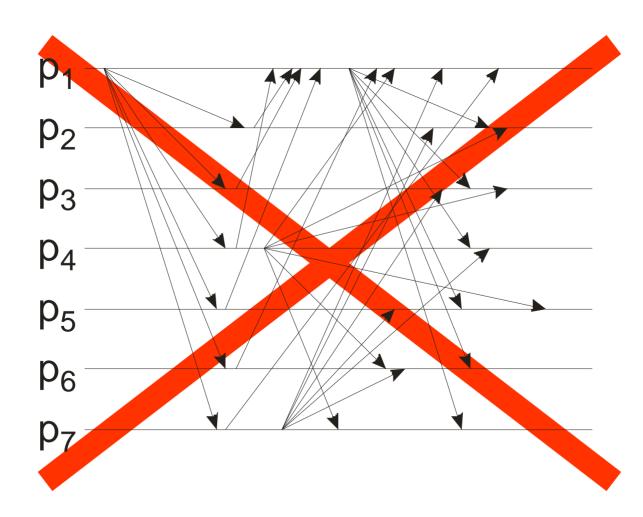
Sinfonia: A New Paradigm For Building Scalable Distributed Systems

Ashvin Goel

Electrical and Computer Engineering University of Toronto

ECE1724

Authors: Marcos k. Aguilera, Arif Merchant, Mehul Shah, Alistair Veitch, Christos Maramanolis


Motivation

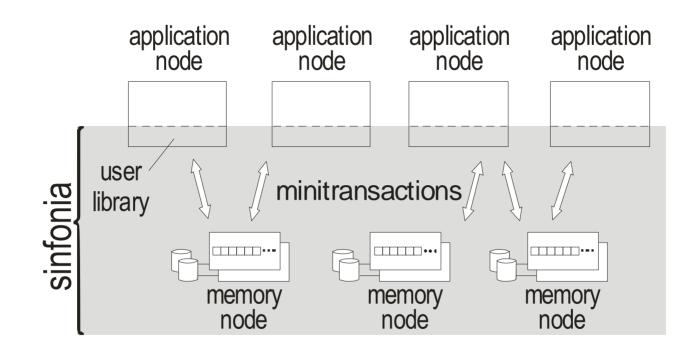
- Corporate data centers are growing quickly
 - Companies building large data centers
 - 10000s servers and more
- Need distributed applications that scale well

Current Distributed Applications Often Involve Complex Protocols

Wouldn't it be Nice to Avoid Such Protocols?

Focus

- Systems within a data center
 - Network latencies usually small and predictable
 - Nodes may crash, sometimes all of them
 - Stable storage may crash too


- Infrastructure applications
 - Applications that support other applications
 - Reliable, fault-tolerant, consistent
 - Examples: cluster file systems, distributed lock managers, group communication services, distributed name services

Sinfonia's Approach

- Developers use Sinfonia, a data sharing service
- Sinfonia stores data in memory nodes
 - Each memory node exports a linear address space
 - No structure (e.g., file, rows, etc.) is imposed
- Key idea: mini-transactions
 - Enables accessing and modifying data atomically
 - Performs entire transaction within the commit protocol
 - Reduces messages, locking times compared to traditional txns
- Transforms problem of distributed application and protocol design into easier problem of fault-tolerant, consistent, shared data structure design

Sinfonia Architecture

- Applications run on application nodes
 - Use a Sinfonia library to access their data
- Application data stored on memory nodes (with disks)
 - Memory node location visible to applications

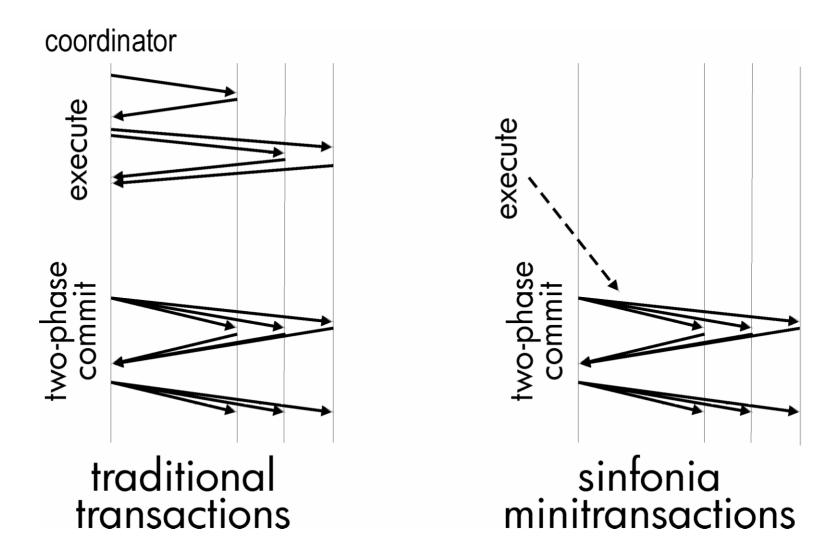
Sinfonia Mini-Transaction

• A limited type of distributed transaction that operates on unstructured data at memory nodes, providing ACID guarantees efficiently

semantics

- read (and return) data indicated by *read items*
- check data indicated by compare items (equality comparison)
- if ALL match then modify data indicated by *write items*

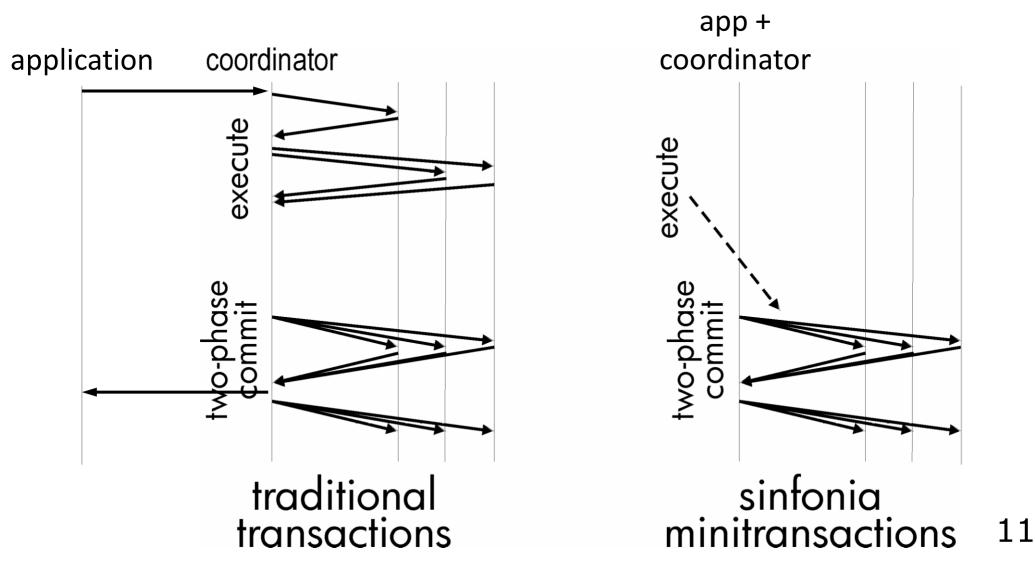
example


t = new Minitransaction; t->cmp(hostX, addrX, len, 1); t->write(hostY, addrY, len, 2); t->write(hostZ, addrZ, len, 2); status = t->exec_and_commit();

Mini-Transaction Requirements

- Two restrictions: 1) read-write sets known before txn execution, 2) all writes conditioned on checks
- Many common operations meet these requirements
 - atomic swap operation
 - atomic read of many data items
 - try to acquire a lease
 - try to acquire multiple leases atomically
 - change data if lease is held
 - validate cache then change data, e.g., similar to OCC
- Serve as building blocks for higher-level applications

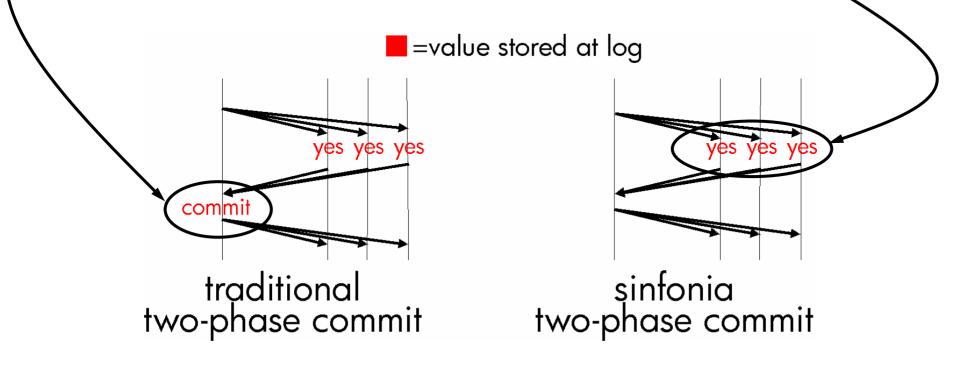
Efficiency of Mini-Transactions


• Piggyback txn execution onto two-phase commit

10

Efficiency of Mini-Transactions

• Run coordinator at application node



What if Coordinator Crashes?

- Application node is outside of Sinfonia control
 - Application node, coordinator may crash and not recover
- Traditional two-phase commit can block in this case
 - Why?
- Solution: new two-phase commit protocol that avoids blocking on coordinator failure

Sinfonia's Two-Phase Commit

- Traditional two-phase commit: transaction commits iff
 coordinator logs "commit" decision
- Sinfonia two-phase commit: transaction commits iff all participant memory nodes log "yes" vote

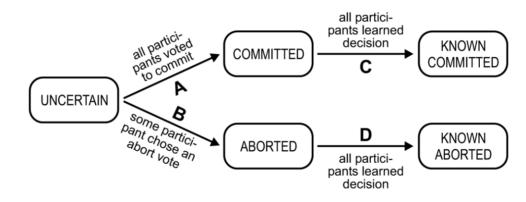
Commit Protocol – Phase 1

- Phase 1 (prepare)
 - Coordinator (on app node) generates unique transaction id, sends mini-transaction to the participants
 - Each participant
 - Tries to acquire read and write locks for all required addresses (at word granularity + range locking)
 - If it acquires all locks, it performs reads, comparisons
 - If all comparisons succeed, it logs writes in a (buffered) redo log
 - Replies to coordinator with commit/abort vote

Commit Protocol – Phase 2

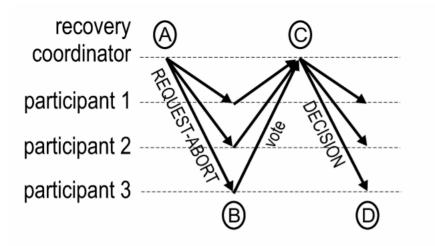
- Phase 2 (commit)
 - Coordinator tells participants to commit if and only if all participants voted to commit
 - Each participant
 - If committing, applies logged write items to their in-memory structure
 - Releases all locks

Fault Tolerance in Sinfonia


- Disk images
 - Keeps a copy of data in memory node for crash recovey
 - Updated asynchronously
 - Use log replay for recovery
- Memory node replication
 - Memory nodes can be replicated for better availability
 - Currently, Sinfonia uses primary-backup replication
- Transactional backups
 - Capture a transactionally consistent image of all nodes
 - Image contains all updates up to some transaction, and
 - No updates from later transactions

Recovery From Participant Crashes

- Sinfonia blocks any mini-transaction commits that access data on a crashed participant, why?
- On recovery, participant loads disk image, replay redo log to reconstruct memory state
- If participant lose its stable storage, it must be recovered from a transactional backup


Challenges With Coordinator Crashes

- When a coordinator crashes, participant may be holding locks and have logged updates for transactions that are not known to be aborted or committed (uncertain)
- Recovery and garbage collection are complicated since commit information is distributed among participants
 - Recovery needs to gather votes from participants
 - Garbage collection of logs at a participant requires knowing whether the participant's votes are known to all participants

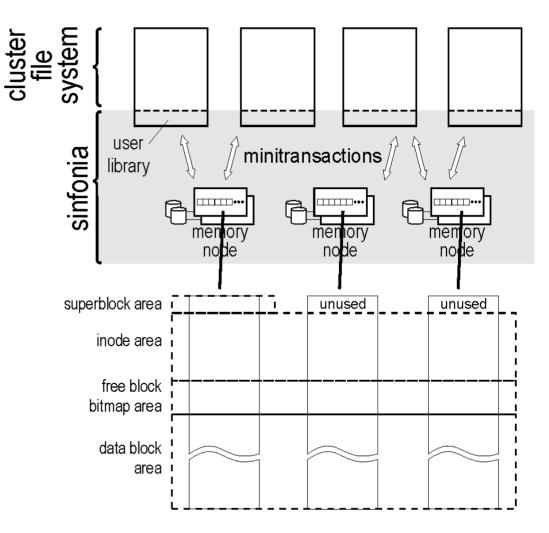
Recovery From Coordinator Crashes

- Key idea: use a separate recovery coordinator to force B transition if A hasn't occurred already
- Recovery coordinator periodically probes memory node logs for uncertain transactions
 - Forces participants to abort txn unless they have voted already
 - Decides to commit transaction if all participants voted "yes"

(A) recovery triggered

(B) if not yet chosen vote, choose abort vote otherwise keep previous vote

C choose decision


(D) if committing then apply *write items* release locks held for minitransaction

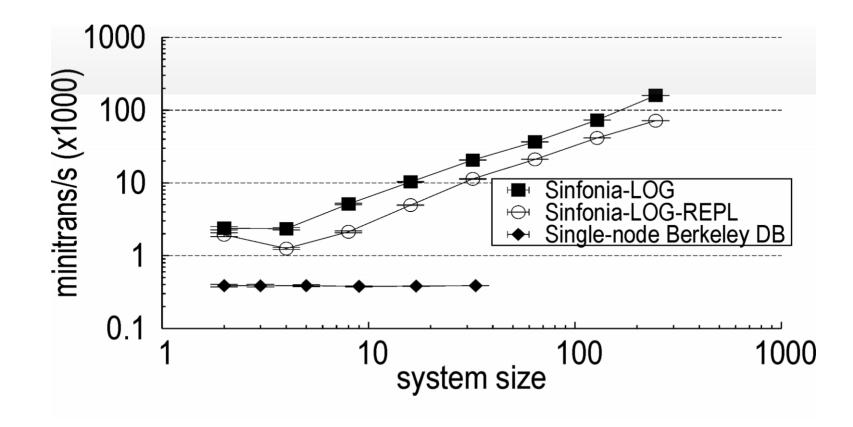
Sinfonia Applications

- sinfoniaFS: cluster file system
 - applications share files, files stored in Sinfonia
 - fault tolerant
 - scalable: performance improves with more memory nodes
- sinfoniaGCS: group communication service
 - "chat room" for distributed applications
 - nodes can join/leave room, notifications sent for joins/leaves
 - nodes broadcast messages to room, messages totally ordered

sinfoniaFS

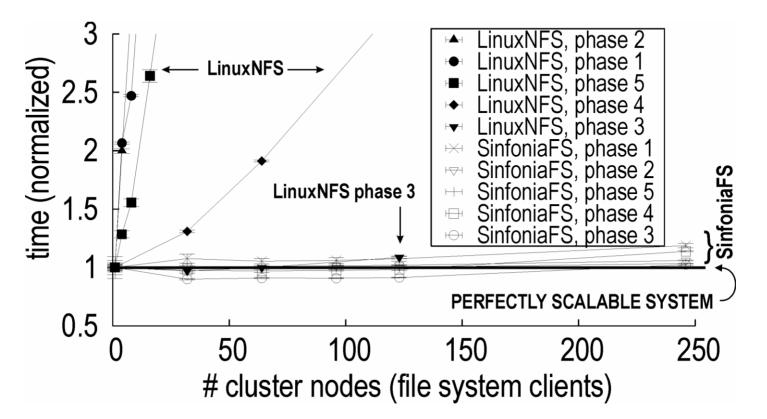
- Exports NFS interface
- Each NFS operation is one minitransaction
- General template:
 - validate cache (cmp items)
 - modify data (write items)

sinfoniaGCS

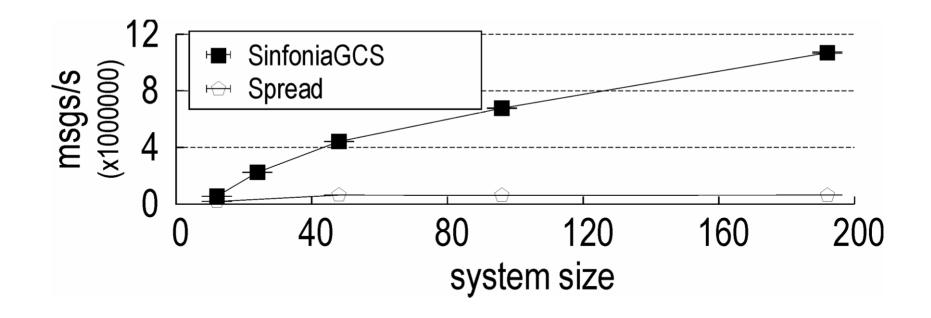

group comm service Each member has private queue in sinfonia user // minitransactions // sinfonia library broadcast msg: memory meniorv mem copy msg to queue 6de node nobe **Private operation** queue of member 4 thread msg in batches in global order 1 • 2 🔎 queue of member 2 queue of member 3 queue of member 1 ?) 3 • compute global tail, mini-• ? /• transaction updates the tail's next pointer to point to the messages

Evaluation

- Sinfonia scalability
- sinfoniaFS scalability
- sinfoniaGCS scalability


Sinfonia Scalability

- Each mini-transaction accesses two memory nodes
- Usually within 85% of ideal scalability



sinfoniaFS Scalability

- sinfoniaFS performs comparably to LinuxFS with one memory node
- sinfoniaFS scales much better than LinuxNFS with increasing number of clients

sinfoniaGCS Performance

Sinfonia Ease of Use

- Advantages
 - Transactions: relief from concurrency, failure issues
 - No distributed protocols, no timeout worries
 - Correctness verified by checking minitransactions

- Drawbacks
 - Address space is low-level abstraction
 - Need to lay out data structures manually
 - Need to find efficient layout to avoid contention
 - A data structure design problem

Conclusions

- Sinfonia: a scalable data sharing service for building distributed applications
- Exposes unstructured memory address spaces
- Enables efficient mini-transaction mechanism that
 - Hides the complexities of concurrency and failures
 - While providing good performance and scalability

Discussion

• Why is this transaction not directly supported in Sinfonia?

```
transfer(A, B):
begin_tx
a = read(A)
if a < 10 then
    abort_tx
else
    write(A, a-10)
    b = read(B)
    write(B, b+10)
    commit_tx
```


• Can you implement a Sinfonia function that implements the transfer(A, B) transaction?

```
transfer(A, B):
begin_tx
a = read(A)
if a < 10 then
    abort_tx
else
    write(A, a-10)
    b = read(B)
    write(B, b+10)
    commit_tx
```

```
Mini-Transaction API:
t = new Minitransaction;
t->read(host, data_addr, data_len, &data);
t->cmp(host, data_addr, data_len, data);
t->write(host, data_addr, data_len, data);
t->exec_commit();
```


• Will Sinfonia's transaction protocol always perform better than traditional transactions and two-phase commit?

- Compare consensus and atomic commit in terms of
 - The fundamental difference between them
 - How and why are they used?
 - Liveness guarantees under failures?

 What are the most significant similarities and differences between the BigTable database and Sinfonia?