Sinfonia: A New Paradigm For
Building Scalable Distributed Systems

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

ECE1724

Authors: Marcos k. Aguilera, Arif Merchant, Mehul Shah,
Alistair Veitch, Christos Maramanolis

Motivation

 Corporate data centers are growing quickly

 Companies building large data centers

e 10000s servers and more

 Need distributed applications that scale well

Current Distributed Applications
Often Involve Complex Protocols

5 f/‘/

T

L
\/ N
T

Wouldn't it be Nice to Avoid Such
Protocols?

PORY

.
o \), & 4
4 \ 7/‘)
o %
L/

Focus

e Systems within a data center

Network latencies usually small and predictable

Nodes may crash, sometimes all of them

e Stable storage may crash too

* |nfrastructure applications

Applications that support other applications
Reliable, fault-tolerant, consistent

Examples: cluster file systems, distributed lock managers,
group communication services, distributed name services

Sinfonia’s Approach

 Developers use Sinfonia, a data sharing service

* Sinfonia stores data in memory nodes

 Each memory node exports a linear address space

* No structure (e.g., file, rows, etc.) is imposed

 Key idea: mini-transactions
* Enables accessing and modifying data atomically
* Performs entire transaction within the commit protocol

 Reduces messages, locking times compared to traditional txns

 Transforms problem of distributed application and
protocol design into easier problem of fault-tolerant,
consistent, shared data structure design

Sinfonia Architecture

* Applications run on application nodes

* Use a Sinfonia library to access their data

* Application data stored on memory nodes (with disks)

* Memory node location visible to applications

application application application application
node node node node

user - .
"brary x /I’T'IlnltI’aﬂsaCth)nSV/7X x j

- =

memory memory memory
node node node

F

sinfonia

Sinfonia Mini-Transaction

* Alimited type of distributed transaction that operates
on unstructured data at memory nodes, providing ACID

guarantees efficiently

constant
[compare items value
mem-id | addr [len| data)
mem-id | addr |len| data)
S | read items
gi mem-id | addr | len
§ mem-id | addr |len
= .
€ | write items
mem-id | addr |len| data)
mem-id | addr | len| data)

transaction executes+tcommits—

semantics

* read (and return) data indicated by read items
* check data indicated by
compare items (equality comparison)
e if ALL match then
modify data indicated by write items

example

t = new Minitransaction;

t->cmp(hostX, addrX, len, 1);
t->write(hostY, addrY, len, 2);
t->write(hostZ, addrZ, len, 2);

status = t->exec_and_commit(); 8

Mini-Transaction Requirements

Two restrictions: 1) read-write sets known before txn

execution, 2) all writes conditioned on checks

Many common operations meet these requirements

atomic swap operation

atomic read of many data items

try to acquire a lease

try to acquire multiple leases atomically
change data if lease is held

validate cache then change data, e.g., similar to OCC

Serve as building blocks for higher-level applications

Efficiency of Mini-Transactions

* Piggyback txn execution onto two-phase commit

coordinator

T
Qo —
= Q
o = O
X = O\
() X N\
()] \
\
N\
o) O M
G= = e
LTSS S T—Ss—
08— 08—
traditional sinfonia

transactions minitransactions 10

Efficiency of Mini-Transactions

* Run coordinator at application node

app +
application coordinator coordinator
>\>
QO —
=) Q
O = o
X = D \
X N\
SN
\
\
O 0, M
S g |
i~ =
- O O / (3) 8 4/
traditional sinfonia

transactions minitransactions

11

What if Coordinator Crashes?

 Application node is outside of Sinfonia control

e Application node, coordinator may crash and not recover

* Traditional two-phase commit can block in this case
e Why?

* Solution: new two-phase commit protocol that avoids
blocking on coordinator failure

12

Sinfonia’s Two-Phase Commit

* Traditional two-phase commit: transaction commits iff
coordinator logs “commit” decision

* Sinfonia two-phase commit: transaction commits iff all
participant memory nodes log “yes” vote

M =value stored at log

\H .
yes yes yes s yes y
e
commit
o
traditional sinfonia
two-phase commit two-phase commit

13

Commit Protocol — Phase 1

 Phase 1 (prepare)

 Coordinator (on app node) generates unique transaction id,
sends mini-transaction to the participants

* Each participant

Tries to acquire read and write locks for all required addresses
(at word granularity + range locking)

If it acquires all locks, it performs reads, comparisons

If all comparisons succeed, it logs writes in a (buffered) redo log

* Replies to coordinator with commit/abort vote

14

Commit Protocol — Phase 2

 Phase 2 (commit)

* Coordinator tells participants to commit if and only if all
participants voted to commit

* Each participant
* If committing, applies logged write items to their in-memory structure

e Releases all locks

15

Fault Tolerance in Sinfonia

 Disk images
 Keeps a copy of data in memory node for crash recovey
 Updated asynchronously
 Use logreplay for recovery
e Memory node replication

* Memory nodes can be replicated for better availability

e Currently, Sinfonia uses primary-backup replication

 Transactional backups

e Capture a transactionally consistent image of all nodes

* |mage contains all updates up to some transaction, and

* No updates from later transactions

16

Recovery From Participant Crashes

* Sinfonia blocks any mini-transaction commits that
access data on a crashed participant, why?

 Onrecovery, participant loads disk image, replay redo
log to reconstruct memory state

* |If participant lose its stable storage, it must be
recovered from a transactional backup

17

Challenges With Coordinator
Crashes

* When a coordinator crashes, participant may be holding
locks and have logged updates for transactions that are
not known to be aborted or committed (uncertain)

 Recovery and garbage collection are complicated since
commit information is distributed among participants

* Recovery needs to gather votes from participants

* Garbage collection of logs at a participant requires knowing
whether the participant’s votes are known to all participants

all partici-

par&ts learned
\\Q 0 ecision KNOWN
y COMMITTED COMMITTED
UNCERTAIN \
an; ©ba
aII partici-

Vo¢ ABORTED
pants learned
decision 1 8

Recovery From Coordinator Crashes

 Key idea: use a separate recovery coordinator to force B
transition if A hasn’t occurred already

 Recovery coordinator periodically probes memory node
logs for uncertain transactions

* Forces participants to abort txn unless they have voted already

* Decides to commit transaction if all participants voted “yes”

recovery @ ©

coordinator @ recovery triggered

participant 1 &, if not yet chosen vote, choose abort vote
otherwise keep previous vote

articipant 2
particip (© choose decision

participant 3 ©) if committing then apply write items

release locks held for minitransaction 19

Sinfonia Applications

* sinfoniaFS: cluster file system
* applications share files, files stored in Sinfonia
e fault tolerant

e scalable: performance improves with more memory nodes

* sinfoniaGCS: group communication service
e “chatroom” for distributed applications
* nodes can join/leave room, notifications sent for joins/leaves

* nodes broadcast messages to room, messages totally ordered

20

sinfoniaFS

 Exports NFS interface
 Each NFS operation is
one minitransaction

General template:
* validate cache (cmp items)

modify data (write items)

cluster
file

=
2
S
)
user
ol .)
= | library K f mmﬂransachonsf %} j
O L
| ¥
o menfory
nofle
superblockarea +] " [unused_ ____Lunused | _
1
|
inode area 1 ;
; :
free block ; !
bitmap area ! !
1 |
data block | L= e e :
areq | !
! :
L — - - _|

21

sinfoniaGCS

e Each member has private
gueue in sinfonia

* broadcast msg:

* copy msgto queue
* Private operation

* thread msgin batches in
global order

 compute global tail, mini-
transaction updates the
tail’s next pointer to point
to the messages

group

comm

service

sinfonia

s

user
library

bgr 4

mem

ber 1

mem

% jminitransactionsj

-

g — o
\' 2 _ 1
e |Fm] o
@ @
O 0
D E DE]
oQ S5 D
oe oe
e e
-F-'_‘—n.-_-____ .-—'——q_-___-___

merjory memyry
nofe nod

22

Evaluation

Sinfonia scalability
sinfoniaFS scalability

sinfoniaGCS scalability

23

Sinfonia Scalability

« Each mini-transaction accesses two memory nodes

« Usually within 85% of ideal scalabllity

1000
g [
S 100 oo G e
< |
"g 10 é | '@ Sinfonia-LOG
% : = Sinfonia-LOG-REPL
= - -+ Single-node Berkeley DB
s 1
- ;

0.1

10100 1000
system size

24

sinfoniaFS Scalability

* sinfoniaFS performs comparably to LinuxFS with one
memory node

e sinfoniaFS scales much better than LinuxNFS with
increasing number of clients

31 LnuxNES, phase 2
' LinuxNFS, phase 1
LinuxNFS, phase 5
LinuxNFS, phase 4
| | LinuxNFS, phase 3
—% ; < SinfoniakF S, phase 1
/ : = SinfoniaFS, phase 2
J . Y LinuxNF$ phase 3 SinfoniaFS, phase 5
' + SinfoniaFS, phase 4
-~ _SinfoniaFsS, phase 3 |

| LinixNF§—>

5 T.E .r‘f

If J‘
I/ {

: N
g N O

ll4ademeor

—

time (normalized)

s

—
m

K
——
__t SinfoniaF$S

PERFECTLY SCALABLE SYSTEM

0 50 100 150 200 250
cluster nodes (file system clients)

O
&y

sinfoniaGCS Performance

—
N
!

& SinfoniaGCS
& Spread 000000 o e

msgs/s
(x1000000)

o B~ 0o
|

0 40 80 120 160 200
system size

26

Sinfonia Ease of Use

 Advantages

* Transactions: relief from concurrency, failure issues
* No distributed protocols, no timeout worries

e Correctness verified by checking minitransactions

e Drawbacks

* Address space is low-level abstraction
* Need to lay out data structures manually

* Need to find efficient layout to avoid contention

* A data structure design problem

27

Conclusions

* Sinfonia: a scalable data sharing service for building
distributed applications

 Exposes unstructured memory address spaces

e Enables efficient mini-transaction mechanism that

* Hides the complexities of concurrency and failures

* While providing good performance and scalability

28

Discussion

29

Ql

Why is this transaction not directly supported in

Sinfonia?

transfer (A, B):

begin tx

a = read(A)

if a < 10 then
abort tx

else
write (A, a-10)
b = read(B)
write (B, b+10)

commit_tx

4

30

Q2

e Canyou implement a Sinfonia function that implements
the transfer(A, B) transaction?

transfer (A, B):

begin tx

a = read(A)

if a < 10 then
abort tx

else
write (A, a-10)
b = read(B)
write (B, b+10)
commit tx

Mini-Transaction API:

t = new Minitransaction;

t->read (host, data addr, data len, é&data);

t->cmp (host, data addr, data len, data);

t->write (host, data addr, data len, data);

t->exec commit () ;

4

4

31

Q3

* Will Sinfonia's transaction protocol always perform
better than traditional transactions and two-phase
commit?

32

Q4

e Compare consensus and atomic commit in terms of
 The fundamental difference between them
* How and why are they used?

* Liveness guarantees under failures?

33

Q5

* What are the most significant similarities and
differences between the BigTable database and
Sinfonia?

34

	Slide 1: Sinfonia: A New Paradigm For Building Scalable Distributed Systems
	Slide 2: Motivation
	Slide 3: Current Distributed Applications Often Involve Complex Protocols
	Slide 4: Wouldn't it be Nice to Avoid Such Protocols?
	Slide 5: Focus
	Slide 6: Sinfonia’s Approach
	Slide 7: Sinfonia Architecture
	Slide 8: Sinfonia Mini-Transaction
	Slide 9: Mini-Transaction Requirements
	Slide 10: Efficiency of Mini-Transactions
	Slide 11: Efficiency of Mini-Transactions
	Slide 12: What if Coordinator Crashes?
	Slide 13: Sinfonia’s Two-Phase Commit
	Slide 14: Commit Protocol – Phase 1
	Slide 15: Commit Protocol – Phase 2
	Slide 16: Fault Tolerance in Sinfonia
	Slide 17: Recovery From Participant Crashes
	Slide 18: Challenges With Coordinator Crashes
	Slide 19: Recovery From Coordinator Crashes
	Slide 20: Sinfonia Applications
	Slide 21: sinfoniaFS
	Slide 22: sinfoniaGCS
	Slide 23: Evaluation
	Slide 24: Sinfonia Scalability
	Slide 25: sinfoniaFS Scalability
	Slide 26: sinfoniaGCS Performance
	Slide 27: Sinfonia Ease of Use
	Slide 28: Conclusions
	Slide 29: Discussion
	Slide 30: Q1
	Slide 31: Q2
	Slide 32: Q3
	Slide 33: Q4
	Slide 34: Q5

