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Why Coordination?

* Group membership

* Leader election
 Dynamic configuration
* Status monitoring

* Queuing

* Barriers

e C(Critical sections



Classic coordination
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Fault-tolerant coordination

Coordinator Coordinator Coordinator
follower leader follower
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 Use state machine replication for fault tolerance

* |ssues
* Programming coordinator state machine is complicated

e Coordinator can become bottleneck



Storage-based coordination

Storage
system
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Maintain coordinator state in separate storage system

 E.g., IP of current coordinator, set of workers, task

assignments

Coordinator, workers coordinate via accesses to storage

* Any worker can be coordinator
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Fault-tolerant storage system

Storage Storage Storage
follower leader follower
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Worker Coordinator Worker Worker

 Replicate storage for fault tolerance

* Coordinator code is simpler since no state machine needed

* What happens when coordinator fails?

* Any another worker can take over



ZooKeeper

* A fault-tolerant storage system that provides general
coordination services, i.e., coordination kernel

 E.g., group membership, locks, leader election, etc.

* Provides high performance
* Allows multiple outstanding operations by a client

* Reads are fast (although they may return stale data)

* Reliable and easy to use



ZooKeeper API



Data model

e Each node is called znode

e Stores some data,
including version

e Datais read and written
in its entirety

* znodes may have children
* Hierarchal namespace

e Like a file system, registry

e State maintained in memory




Znode types

 Two special types of znodes:

Ephemeral: znode deleted
when explicitly deleted, or
when client session

that created the znode fails

Seqguence: appends a
(unique) monotonically
increasing counter
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Overview of API

* Operations look like file system operations

* Take a path name to a znode, e.g., create(“/appl/workerl”, ...)

 QOperations are non-blocking (or wait-free)

* Operations by one client do not block on another client
* Slow and failed nodes cannot slow down fast ones

e No deadlocks

e ZooKeeper uses API to provide “coordination recipes”

 E.g., group membership recipe, locking recipe

 Some recipes necessarily wait on conditions, e.g., locking

* ZooKeeper supports waiting for conditions efficiently 11



ZooKeeper API

* C(Clients open a session with (any) one ZK server, issue
operations synchronously or asynchronously

s= openSession()

String (path, data, acl, flags)
void (path, )

Stat (path, data, )
(data, Stat) (path, watch)

Stat (path, watch)

String[] (path, watch)

void sync(s)




Key API Properties

Asynchronous operations allow batching operations
Exclusive file creation (one concurrent create succeeds)

(d, v) = getData()/setData(x, v) support atomic ops

e setData fails if data is modified since getData

Sequence files allow ordering operations across clients

 E.g., ordering lock operations

Ephemeral files (i.e., sessions) help with client failure

 E.g., group membership change, release locks, etc.

Watches avoid costly repeated polling
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Coordination Recipes
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Configuration

 Workers read configuration config
» getData(”.../config/settings”, true) L settings

 Administrators change the configuration

» setData(“.../config/settings”, newConf, -1)

* Workers are notified of change and then re-read the
new configuration

» getData(”.../config/settings”, true)
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Group Membership

* Register worker with host information in group
e create(”.../workers/workerl”, hostinfo, EPHEMERAL)

* List group members
workers

 listChildren(“.../workers”, true)
workerl

.~ worker2
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Leader Election

while true:
if exists(“.../workers/leader”, watch=true)
follow the leader
return

if create(“.../workers/leader”, hostname, EPHEMERAL)
become leader

return
workers
If watch is triggered for “.../workers/leader” workerl
restart leader election process
worker2
leader
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Locks

lock:
id = create(*.../locks/x-", SEQUENCE|EPHEMERAL) locks
restart: ox11

getChildren(“.../locks”, false)
if id is the 1st child // lock is acquired
exit .

// wait for previous node %-20
if exists(name of last child before id, true)
wait for event // no herd

goto restart // why?

unlock:
delete(id)
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Implementation
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ZooKeeper Guarantees

e Linearizable writes

* (Clients see same order of writes

* FIFO client order
* Aclient’s operations are executed in order

* Implications:

* Client A watching for Client B’s changes sees them in order
* Aclient’s read must wait for all its previous writes to be executed

 Reads may return stale values (see a prefix of writes)

* Hypothesis: wait-free synchronization + linearizable
writes + FIFO execution is sufficient for implementing
efficient coordination services for read-heavy workloads 20



ZooKeeper Service

I= I= = I= I=
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e ZooKeeper maintains a replicated database

e Each server

Keeps a copy of the ZooKeeper state in memory

Logs writes to ZooKeeper state in a write-ahead log on disk for
recovering committed operations

Creates and stores snapshots of ZooKeeper state on disk for
faster recovery
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ZooKeeper Leader

Follower 1 Follower 2 Follower 3 Follower 4
- (O (O (O O
— — — — —

* Servers elect a leader at startup

* |If a leader fails, they re-elect another leader using the
/AB leader-based atomic broadcast protocol
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ZooKeeper Reads

Follower 1 Follower 2 Follower 3 Follower 4
- (O (O (O O
— — — — —

* C(Clients connect to any one server (follower or leader)

 C(Client’s read (e.g., getData) performed by local server

 E.g., When Client 2 issues read, Follower 3 reads and returns
data from its own copy
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ZooKeeper Writes

= = = = =

* C(Client 1’s write (e.g., setData) forwarded by local server
(Follower 1) to leader
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ZooKeeper: Send Write

Follower 3 Follower 4
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 Leader logs the write to its write-ahead log

e |Leader sends write to all followers
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ZooKeeper: Receive Acks
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* Followers log the write to their write-ahead log

 Respond to the leader
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ZooKeeper: Commit Write
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- (O 77 ) »
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* When leader receives acks from a majority of servers, it
commits the write (need 2f+1 servers to handle f failures)

* Leader applies write to ZooKeeper state in memory

e Leaderinforms followers that write is committed
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ZooKeeper: Apply Write

= 12 = 12 12

 Each follower:
* Commits the write
* Applies write to ZooKeeper state in memory

* |ssues watch notifications to clients connected to follower
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ZooKeeper: Write Response

= 12 = 12 12

* Follower 1 delivers write response to Client 1
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ZooKeeper Performance

Operations per second
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Performance With Strong
Consistency

Throughput of saturated system (all requests to leader)
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Summary

* Easyto use
 High read performance
 General

e Reliable

 Released as an Apache open-source project

* Relatively easy to use

* Today, used extensively for coordination functions
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Discussion
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Ql

What are wait-free operations? Why does the paper
base the ZooKeeper design on wait-free operations?
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Q2

Compare ZooKeeper with RAFT in terms of
* Functionality/purpose of the system

e Replication method

* Consistency guarantees and performance

e Use of timeouts
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Q3

* Why does ZooKeeper provide FIFO execution
guarantees for each client’s operations?

Coordinator

delete(“../ready”, ..);
setData(“../configl”, ..);
setData(“../config2”, ..);
create(“../ready”, ..);

Worker

if (exists(“../ready”, watch=true))

getData(“../configl”)
getData(“../config2”)
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Q4

* The ZK locking implementation has no timeout. What
would happen if the lock holder dies?
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Q5

 ZooKeeper converts write operations into idempotent
transactions when applying them to all servers. What

does idempotent mean? Why do these transactions
need to be idempotent?
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