ZooKeeper:
Wait-Free Coordination for
Internet-Scale systems

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

ECE1724

These slides are slightly modified versions from the original slides by:

Patrick Hunt and Mahadev (Yahoo! Grid)
Flavio Junqueira and Benjamin Reed (Yahoo! Research)

Why Coordination?

* Group membership

* Leader election
 Dynamic configuration
* Status monitoring

* Queuing

* Barriers

e C(Critical sections

Classic coordination

Coordinator

7 N\~

Worker Worker

Worker

Worker

Fault-tolerant coordination

Coordinator Coordinator Coordinator
follower leader follower

N

Worker Worker Worker Worker

 Use state machine replication for fault tolerance

* |ssues
* Programming coordinator state machine is complicated

e Coordinator can become bottleneck

Storage-based coordination

Storage
system

A

Worker

Coordinator

Worker

Worker

Maintain coordinator state in separate storage system

 E.g., IP of current coordinator, set of workers, task

assignments

Coordinator, workers coordinate via accesses to storage

* Any worker can be coordinator

5

Fault-tolerant storage system

Storage Storage Storage
follower leader follower

N

Worker Coordinator Worker Worker

 Replicate storage for fault tolerance

* Coordinator code is simpler since no state machine needed

* What happens when coordinator fails?

* Any another worker can take over

ZooKeeper

* A fault-tolerant storage system that provides general
coordination services, i.e., coordination kernel

 E.g., group membership, locks, leader election, etc.

* Provides high performance
* Allows multiple outstanding operations by a client

* Reads are fast (although they may return stale data)

* Reliable and easy to use

ZooKeeper API

Data model

e Each node is called znode

e Stores some data,
including version

e Datais read and written
in its entirety

* znodes may have children
* Hierarchal namespace

e Like a file system, registry

e State maintained in memory

Znode types

 Two special types of znodes:

Ephemeral: znode deleted
when explicitly deleted, or
when client session

that created the znode fails

Seqguence: appends a
(unique) monotonically
increasing counter

10

Overview of API

* Operations look like file system operations

* Take a path name to a znode, e.g., create(“/appl/workerl”, ...)

 QOperations are non-blocking (or wait-free)

* Operations by one client do not block on another client
* Slow and failed nodes cannot slow down fast ones

e No deadlocks

e ZooKeeper uses API to provide “coordination recipes”

 E.g., group membership recipe, locking recipe

 Some recipes necessarily wait on conditions, e.g., locking

* ZooKeeper supports waiting for conditions efficiently 11

ZooKeeper API

* C(Clients open a session with (any) one ZK server, issue
operations synchronously or asynchronously

s= openSession()

String (path, data, acl, flags)
void (path,)

Stat (path, data,)
(data, Stat) (path, watch)

Stat (path, watch)

String[] (path, watch)

void sync(s)

Key API Properties

Asynchronous operations allow batching operations
Exclusive file creation (one concurrent create succeeds)

(d, v) = getData()/setData(x, v) support atomic ops

e setData fails if data is modified since getData

Sequence files allow ordering operations across clients

 E.g., ordering lock operations

Ephemeral files (i.e., sessions) help with client failure

 E.g., group membership change, release locks, etc.

Watches avoid costly repeated polling

13

Coordination Recipes

14

Configuration

 Workers read configuration config
» getData(”.../config/settings”, true) L settings

 Administrators change the configuration

» setData(“.../config/settings”, newConf, -1)

* Workers are notified of change and then re-read the
new configuration

» getData(”.../config/settings”, true)

15

Group Membership

* Register worker with host information in group
e create(”.../workers/workerl”, hostinfo, EPHEMERAL)

* List group members
workers

 listChildren(“.../workers”, true)
workerl

.~ worker2

16

Leader Election

while true:
if exists(“.../workers/leader”, watch=true)
follow the leader
return

if create(“.../workers/leader”, hostname, EPHEMERAL)
become leader

return
workers
If watch is triggered for “.../workers/leader” workerl
restart leader election process
worker2
leader

17

Locks

lock:
id = create(*.../locks/x-", SEQUENCE|EPHEMERAL) locks
restart: ox11

getChildren(“.../locks”, false)
if id is the 1st child // lock is acquired
exit .

// wait for previous node %-20
if exists(name of last child before id, true)
wait for event // no herd

goto restart // why?

unlock:
delete(id)

18

Implementation

19

ZooKeeper Guarantees

e Linearizable writes

* (Clients see same order of writes

* FIFO client order
* Aclient’s operations are executed in order

* Implications:

* Client A watching for Client B’s changes sees them in order
* Aclient’s read must wait for all its previous writes to be executed

 Reads may return stale values (see a prefix of writes)

* Hypothesis: wait-free synchronization + linearizable
writes + FIFO execution is sufficient for implementing
efficient coordination services for read-heavy workloads 20

ZooKeeper Service

I= I= = I= I=
= = = = =

e ZooKeeper maintains a replicated database

e Each server

Keeps a copy of the ZooKeeper state in memory

Logs writes to ZooKeeper state in a write-ahead log on disk for
recovering committed operations

Creates and stores snapshots of ZooKeeper state on disk for
faster recovery

21

ZooKeeper Leader

Follower 1 Follower 2 Follower 3 Follower 4
- (O (O (O O
— — — — —

* Servers elect a leader at startup

* |If a leader fails, they re-elect another leader using the
/AB leader-based atomic broadcast protocol

22

ZooKeeper Reads

Follower 1 Follower 2 Follower 3 Follower 4
- (O (O (O O
— — — — —

* C(Clients connect to any one server (follower or leader)

 C(Client’s read (e.g., getData) performed by local server

 E.g., When Client 2 issues read, Follower 3 reads and returns
data from its own copy

23

ZooKeeper Writes

= = = = =

* C(Client 1’s write (e.g., setData) forwarded by local server
(Follower 1) to leader

24

ZooKeeper: Send Write

Follower 3 Follower 4
) -
-

»)

 Leader logs the write to its write-ahead log

e |Leader sends write to all followers

25

ZooKeeper: Receive Acks

= = = = =

* Followers log the write to their write-ahead log

 Respond to the leader

26

ZooKeeper: Commit Write

Follower 1 Follower 2 Follower 3 Follower 4
- (O 77) »
= = 7 =

_(
-

* When leader receives acks from a majority of servers, it
commits the write (need 2f+1 servers to handle f failures)

* Leader applies write to ZooKeeper state in memory

e Leaderinforms followers that write is committed
27

ZooKeeper: Apply Write

= 12 = 12 12

 Each follower:
* Commits the write
* Applies write to ZooKeeper state in memory

* |ssues watch notifications to clients connected to follower

28

ZooKeeper: Write Response

= 12 = 12 12

* Follower 1 delivers write response to Client 1

29

ZooKeeper Performance

Operations per second

Throughput of saturated system

90000
3 servers
80000 5 servers
7 servers

13 servers

60000
50000
40000
30000
20000

10000 F

0 20 40 60 80 100
Percentage of read requests

30

Performance With Strong
Consistency

Throughput of saturated system (all requests to leader)
90000

3 servers
5 servers
o 7 servers
9 servers s
70000 13 servers
2
8 60000
L1 b
w
& 50000
o
W
S 40000
©
2 30000
O
20000
10000 f
0
’ 20 40 60 80 100

Percentage of read requests

Summary

* Easyto use
 High read performance
 General

e Reliable

 Released as an Apache open-source project

* Relatively easy to use

* Today, used extensively for coordination functions

32

Discussion

33

Ql

What are wait-free operations? Why does the paper
base the ZooKeeper design on wait-free operations?

34

Q2

Compare ZooKeeper with RAFT in terms of
* Functionality/purpose of the system

e Replication method

* Consistency guarantees and performance

e Use of timeouts

35

Q3

* Why does ZooKeeper provide FIFO execution
guarantees for each client’s operations?

Coordinator

delete(“../ready”, ..);
setData(“../configl”, ..);
setData(“../config2”, ..);
create(“../ready”, ..);

Worker

if (exists(“../ready”, watch=true))

getData(“../configl”)
getData(“../config2”)

36

Q4

* The ZK locking implementation has no timeout. What
would happen if the lock holder dies?

37

Q5

 ZooKeeper converts write operations into idempotent
transactions when applying them to all servers. What

does idempotent mean? Why do these transactions
need to be idempotent?

38

	Slide 1: ZooKeeper: Wait-Free Coordination for Internet-Scale systems
	Slide 2: Why Coordination?
	Slide 3: Classic coordination
	Slide 4: Fault-tolerant coordination
	Slide 5: Storage-based coordination
	Slide 6: Fault-tolerant storage system
	Slide 7: ZooKeeper
	Slide 8: ZooKeeper API
	Slide 9: Data model
	Slide 10: Znode types
	Slide 11: Overview of API
	Slide 12: ZooKeeper API
	Slide 13: Key API Properties
	Slide 14: Coordination Recipes
	Slide 15: Configuration
	Slide 16: Group Membership
	Slide 17: Leader Election
	Slide 18: Locks
	Slide 19: Implementation
	Slide 20: ZooKeeper Guarantees
	Slide 21: ZooKeeper Service
	Slide 22: ZooKeeper Leader
	Slide 23: ZooKeeper Reads
	Slide 24: ZooKeeper Writes
	Slide 25: ZooKeeper: Send Write
	Slide 26: ZooKeeper: Receive Acks
	Slide 27: ZooKeeper: Commit Write
	Slide 28: ZooKeeper: Apply Write
	Slide 29: ZooKeeper: Write Response
	Slide 30: ZooKeeper Performance
	Slide 31: Performance With Strong Consistency
	Slide 32: Summary
	Slide 33: Discussion
	Slide 34: Q1
	Slide 35: Q2
	Slide 36: Q3
	Slide 37: Q4
	Slide 38: Q5

