tolerant coordination

• Use state machine replication for fault tolerance

• Issues

• Programming coordinator state machine is complicated

• Coordinator can become bottleneck

Coordinator
follower

Coordinator
follower

Coordinator
leader

Worker Worker Worker Worker



5

• Maintain coordinator state in separate storage system

• E.g., IP of current coordinator, set of workers, task 
assignments

• Coordinator, workers coordinate via accesses to storage

• Any worker can be coordinator

Storage-based coordination

Storage
system

Worker Coordinator Worker Worker



6

Fault-tolerant storage system

• Replicate storage for fault tolerance

• Coordinator code is simpler since no state machine needed

• What happens when coordinator fails?

• Any another worker can take over

Storage
follower

Storage
follower

Storage
leader

Worker Coordinator Worker Worker



7

ZooKeeper

• A fault-tolerant storage system that provides general 
coordination services, i.e., coordination kernel

• E.g., group membership, locks, leader election, etc.

• Provides high performance

• Allows multiple outstanding operations by a client

• Reads are fast (although they may return stale data)

• Reliable and easy to use



8

8

ZooKeeper API



9

Data model

• Each node is called znode

• Stores some data, 
including version

• Data is read and written 
in its entirety

• znodes may have children

• Hierarchal namespace

• Like a file system, registry

• State maintained in memory

/     

YaView

workers

locks

services

apps

users

worker1

worker2

s-1



10

Znode types

• Two special types of znodes:

• Ephemeral: znode deleted 
when explicitly deleted, or 
when client session 
that created the znode fails

• Sequence: appends a 
(unique) monotonically 
increasing counter

/     

YaView

workers

locks

services

apps

users

worker1

worker2

s-1

sequence 
append 

on create

ephemerals 
created by 
a session



11

Overview of API

• Operations look like file system operations

• Take a path name to a znode, e.g., create(“/app1/worker1”, …)

• Operations are non-blocking (or wait-free)

• Operations by one client do not block on another client

• Slow and failed nodes cannot slow down fast ones

• No deadlocks

• ZooKeeper uses API to provide “coordination recipes”

• E.g., group membership recipe, locking recipe

• Some recipes necessarily wait on conditions, e.g., locking

• ZooKeeper supports waiting for conditions efficiently



12

ZooKeeper API

• Clients open a session with (any) one ZK server, issue 
operations synchronously or asynchronously

s= openSession()

String create(path, data, acl, flags)

void delete(path, expectedVersion)

Stat setData(path, data, expectedVersion) 

(data, Stat) getData(path, watch)

Stat exists(path, watch) 

String[] getChildren(path, watch)

void sync(s)



13

Key API Properties

• Asynchronous operations allow batching operations

• Exclusive file creation (one concurrent create succeeds)

• (d, v) = getData()/setData(x, v) support atomic ops

• setData fails if data is modified since getData

• Sequence files allow ordering operations across clients

• E.g., ordering lock operations

• Ephemeral files (i.e., sessions) help with client failure

• E.g., group membership change, release locks, etc.

• Watches avoid costly repeated polling



14

Coordination Recipes



15

Configuration

• Workers read configuration

• getData(“.../config/settings”, true)

• Administrators change the configuration

• setData(“.../config/settings”, newConf, -1)

• Workers are notified of change and then re-read the 
new configuration

• getData(“.../config/settings”, true)

config

settings



16

Group Membership

• Register worker with host information in group

• create(“.../workers/worker1”, hostInfo, EPHEMERAL)

• List group members

• listChildren(“.../workers”, true)
workers

worker1

worker2



17

Leader Election

while true:
  if exists(“.../workers/leader”, watch=true)
    follow the leader
    return

  if create(“.../workers/leader”, hostname, EPHEMERAL)
    become leader
    return

If watch is triggered for “.../workers/leader”
  restart leader election process

workers

worker1

worker2

leader



18

lock:
  id = create(“.../locks/x-”, SEQUENCE|EPHEMERAL)
  
  restart:
  getChildren(“.../locks”, false)
  if id is the 1st child // lock is acquired
    exit
  
  // wait for previous node
  if exists(name of last child before id, true)
    wait for event // no herd
  
  goto restart // why?

unlock:
  delete(id)

locks

x-11

x-19

x-20

Locks



19

Implementation



20

ZooKeeper Guarantees

• Linearizable writes

• Clients see same order of writes

• FIFO client order

• A client’s operations are executed in order

• Implications:

• Client A watching for Client B’s changes sees them in order

• A client’s read must wait for all its previous writes to be executed

• Reads may return stale values (see a prefix of writes)

• Hypothesis: wait-free synchronization + linearizable 
writes + FIFO execution is sufficient for implementing 
efficient coordination services for read-heavy workloads



21

ZooKeeper Service

• ZooKeeper maintains a replicated database

• Each server

• Keeps a copy of the ZooKeeper state in memory

• Logs writes to ZooKeeper state in a write-ahead log on disk for 
recovering committed operations

• Creates and stores snapshots of ZooKeeper state on disk for 
faster recovery

ZooKeeper Service

Server Server Server Server Server



22

ZooKeeper Leader

• Servers elect a leader at startup

• If a leader fails, they re-elect another leader using the 
ZAB leader-based atomic broadcast protocol

ZooKeeper Service

Follower 1 Follower 2 Leader Follower 3 Follower 4



23

ZooKeeper Reads

• Clients connect to any one server (follower or leader)

• Client’s read (e.g., getData) performed by local server

• E.g., When Client 2 issues read, Follower 3 reads and returns 
data from its own copy

Client 1 Client 2

ZooKeeper Service

Follower 1 Follower 2 Leader Follower 3 Follower 4



24

ZooKeeper Writes

• Client 1’s write (e.g., setData) forwarded by local server 
(Follower 1) to leader

ZooKeeper Service

Follower 1 Follower 2 Leader Follower 3 Follower 4

Client 1



25

ZooKeeper: Send Write

• Leader logs the write to its write-ahead log

• Leader sends write to all followers

ZooKeeper Service

Follower 1 Follower 2 Leader Follower 3 Follower 4

Client 1



26

ZooKeeper Service

Follower 1 Follower 2 Leader Follower 3 Follower 4

ZooKeeper: Receive Acks

• Followers log the write to their write-ahead log

• Respond to the leader

Client 1



27

ZooKeeper: Commit Write

• When leader receives acks from a majority of servers, it 
commits the write (need 2f+1 servers to handle f failures)

• Leader applies write to ZooKeeper state in memory

• Leader informs followers that write is committed

Client 1

ZooKeeper Service

Follower 1 Follower 2 Leader Follower 3 Follower 4



28

ZooKeeper: Apply Write

• Each follower:

• Commits the write

• Applies write to ZooKeeper state in memory

• Issues watch notifications to clients connected to follower

Client 1

ZooKeeper Service

Follower 1 Follower 2 Leader Follower 3 Follower 4



29

ZooKeeper: Write Response

• Follower 1 delivers write response to Client 1

Client 1

ZooKeeper Service

Follower 1 Follower 2 Leader Follower 3 Follower 4



30

ZooKeeper Performance



31

Performance With Strong 
Consistency



32

Summary

• Easy to use

• High read performance

• General

• Reliable

• Released as an Apache open-source project

• Relatively easy to use

• Today, used extensively for coordination functions



33

Discussion



34

Q1

• What are wait-free operations? Why does the paper 
base the ZooKeeper design on wait-free operations?



35

Q2

• Compare ZooKeeper with RAFT in terms of

• Functionality/purpose of the system

• Replication method

• Consistency guarantees and performance

• Use of timeouts



36

Q3

• Why does ZooKeeper provide FIFO execution 
guarantees for each client’s operations?

Worker

if (exists(“…/ready”, watch=true))
  getData(“…/config1”)
  getData(“…/config2”)

Coordinator

delete(“…/ready”, …);
setData(“…/config1”, …);
setData(“…/config2”, …);
create(“…/ready”, …);



37

Q4

• The ZK locking implementation has no timeout. What 
would happen if the lock holder dies?



38

Q5

• ZooKeeper converts write operations into idempotent 
transactions when applying them to all servers. What 
does idempotent mean? Why do these transactions 
need to be idempotent?


	Slide 1: ZooKeeper: Wait-Free Coordination for Internet-Scale systems
	Slide 2: Why Coordination?
	Slide 3: Classic coordination
	Slide 4: Fault-tolerant coordination
	Slide 5: Storage-based coordination
	Slide 6: Fault-tolerant storage system
	Slide 7: ZooKeeper
	Slide 8: ZooKeeper API
	Slide 9: Data model
	Slide 10: Znode types
	Slide 11: Overview of API
	Slide 12: ZooKeeper API
	Slide 13: Key API Properties
	Slide 14: Coordination Recipes
	Slide 15: Configuration
	Slide 16: Group Membership
	Slide 17: Leader Election
	Slide 18: Locks
	Slide 19: Implementation
	Slide 20: ZooKeeper Guarantees
	Slide 21: ZooKeeper Service
	Slide 22: ZooKeeper Leader
	Slide 23: ZooKeeper Reads
	Slide 24: ZooKeeper Writes
	Slide 25: ZooKeeper: Send Write
	Slide 26: ZooKeeper: Receive Acks
	Slide 27: ZooKeeper: Commit Write
	Slide 28: ZooKeeper: Apply Write
	Slide 29: ZooKeeper: Write Response
	Slide 30: ZooKeeper Performance
	Slide 31: Performance With Strong Consistency
	Slide 32: Summary
	Slide 33: Discussion
	Slide 34: Q1
	Slide 35: Q2
	Slide 36: Q3
	Slide 37: Q4
	Slide 38: Q5

