
11

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

ECE1724

BigTable: A Distributed Storage 
System for Structured Data

Authors: Fay Chang, Jeffrey Dean, Sanjay Ghemawat, 
Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, 

Tushar Chandra, Andrew Fikes, Robert E. Gruber

Many slides adapted from Ion Stoica, Berkeley



22

Why Build BigTable?

• Need highly available, scalable structured data storage

• Web crawler: url, content, anchors, page rank

• Per-user data: account info, preferences, recent queries

• Geography: roads, satellite image data, user annotations

• Google’s workloads

• Petabytes of data across thousands of servers

• Billions of URLs with many versions per page (~20K/version)

• Hundreds of millions of users

• Thousands of queries per second

• 100TB+ satellite image data



33

Why Not Use Commercial DB?

• Scale is too large for most commercial databases

• Even if it weren’t, cost would be very high

• Building internally means system can be applied across many 
applications with low incremental cost

• Low-level storage optimizations improve performance

• Much harder to do when running on top of a database layer



44

What is BigTable?

• A sparse, distributed, multi-level sorted map:

(row:string, column:string, time:int64) → cell content

column consists of 
family:qualifier



55

Column Families

• Column family is a group of column keys

• Column format is family:qualifier

• Family specified on creation, like traditional column in DBs

• New qualifiers can be created anytime

• Each column family can be 
compressed and stored separately

anchor contents language

ca.mylook

com.cnn.www cnnsi.com, 𝑡4: CNN
cnnsi.com, 𝑡2: CNN
mylook.ca, 𝑡1: CNN.com

𝑡6: <html>…
𝑡5: <html>…
𝑡3: <html>…

EN

com.cnn.www/ca

com.cnnsi.com

so
rt

ed
 r

o
w

s

row keys column families

You can think of each
(row, family) as a KV store: 

(qualifier, time) -> value



66

Timestamps

• Each cell can contain multiple versions of same data

• Version indexed by a 64-bit timestamp

• Real time or assigned by client

• Per-column-family settings for garbage collection

• Keep only latest n versions

• Or keep only versions written since time t

• Retrieve most recent version if no version specified

• If specified, return version where timestamp ≤ requested time



77

BigTable API

• Tables and column families

• create, delete, update, control rights

• Rows

• create, delete

• atomic per-row read and write, read-modify-write

• Iterate over row ranges

• Multi-row access

• No transactions across rows

• Support batching writes across rows

• Client-provided server-side scripts for transformation, 
filtering, summarization, etc.



88

BigTable Goals

• Use a cluster of machines to provide a scalable, shared-
nothing database

• Persistent and fault-tolerant

• Scalable

• Support thousands of servers

• Terabytes of in-memory data, petabyte of disk-based data

• Millions of reads/writes per second, efficient scans

• Self-managing

• Servers can be added/removed dynamically

• Servers adjust to load imbalance



99

Key Design Ideas 

• Goal: use a cluster of machines to provide a scalable, 
shared-nothing database

• Single master server

• Performs database schema operation

• Create table, column families, etc.

• Uses a coordination server (Chubby lock server)

• For leader election, tablet servers, storing schema metadata, etc.

• Dynamically partitions tables across data servers

• Migrates table partitions (tablets) for load balancing

• Avoids performing any data operations

• Data (Tablet) servers …



1010

Key Design Ideas 

• Goal: use a cluster of machines to provide a scalable, 
shared-nothing database

• Master server …

• Data (Tablet) servers

• Serve data, i.e., table rows

• Row format is flexible (unbounded number of columns)

• Provide low latency access by using write-optimized data store

• Use GFS for storage and replication

• Co-locate with GFS servers for locality



1111

Partitioning Tables: Tablets

• Master partitions tables dynamically by ranges of 
contiguous rows into tablets, typically 100-200MB size

• A tablet is a unit of distribution and load balancing

• Each tablet served by a single tablet server

• Users select keys to control placement of related rows

• Nearby rows will usually be served by same server

Tablet 1

Tablet 2

Tablet 3

anchor contents language

ca.mylook

com.cnn.www cnnsi.com, 𝑡4: CNN
cnnsi.com, 𝑡2: CNN
mylook.ca, 𝑡1: CNN.com

𝑡6: <html>…
𝑡5: <html>…
𝑡3: <html>…

EN

com.cnn.www/ca

com.cnnsi.com



1212

Big Table Architecture



1313

BigTable Storage

• Use Google file system (GFS) to store log and data files

• SSTable file format (discussed later)

• Use Chubby distributed lock service for coordination

• Store bootstrap location of Bigtable data

• Store schema metadata (e.g., column families for each table)

• Store access control lists

• Helps ensure at most one active master exists

• Helps keep track of live tablet servers



1414

BigTable Implementation

• Library linked with every client

• Master

• Assigns tablets to tablet servers

• Handles adding, deleting and merging of tablets

• Handles addition and removal of tablet servers in the system

• Tablet server

• Each tablet server typically serves 10-1000 tablets

• Tablet servers handle read and writes and splitting of tablets

• Clients access data from tablet servers directly



1515

Locating Tablets

• Client needs to find tablet whose row range covers the 
target rows in a query

• Since tablets may be loaded on any tablet server and 
may be migrated, how do clients find tablets?

• One option would be to store tablet row-range to tablet 
server mapping at the BigTable master

• Central server would become bottleneck in large system

• Instead, BigTable uses a special metadata table 
containing tablet location information

• Metadata table is stored using BigTable itself



1616

Metadata Table for Locating Tablets

• metadata table helps locate (up to 234) user tables

• Each metadata table row locates one tablet

• Stores the (GFS) file locations that store a tablet

• Stores current tablet server serving the tablet

• Row size: 1KB for each 100-200MB tablet

• Clients look up a row by traversing 
3-level B+-tree type hierarchy

• With prefetching+caching, most 
client operations directly access 
user tablet servers

Metadata table stored on tablet servers,
lookup does not require accessing master



1717

Assigning Tablets to Tablet Servers

• Master keeps track of:

• Current assignment to tablets to tablet servers

• Unassigned tablets

• When a master starts up, it

• Acquires a master lock in Chubby

• Acquires list of live tablet servers from Chubby

• Gets list of tablets served by asking each tablet server

• These are assigned tablets

• Scans the master table to find all tablets

• Unassigned tablets = all tablets - assigned tablets

• Assigns the unassigned tablets to tablet servers



1818

Tablet Storage Layout

• The tablet data and logs are stored in GFS files

• How should the data be stored in the GFS files?

• Problem

• GFS supports fast file appends, but not overwrites

• GFS supports large file reads and writes

• However, modern web applications require support for both

• Fast indexed small reads, scans (search rows)

• High-throughput updates (insert rows)



1919

Storage Layout Options

• A log appends data, so is a good fit for GFS

• Need a structure that improves search performance on 
logs, without sacrificing much on insert?

Sorted Array Tree, e.g., B+-tree Log

Search O(log(n)) O(log(n)) O(n), very slow since a row may 
be located anywhere in the log

Insert O(n), very slow since much of the 
array may need to be rewritten

O(log(n)) O(1)



2020

Log-Structured Merge (LSM) Trees

Performance:

insert: O(1)

search: O(𝑙𝑜𝑔2(n))

non-overlapping 
key ranges

Log

write op
• Uses logging + sorted structure

• Write: All data (key, value) is 
initially written to an in-memory 
sorted table called memtable

• Flush: memtable is periodically 
written sequentially to an on-
disk sorted, immutable file 
called sstable (L0 level)

• Compaction: L0 sstables are 
periodically merged into sorted 
L1 sstables using immutable ops



2121

Immutable Structures

• Only memtable allows reads and writes

• All SSTables are immutable

• Contain versioned (timestamped) data

• Allows asynchronous deletes

• A delete is a new version (tombstone)

• Previous versions deleted asynchronously during compaction

• Mitigates need for locking

• Since data is not written in place



2222

SSTable

• Immutable, sorted file of key-value pairs (both strings)

• key is (row, column, timestamp)

• Contains blocks of data and an index 

• Index maps key range to block

• Index loaded into memory when SSTable is opened

• Key lookup requires single disk seek, per SSTable

• Read block into memory (slow)

• Look up key using binary search within block (fast)

Index

64K 
block

64K 
block

64K 
block

SSTable



2323

Putting Everything Together

• Clients can group one or more column families in a 
table, each group in a tablet has its own SSTables

• All SSTables of a tablet served by same tablet server

anchor

ca.mylook

com.cnn.www cnnsi.com, 𝑡4: CNN
cnnsi.com, 𝑡2: CNN
mylook.ca, 𝑡1: CNN.com

com.cnn.www/ca

com.cnnsi.com

contents language

ca.mylook

com.cnn.www 𝑡6: <html>…
𝑡5: <html>…
𝑡3: <html>…

EN

com.cnn.www/ca

com.cnnsi.com

T1

T2

T3

column group column group



2424

Optimizing Reads: Caching

• Cache reads at tablet servers with two-level caching

• Scan cache

• Cache key-value pairs from SSTable

• Temporal locality

• Block cache

• SSTable blocks read from GFS

• Spatial locality



2525

Optimizing Reads: Bloom Filters

• Reads need to read from multiple SSTables that make 
up table

• Each SSTable stores a bloom filter

• Bloom filter is a space efficient data structure that 
returns true when the (key, value) pair exists in the 
SSTable (but may return false positives)

• Helps reduce disk accesses when the SSTable doesn’t 
have matching key, value pair



2626

Optimizing Writes: Single Commit 
Log per Tablet Server

• Use one log per tablet server, 
not one per tablet

• Reduces the number of files written, 
improves seek locality, 
reduces overhead, etc. 

• Different files would mean 
writes to different locations on disk

• Complicates recovery after table server fails, 
since tablets may be loaded on many live tablet servers

• Few log entries associated with any one tablet in the log

• Run a parallel sort by key, then log entries for each tablet are 
close together

Log

write op



2727

Performance

• Random reads are much slower than all other operations

• Sequential reads/writes, random writes, perform better, are 
comparable

• Random reads from memory are much faster

• Scans are even faster



2828

Bigtable: Pros, Cons

• Pros

• Can handle massive data and massive objects scalably

• Supports low-latency access for small data sizes

• Supports tables with thousands of columns efficiently

• Allows applications to control data locality

• Cons

• Weak consistency model (row-level atomic updates)

• No table-wide integrity constraints

• However, sufficient for many applications

• Writing large objects (e.g., videos) causes much write amplification

28



2929

Some Lessons Learned

• Many types of failure possible, not only fail-stop

• Memory and network corruption, large clock skew, 
hung machines, bugs in other systems, 
extended and asymmetric network partitions, 
planned and unplanned hardware maintenance

• Big systems need constant systems-level monitoring

• Delay adding new features until needed

• E.g., Initially planned for multi-row transaction APIs



3030

Conclusions

• Bigtable is a highly available and scalable database

• Easy to scale by adding tablet servers to the system

• Separating storage from serving data simplifies design, fault 
tolerance, self management, etc.

• If you are Google

• Significant advantages of building own storage system

• Data model applicable to many of their applications

• Very influential

• Apache Hbase based on BigTable design

• Apache Cassandra offers BigTable data model



3131

Discussion



3232

Q1

• Bigtable is called a NoSQL database

• What are the differences/tradeoffs between a NoSQL 
database and a traditional database?



3333

Q2

• What are the most significant differences between GFS 
and Bigtable in terms of workloads?



3434

Q3

• What are the most significant differences between GFS 
and Bigtable in terms of system architecture?



3535

Q4

• How is fault tolerance provided in Bigtable? How does it 
compare with fault tolerance in GFS?



3636

Q5

• BigTable ensures atomic reads/writes at row 
granularity. Why is this consistency guarantee relatively 
easy to implement in BigTable?


	Slide 1: BigTable: A Distributed Storage System for Structured Data
	Slide 2: Why Build BigTable?
	Slide 3: Why Not Use Commercial DB?
	Slide 4: What is BigTable?
	Slide 5: Column Families
	Slide 6: Timestamps
	Slide 7: BigTable API
	Slide 8: BigTable Goals
	Slide 9: Key Design Ideas 
	Slide 10: Key Design Ideas 
	Slide 11: Partitioning Tables: Tablets
	Slide 12: Big Table Architecture
	Slide 13: BigTable Storage
	Slide 14: BigTable Implementation
	Slide 15: Locating Tablets
	Slide 16: Metadata Table for Locating Tablets
	Slide 17: Assigning Tablets to Tablet Servers
	Slide 18: Tablet Storage Layout
	Slide 19: Storage Layout Options
	Slide 20: Log-Structured Merge (LSM) Trees
	Slide 21: Immutable Structures
	Slide 22: SSTable
	Slide 23: Putting Everything Together
	Slide 24: Optimizing Reads: Caching
	Slide 25: Optimizing Reads: Bloom Filters
	Slide 26: Optimizing Writes: Single Commit Log per Tablet Server
	Slide 27: Performance
	Slide 28: Bigtable: Pros, Cons
	Slide 29: Some Lessons Learned
	Slide 30: Conclusions
	Slide 31: Discussion
	Slide 32: Q1
	Slide 33: Q2
	Slide 34: Q3
	Slide 35: Q4
	Slide 36: Q5

