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Why Build BigTable?

• Need highly available, scalable structured data storage

• Web crawler: url, content, anchors, page rank

• Per-user data: account info, preferences, recent queries

• Geography: roads, satellite image data, user annotations

• Google’s workloads

• Petabytes of data across thousands of servers

• Billions of URLs with many versions per page (~20K/version)

• Hundreds of millions of users

• Thousands of queries per second

• 100TB+ satellite image data
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Why Not Use Commercial DB?

• Scale is too large for most commercial databases

• Even if it weren’t, cost would be very high

• Building internally means system can be applied across many 
applications with low incremental cost

• Low-level storage optimizations improve performance

• Much harder to do when running on top of a database layer
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What is BigTable?

• A sparse, distributed, multi-level sorted map:

(row:string, column:string, time:int64) → cell content

column consists of 
family:qualifier
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Column Families

• Column family is a group of column keys

• Column format is family:qualifier

• Family specified on creation, like traditional column in DBs

• New qualifiers can be created anytime

• Each column family can be 
compressed and stored separately

anchor contents language

ca.mylook

com.cnn.www cnnsi.com, 𝑡4: CNN
cnnsi.com, 𝑡2: CNN
mylook.ca, 𝑡1: CNN.com

𝑡6: <html>…
𝑡5: <html>…
𝑡3: <html>…

EN

com.cnn.www/ca

com.cnnsi.com

so
rt
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o
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s

row keys column families

You can think of each
(row, family) as a KV store: 

(qualifier, time) -> value
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Timestamps

• Each cell can contain multiple versions of same data

• Version indexed by a 64-bit timestamp

• Real time or assigned by client

• Per-column-family settings for garbage collection

• Keep only latest n versions

• Or keep only versions written since time t

• Retrieve most recent version if no version specified

• If specified, return version where timestamp ≤ requested time
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BigTable API

• Tables and column families

• create, delete, update, control rights

• Rows

• create, delete

• atomic per-row read and write, read-modify-write

• Iterate over row ranges

• Multi-row access

• No transactions across rows

• Support batching writes across rows

• Client-provided server-side scripts for transformation, 
filtering, summarization, etc.



88

BigTable Goals

• Use a cluster of machines to provide a scalable, shared-
nothing database

• Persistent and fault-tolerant

• Scalable

• Support thousands of servers

• Terabytes of in-memory data, petabyte of disk-based data

• Millions of reads/writes per second, efficient scans

• Self-managing

• Servers can be added/removed dynamically

• Servers adjust to load imbalance
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Key Design Ideas 

• Goal: use a cluster of machines to provide a scalable, 
shared-nothing database

• Single master server

• Performs database schema operation

• Create table, column families, etc.

• Uses a coordination server (Chubby lock server)

• For leader election, tablet servers, storing schema metadata, etc.

• Dynamically partitions tables across data servers

• Migrates table partitions (tablets) for load balancing

• Avoids performing any data operations

• Data (Tablet) servers …
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Key Design Ideas 

• Goal: use a cluster of machines to provide a scalable, 
shared-nothing database

• Master server …

• Data (Tablet) servers

• Serve data, i.e., table rows

• Row format is flexible (unbounded number of columns)

• Provide low latency access by using write-optimized data store

• Use GFS for storage and replication

• Co-locate with GFS servers for locality
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Partitioning Tables: Tablets

• Master partitions tables dynamically by ranges of 
contiguous rows into tablets, typically 100-200MB size

• A tablet is a unit of distribution and load balancing

• Each tablet served by a single tablet server

• Users select keys to control placement of related rows

• Nearby rows will usually be served by same server

Tablet 1

Tablet 2

Tablet 3

anchor contents language

ca.mylook

com.cnn.www cnnsi.com, 𝑡4: CNN
cnnsi.com, 𝑡2: CNN
mylook.ca, 𝑡1: CNN.com

𝑡6: <html>…
𝑡5: <html>…
𝑡3: <html>…

EN

com.cnn.www/ca

com.cnnsi.com
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Big Table Architecture
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BigTable Storage

• Use Google file system (GFS) to store log and data files

• SSTable file format (discussed later)

• Use Chubby distributed lock service for coordination

• Store bootstrap location of Bigtable data

• Store schema metadata (e.g., column families for each table)

• Store access control lists

• Helps ensure at most one active master exists

• Helps keep track of live tablet servers
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BigTable Implementation

• Library linked with every client

• Master

• Assigns tablets to tablet servers

• Handles adding, deleting and merging of tablets

• Handles addition and removal of tablet servers in the system

• Tablet server

• Each tablet server typically serves 10-1000 tablets

• Tablet servers handle read and writes and splitting of tablets

• Clients access data from tablet servers directly
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Locating Tablets

• Client needs to find tablet whose row range covers the 
target rows in a query

• Since tablets may be loaded on any tablet server and 
may be migrated, how do clients find tablets?

• One option would be to store tablet row-range to tablet 
server mapping at the BigTable master

• Central server would become bottleneck in large system

• Instead, BigTable uses a special metadata table 
containing tablet location information

• Metadata table is stored using BigTable itself
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Metadata Table for Locating Tablets

• metadata table helps locate (up to 234) user tables

• Each metadata table row locates one tablet

• Stores the (GFS) file locations that store a tablet

• Stores current tablet server serving the tablet

• Row size: 1KB for each 100-200MB tablet

• Clients look up a row by traversing 
3-level B+-tree type hierarchy

• With prefetching+caching, most 
client operations directly access 
user tablet servers

Metadata table stored on tablet servers,
lookup does not require accessing master
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Assigning Tablets to Tablet Servers

• Master keeps track of:

• Current assignment to tablets to tablet servers

• Unassigned tablets

• When a master starts up, it

• Acquires a master lock in Chubby

• Acquires list of live tablet servers from Chubby

• Gets list of tablets served by asking each tablet server

• These are assigned tablets

• Scans the master table to find all tablets

• Unassigned tablets = all tablets - assigned tablets

• Assigns the unassigned tablets to tablet servers
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Tablet Storage Layout

• The tablet data and logs are stored in GFS files

• How should the data be stored in the GFS files?

• Problem

• GFS supports fast file appends, but not overwrites

• GFS supports large file reads and writes

• However, modern web applications require support for both

• Fast indexed small reads, scans (search rows)

• High-throughput updates (insert rows)
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Storage Layout Options

• A log appends data, so is a good fit for GFS

• Need a structure that improves search performance on 
logs, without sacrificing much on insert?

Sorted Array Tree, e.g., B+-tree Log

Search O(log(n)) O(log(n)) O(n), very slow since a row may 
be located anywhere in the log

Insert O(n), very slow since much of the 
array may need to be rewritten

O(log(n)) O(1)
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Log-Structured Merge (LSM) Trees

Performance:

insert: O(1)

search: O(𝑙𝑜𝑔2(n))

non-overlapping 
key ranges

Log

write op
• Uses logging + sorted structure

• Write: All data (key, value) is 
initially written to an in-memory 
sorted table called memtable

• Flush: memtable is periodically 
written sequentially to an on-
disk sorted, immutable file 
called sstable (L0 level)

• Compaction: L0 sstables are 
periodically merged into sorted 
L1 sstables using immutable ops
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Immutable Structures

• Only memtable allows reads and writes

• All SSTables are immutable

• Contain versioned (timestamped) data

• Allows asynchronous deletes

• A delete is a new version (tombstone)

• Previous versions deleted asynchronously during compaction

• Mitigates need for locking

• Since data is not written in place
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SSTable

• Immutable, sorted file of key-value pairs (both strings)

• key is (row, column, timestamp)

• Contains blocks of data and an index 

• Index maps key range to block

• Index loaded into memory when SSTable is opened

• Key lookup requires single disk seek, per SSTable

• Read block into memory (slow)

• Look up key using binary search within block (fast)

Index

64K 
block

64K 
block

64K 
block

SSTable
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Putting Everything Together

• Clients can group one or more column families in a 
table, each group in a tablet has its own SSTables

• All SSTables of a tablet served by same tablet server

anchor

ca.mylook

com.cnn.www cnnsi.com, 𝑡4: CNN
cnnsi.com, 𝑡2: CNN
mylook.ca, 𝑡1: CNN.com

com.cnn.www/ca

com.cnnsi.com

contents language

ca.mylook

com.cnn.www 𝑡6: <html>…
𝑡5: <html>…
𝑡3: <html>…

EN

com.cnn.www/ca

com.cnnsi.com

T1

T2

T3

column group column group
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Optimizing Reads: Caching

• Cache reads at tablet servers with two-level caching

• Scan cache

• Cache key-value pairs from SSTable

• Temporal locality

• Block cache

• SSTable blocks read from GFS

• Spatial locality
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Optimizing Reads: Bloom Filters

• Reads need to read from multiple SSTables that make 
up table

• Each SSTable stores a bloom filter

• Bloom filter is a space efficient data structure that 
returns true when the (key, value) pair exists in the 
SSTable (but may return false positives)

• Helps reduce disk accesses when the SSTable doesn’t 
have matching key, value pair
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Optimizing Writes: Single Commit 
Log per Tablet Server

• Use one log per tablet server, 
not one per tablet

• Reduces the number of files written, 
improves seek locality, 
reduces overhead, etc. 

• Different files would mean 
writes to different locations on disk

• Complicates recovery after table server fails, 
since tablets may be loaded on many live tablet servers

• Few log entries associated with any one tablet in the log

• Run a parallel sort by key, then log entries for each tablet are 
close together

Log

write op
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Performance

• Random reads are much slower than all other operations

• Sequential reads/writes, random writes, perform better, are 
comparable

• Random reads from memory are much faster

• Scans are even faster



2828

Bigtable: Pros, Cons

• Pros

• Can handle massive data and massive objects scalably

• Supports low-latency access for small data sizes

• Supports tables with thousands of columns efficiently

• Allows applications to control data locality

• Cons

• Weak consistency model (row-level atomic updates)

• No table-wide integrity constraints

• However, sufficient for many applications

• Writing large objects (e.g., videos) causes much write amplification

28
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Some Lessons Learned

• Many types of failure possible, not only fail-stop

• Memory and network corruption, large clock skew, 
hung machines, bugs in other systems, 
extended and asymmetric network partitions, 
planned and unplanned hardware maintenance

• Big systems need constant systems-level monitoring

• Delay adding new features until needed

• E.g., Initially planned for multi-row transaction APIs
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Conclusions

• Bigtable is a highly available and scalable database

• Easy to scale by adding tablet servers to the system

• Separating storage from serving data simplifies design, fault 
tolerance, self management, etc.

• If you are Google

• Significant advantages of building own storage system

• Data model applicable to many of their applications

• Very influential

• Apache Hbase based on BigTable design

• Apache Cassandra offers BigTable data model
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Discussion
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Q1

• Bigtable is called a NoSQL database

• What are the differences/tradeoffs between a NoSQL 
database and a traditional database?
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Q2

• What are the most significant differences between GFS 
and Bigtable in terms of workloads?
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Q3

• What are the most significant differences between GFS 
and Bigtable in terms of system architecture?
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Q4

• How is fault tolerance provided in Bigtable? How does it 
compare with fault tolerance in GFS?



3636

Q5

• BigTable ensures atomic reads/writes at row 
granularity. Why is this consistency guarantee relatively 
easy to implement in BigTable?
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