
11

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

ECE1724

Google File System (GFS)

Authors: Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung

22

Why Build GFS?

• Need a scalable, distributed file system that targets
Google’s workloads

• Need to support much bigger (GB+) files

• On 100/1000s of commodity servers that fail regularly

• Workloads process bulk multi-GB/TB datasets

• High throughput more important than low latency accesses

• Mostly sequential reads

• Read sizes are bimodal, between 1-64K, or larger than 512KB

• Most writes are file appends

• Multiple clients perform concurrent file appends, e.g., producer-
consumer queues, many-way merge operations, etc.

• Overwrites are practically non-existent

33

GFS Interface

• Google co-designs its applications

• Applications don’t require POSIX compliance

• Weaker consistency for higher throughput is acceptable

• Supports typical file system operations

• E.g., create, delete, open, close, read, and write

• record append: allows multiple concurrent clients to
append data to the same file

• At-least once semantics

• snapshot: create copy of file/directory tree at low cost

• Enables backup, experimentation

• Similar to some modern file systems, e.g., btrfs, zfs

44

Key Design Ideas

• Use a cluster of inexpensive, commodity machines

• Separate metadata and data operations for scalability

• Node failures are common, so need fault tolerance

• Single metadata server

• Simplifies design of overall system

• Serializes metadata operations using a metadata log

• Replicates metadata log for fault tolerance

• Manages data replication

• Data consistency, replica placement, load balancing, etc.

• Avoids performing any data operations

• Data servers …

55

Key Design Ideas

• Use a cluster of inexpensive, commodity machines

• Separate metadata and data operations for scalability

• Node failures are common, so need fault tolerance

• Single metadata server …

• Data servers

• Store replicas of chunks (fixed-size partitions) of files

• Chunk size is relatively large (64MB)

• Allows efficiently accessing large files

• Support file appends efficiently

66

GFS Architecture

Files are divided into

fixed-size 64MB chunks

Each chunk has an

immutable, unique

64-bit chunk handle

chunk is replicated,

GFS client can read chunk from any replica

77

Master

• Maintains file system metadata in memory:

• Chunk namespace, i.e., all chunk handles in the system

• For each chunk: reference count (for copy-on-write snapshots), version
number (for detecting stale chunk replicas)

• File namespace, i.e., all file paths

• For each file path: acl, file->chunk_handle mappings

• This metadata is stored persistently for failure recovery

• All metadata changes are ordered and logged to disk

• Log is replicated to backup master nodes

• Then changes are applied to in-memory structures

• In-memory structures are periodically checkpointed to reduce
recovery time

88

Master

• Manages chunks and their replicas

• Creates new chunks on chunkservers

• Tracks chunk replicas by caching chunk locations, i.e.,
chunkservers on which a chunk is stored

• Makes chunk replica placement decisions

• Ensures that concurrent metadata operations are
performed atomically with per-filepath read-write locks

• To modify /a/b/c,
acquire read locks on /a, /a/b,
write lock on /a/b/c

• This data is not stored persistently

99

Chunkserver

• A chunkserver stores

• Chunks as Linux files on local disks

• Chunk handle is Linux filename

• Checksums for each 64KB block within chunk

• Each chunk is replicated across three chunkservers

• Application may read chunk from any replica

• Chunkservers report chunks they store to master

• Master controls chunk placement but chunkservers serve as
authorities for chunks

1010

Master <-> Chunkserver

• Master periodically communicates with each
chunkserver using HeartBeat messages

• Enables master to:

• Know about chunk locations

• Perform lease management, i.e., maintain primary for a chunk

• Determine stale chunk servers

• Garbage collect orphaned and stale chunks, etc.

1111

Weak Consistency Model

• Definitions:

• consistent: for a file region, all replicas store the same data

• defined: after a write to a file region, the region is consistent
and has the entire write (same as linearizable write)

• Complicated guarantees

• Serial write: defined regions

• Failed write: inconsistent regions

• Concurrent writes within a chunk: defined regions

• Concurrent writes that cross chunks: consistent but not
defined regions

• Record append: defined region, possibly interspersed with
inconsistent regions

1212

Understanding Consistency Model

• Clients perform writes at chunk granularity

• For each chunk, writes are applied to all replicas

• Ensures consistent file regions

• With serial writes, file region has full write

• Ensures defined regions

write(chunk A, A1,

 chunk B, B1) R1

A1

R2

A1

B1

R3

A1

B1

R4

B1

1313

Understanding Consistency Model

• Failed write

• All replicas must respond with success or else a write is
considered failed

• In this case, the region may have different data at the different
replicas, i.e., inconsistent region

• Application needs to handle failure by retrying write

write(chunk A, A1) R1

A1

R2

A1

R3

1414

Understanding Consistency Model

• Concurrent writes within a chunk

• Writes to a chunk are applied in the same order at all
replicas, so writes produce defined regions

write(chunk A, A2)

write(chunk A, A1) R1

A1

A2

R2

A1

A2

R3

A1

A2

1515

Understanding Consistency Model

• Concurrent writes that cross chunks

• Writes to different chunks may be serialized in different
order

• e.g., final state is consistent (A=A2, B=B1), but not defined

write(chunk A, A1,

 chunk B, B1) R1

A1

A2

R2

A1

B2

A2

B1

R3

A1

A2

B2

B1

R4

B2

B1

write(chunk A, A2,

 chunk B, B2)

1616

Understanding Consistency Model

• Record append

• Need to ensure that record append yields a defined
region, i.e., these write operations are linearizable

• Key idea: force append to lie within chunk with padding

• Padding is an inconsistent region

• If record append fails, it creates an inconsistent region

• A retry may lead to duplicate record appends

chunk A chunk B

EOF

Record

Append

chunk A chunk B

EOF

Record

Append

Pad

inconsistent defined

1717

Implementing Consistency Model

• Use lease mechanism to ensure consistency

• Master grants a chunk lease to one of replicas (primary)

• Primary picks a serial order for all mutations to the chunk

• All replicas follow this order when applying mutations

• Global mutation order defined by

• Lease grant order chosen by the master

• Serial numbers assigned by the primary within lease

• If master doesn’t hear from primary, it grant lease to
another replica after lease expires

1818

Chunk Write Implementation

Chooses primary replica,

grants it a lease

1919

Stale Replicas

• What would happen if a replica is stale, i.e., doesn’t
have recent writes, and a write is attempted?

• Assume A1 and A2 do not overlap within Chunk A

• Writing A2 to the three replicas will make them inconsistent

• Reading from R3 will not return the A1 update

write(chunk A, A2) R1

A1

R2

A1

R3

2020

Detecting Stale Replicas with Chunk
Versions

Chooses primary replica, grants it a lease,

increases chunk version number,

stores it persistently,

tells all up-to-date replicas to do the same.

write(chunk A, A2) R1

A1

A2

R2

A1

A2

R3

2121

Master Failures

• Master replicates metadata operation log and
checkpoints to backup masters

• An external service detects master failure and promotes
a backup to primary

• Updates DNS so clients can access new master

• Backup applies operation log to its most recent
checkpoint before starting operation

2222

Chunkserver Failures

• Master uses HeartBeat messages to determine
chunkserver status, enables master to:

• Learn about failed chunkserver

• Switch primary for chunks stored on chunkserver

• Clone chunks that have fewer than 3 replicas to other
chunkservers

2323

Evaluation

• Performance measured on test cluster with:

• 1 master, 2 master backups

• 16 chunkservers (store 3 replicas for each chunk)

• 16 client machines

• Server machines connected to 100 Mbps switch

• Client machines connected to second 100 Mbps switch

• Switches connected with 1 Gbps link

2424

Performance

2525

Conclusions

• Single master can dramatically simplify design

• However, need to carefully design it to ensure it doesn’t
become a CPU, memory, disk, etc., bottleneck

• Decoupling metadata and data operations in file
systems enables optimizing for them separately

• Targeting important use cases (e.g., concurrent
appends) allows focusing on correct abstractions

• Enables scaling with weaker consistency guarantees

• Very influential

• Apache HDFS based on GFS design

2626

GFS: Pros, Cons

• Pros

• Can handle massive data and massive objects scalably

• Works well for large sequential reads, appends

• Simple, robust reliability model

• Cons

• Metadata server can be bottleneck, single point of failure

• However, sharding the namespace or replicating the server is feasible

• Weak consistency guarantees

• Linearizability for single chunk writes (not for cross-chunk writes)

• Stale chunk reads possible

• Duplicate and inconsistent data can be read

• Small reads, overwrites are expensive

2727

Q1

• Traditional file systems use small block sizes, e.g., 4KB,
while GFS uses a large chunk size (64MB). Why does it
use such a large chunk size? What are the tradeoffs?

2828

Q2

• What are the most important differences between GFS
and Zookeeper in terms of functionality?

2929

Q3

• Zookeeper and RAFT ensures linearizable writes using a
quorum-based protocol. How does GFS ensure
linearizable metadata and data operations without
using a similar protocol?

3030

Q4

• When a chunk write fails at any chunkserver, GFS

1. Exposes the failure to the client, and

2. May update the chunk at some chunkservers (inconsistent
region)

• Why is this done? How does this approach compare
with writes to Zookeeper?

3131

Q5

• Why are stale reads possible in GFS? Why does GFS
allow them?

	Slide 1: Google File System (GFS)
	Slide 2: Why Build GFS?
	Slide 3: GFS Interface
	Slide 4: Key Design Ideas
	Slide 5: Key Design Ideas
	Slide 6: GFS Architecture
	Slide 7: Master
	Slide 8: Master
	Slide 9: Chunkserver
	Slide 10: Master <-> Chunkserver
	Slide 11: Weak Consistency Model
	Slide 12: Understanding Consistency Model
	Slide 13: Understanding Consistency Model
	Slide 14: Understanding Consistency Model
	Slide 15: Understanding Consistency Model
	Slide 16: Understanding Consistency Model
	Slide 17: Implementing Consistency Model
	Slide 18: Chunk Write Implementation
	Slide 19: Stale Replicas
	Slide 20: Detecting Stale Replicas with Chunk Versions
	Slide 21: Master Failures
	Slide 22: Chunkserver Failures
	Slide 23: Evaluation
	Slide 24: Performance
	Slide 25: Conclusions
	Slide 26: GFS: Pros, Cons
	Slide 27: Q1
	Slide 28: Q2
	Slide 29: Q3
	Slide 30: Q4
	Slide 31: Q5

