
1

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

ECE1724

Sinfonia: A New Paradigm For
Building Scalable Distributed Systems

Authors: Marcos k. Aguilera, Arif Merchant, Mehul Shah,
Alistair Veitch, Christos Maramanolis

2

Motivation

• Corporate data centers are growing quickly

• Companies building large data centers

• 10000s servers and more

• Need distributed applications that scale well

3

p1

p2

p3

p4

p5

p6

p7
timeline

of messages

Current Distributed Applications
Often Involve Complex Protocols

4

Wouldn't it be Nice to Avoid Such
Protocols?

p1

p2

p3

p4

p5

p6

p7

5

Focus

• Systems within a data center

• Network latencies usually small and predictable

• Nodes may crash, sometimes all of them

• Stable storage may crash too

• Infrastructure applications

• Applications that support other applications

• Reliable, fault-tolerant, consistent

• Examples: cluster file systems, distributed lock managers,
group communication services, distributed name services

6

Sinfonia’s Approach

• Developers use Sinfonia, a data sharing service

• Sinfonia stores data in memory nodes

• Each memory node exports a linear address space

• No structure (e.g., file, rows, etc.) is imposed

• Key idea: mini-transactions

• Enables accessing and modifying data atomically

• Performs entire transaction within the commit protocol

• Reduces messages, locking times compared to traditional txns

• Transforms problem of distributed application and
protocol design into easier problem of fault-tolerant,
consistent, shared data structure design

7

Sinfonia Architecture

• Applications run on application nodes

• Use a Sinfonia library to access their data

• Application data stored on memory nodes (with disks)

• Memory node location visible to applications

application
node

application
node

application
node

application
node

minitransactions

si
nf

on
ia

user
library

memory
node

memory
node

memory
node

8

Sinfonia Mini-Transaction

• A limited type of distributed transaction that operates
on unstructured data at memory nodes, providing ACID
guarantees efficiently

transaction executes+commits

constant
value

• read (and return) data indicated by read items
• check data indicated by

compare items (equality comparison)
• if ALL match then

 modify data indicated by write items

9

Mini-Transaction Requirements

• Two restrictions: 1) read-write sets known before txn
execution, 2) all writes conditioned on checks

• Many common operations meet these requirements

• atomic swap operation

• atomic read of many data items

• try to acquire a lease

• try to acquire multiple leases atomically

• change data if lease is held

• validate cache then change data, e.g., similar to OCC

• Serve as building blocks for higher-level applications

10

Efficiency of Mini-Transactions

• Piggyback txn execution onto two-phase commit

11

Efficiency of Mini-Transactions

• Run coordinator at application node

application
app +

coordinator

12

What if Coordinator Crashes?

• Application node is outside of Sinfonia control

• Application node, coordinator may crash and not recover

• Traditional two-phase commit can block in this case

• Why?

• Solution: new two-phase commit protocol that avoids
blocking on coordinator failure

13

Sinfonia’s Two-Phase Commit

• Traditional two-phase commit: transaction commits iff
coordinator logs “commit” decision

• Sinfonia two-phase commit: transaction commits iff all
participant memory nodes log “yes” vote

14

Commit Protocol – Phase 1

• Phase 1 (prepare)

• Coordinator (on app node) generates unique transaction id,
sends mini-transaction to the participants

• Each participant

• Tries to acquire read and write locks for all required addresses
(at word granularity + range locking)

• If it acquires all locks, it performs reads, comparisons

• If all comparisons succeed, it logs writes in a (buffered) redo log

• Replies to coordinator with commit/abort vote

15

Commit Protocol – Phase 2

• Phase 2 (commit)

• Coordinator tells participants to commit if and only if all
participants voted to commit

• Each participant

• If committing, applies logged write items to their in-memory structure

• Releases all locks

16

Fault Tolerance in Sinfonia

• Disk images

• Keeps a copy of data in memory node for crash recovey

• Updated asynchronously

• Use log replay for recovery

• Memory node replication

• Memory nodes can be replicated for better availability

• Currently, Sinfonia uses primary-backup replication

• Transactional backups

• Capture a transactionally consistent image of all nodes

• Image contains all updates up to some transaction, and

• No updates from later transactions

17

Recovery From Participant Crashes

• Sinfonia blocks any mini-transaction commits that
access data on a crashed participant, why?

• On recovery, participant loads disk image, replay redo
log to reconstruct memory state

• If participant lose its stable storage, it must be
recovered from a transactional backup

18

Challenges With Coordinator
Crashes

• When a coordinator crashes, participant may be holding
locks and have logged updates for transactions that are
not known to be aborted or committed (uncertain)

• Recovery and garbage collection are complicated since
commit information is distributed among participants

• Recovery needs to gather votes from participants

• Garbage collection of logs at a participant requires knowing
whether the participant’s votes are known to all participants

19

Recovery From Coordinator Crashes

• Key idea: use a separate recovery coordinator to force B
transition if A hasn’t occurred already

• Recovery coordinator periodically probes memory node
logs for uncertain transactions

• Forces participants to abort txn unless they have voted already

• Decides to commit transaction if all participants voted “yes”

20

Sinfonia Applications

• sinfoniaFS: cluster file system

• applications share files, files stored in Sinfonia

• fault tolerant

• scalable: performance improves with more memory nodes

• sinfoniaGCS: group communication service

• “chat room” for distributed applications

• nodes can join/leave room, notifications sent for joins/leaves

• nodes broadcast messages to room, messages totally ordered

21

sinfoniaFS

• Exports NFS interface

• Each NFS operation is
one minitransaction

• General template:

• validate cache (cmp items)

• modify data (write items)

22

sinfoniaGCS

• Each member has private
queue in sinfonia

• broadcast msg:

• copy msg to queue

• Private operation

• thread msg in batches in
global order

• compute global tail, mini-
transaction updates the
tail’s next pointer to point
to the messages

23

Evaluation

• Sinfonia scalability

• sinfoniaFS scalability

• sinfoniaGCS scalability

24

Sinfonia Scalability

• Each mini-transaction accesses two memory nodes

• Usually within 85% of ideal scalability

25

sinfoniaFS Scalability

• sinfoniaFS performs comparably to LinuxFS with one
memory node

• sinfoniaFS scales much better than LinuxNFS with
increasing number of clients

26

sinfoniaGCS Performance

27

Sinfonia Ease of Use

• Advantages

• Transactions: relief from concurrency, failure issues

• No distributed protocols, no timeout worries

• Correctness verified by checking minitransactions

• Drawbacks

• Address space is low-level abstraction

• Need to lay out data structures manually

• Need to find efficient layout to avoid contention

• A data structure design problem

28

Conclusions

• Sinfonia: a scalable data sharing service for building
distributed applications

• Exposes unstructured memory address spaces

• Enables efficient mini-transaction mechanism that

• Hides the complexities of concurrency and failures

• While providing good performance and scalability

29

Discussion

30

Q1

• Why is this transaction not directly supported in
Sinfonia?

transfer(A, B):

begin_tx

a = read(A)

if a < 10 then

 abort_tx

else

 write(A, a−10)

 b = read(B)

 write(B, b+10)

 commit_tx

31

Q2

• Can you implement a Sinfonia function that implements
the transfer(A, B) transaction?

transfer(A, B):

begin_tx

a = read(A)

if a < 10 then

 abort_tx

else

 write(A, a−10)

 b = read(B)

 write(B, b+10)

 commit_tx

Mini-Transaction API:

t = new Minitransaction;

t->read(host, data_addr, data_len, &data);

t->cmp(host, data_addr, data_len, data);

t->write(host, data_addr, data_len, data);

t->exec_commit();

32

Q3

• Will Sinfonia's transaction protocol always perform
better than traditional transactions and two-phase
commit?

33

Q4

• Compare consensus and atomic commit in terms of

• The fundamental difference between them

• How and why are they used?

• Liveness guarantees under failures?

34

Q5

• What are the most significant similarities and
differences between the BigTable database and
Sinfonia?

	Slide 1: Sinfonia: A New Paradigm For Building Scalable Distributed Systems
	Slide 2: Motivation
	Slide 3: Current Distributed Applications Often Involve Complex Protocols
	Slide 4: Wouldn't it be Nice to Avoid Such Protocols?
	Slide 5: Focus
	Slide 6: Sinfonia’s Approach
	Slide 7: Sinfonia Architecture
	Slide 8: Sinfonia Mini-Transaction
	Slide 9: Mini-Transaction Requirements
	Slide 10: Efficiency of Mini-Transactions
	Slide 11: Efficiency of Mini-Transactions
	Slide 12: What if Coordinator Crashes?
	Slide 13: Sinfonia’s Two-Phase Commit
	Slide 14: Commit Protocol – Phase 1
	Slide 15: Commit Protocol – Phase 2
	Slide 16: Fault Tolerance in Sinfonia
	Slide 17: Recovery From Participant Crashes
	Slide 18: Challenges With Coordinator Crashes
	Slide 19: Recovery From Coordinator Crashes
	Slide 20: Sinfonia Applications
	Slide 21: sinfoniaFS
	Slide 22: sinfoniaGCS
	Slide 23: Evaluation
	Slide 24: Sinfonia Scalability
	Slide 25: sinfoniaFS Scalability
	Slide 26: sinfoniaGCS Performance
	Slide 27: Sinfonia Ease of Use
	Slide 28: Conclusions
	Slide 29: Discussion
	Slide 30: Q1
	Slide 31: Q2
	Slide 32: Q3
	Slide 33: Q4
	Slide 34: Q5

