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Transactions

• A unit of work that may perform multiple operations 
(e.g., reads and writes) on multiple items (e.g., A, B)

sum(A, B):

begin_tx

a = read(A)   

b = read(B)   

print a + b

commit_tx     

transfer(A, B):

begin_tx

a = read(A)        

if a < 10 then

   abort_tx        

else

 write(A, a−10)  

 b = read(B)

 write(B, b+10)  

 commit_tx       
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Transaction Execution Model

• input(X)

• copy the disk block containing object X 
to memory

• v = read(X)

• read the value of X into a local variable v

• execute input(X) first if necessary

• write(X, v)

• write value v to X in memory

• execute input(X) first if necessary

• output(X)

• write memory block containing X to disk

CPU

Memory

X, Y

X, Y

Disk
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Transaction Properties: ACID

• Atomicity: transaction executes completely or not at all

• E.g., transfer(A,B) either commits or makes no changes

• Consistency: transaction moves database from one 
consistent state to another

• E.g., writes don’t violate integrity constraints, avoids database 
corruption

• Isolation: operations in the transaction appear to 
happen together at a point in time

• E.g., sum(A,B) does not read intermediate updates by 
transfer(A, B)

• Durability: transactions that commit are not lost, even 
on failure
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ACID Challenges

• Atomicity: transaction 
executes completely or not 
at all (failure atomicity)

• Consistency: transaction 
moves database from one 
consistent state to another

• Isolation: operations in the 
transaction appear to 
happen together

• Durability: transactions 
that commit are not lost, 
even on failure

How to control 
execution of concurrent 
transactions?

How to recover from 
various failures?
    - app-level (txn abort)
    - system-level (e.g., oom)
    - crash failures
    - media failures
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Failure Recovery
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Failures

• Transaction T aborts or system crashes while T is 
executing, and partial effects of T were written to disk

• How do we undo T (atomicity)?

• System crashes after a transaction T commits, and not 
all effects of T were written to disk

• How do we complete T (durability)? 

• Media fails or data on disk is corrupted

• How do we reconstruct the database (durability)?

• Key idea for failure recovery: always make a copy before 
overwriting a block so the copy can be used for recovery
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Write-Ahead Logging (WAL)

• Logging: write a sequence of log records to disk, 
recording all changes made to the database

• Each write becomes two writes, isn’t it bad for performance?

• Write-ahead logging: before any object X is overwritten 
on disk (flushed), log record for X must be flushed

• Enables failure recovery
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Undo Based Write-Ahead-Logging

• Before Transaction T modifies X on disk, use WAL to 
flush its old value to the log

• Log format: <Tid, X, old_value_of_X>

• Tid is transaction id

• X: physical address of X (block id, offset)

• old_value_of_X: physical bits (physical logging)

• Force: before commit record of a transaction is flushed 
to the log, all writes of transaction must be flushed

• If system crashes before transaction commits, undo updates to 
X on disk by restoring old value of X from log

• If system crashes after transaction commits, all updates have 
already been applied
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Undo Logging Example
T1(A, B):

begin_tx

a = read(A)        

write(A, a−10)  

b = read(B)

write(B, b+10)

output(A)

output(B)  

commit_tx       

Memory

A=25 -> 15

B=40 -> 50

Log (in memory)

<T1, start>

<T1, A, 25>

<T1, B, 40>

<T1, commit>

Disk Log Disk

A=25 -> 15

B=40 -> 50

<T1, start>

<T1, A, 25>

<T1, B, 40>

<T1, commit>
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Redo Based Write-Ahead-Logging

• Before Transaction T modifies X on disk, use WAL to 
flush its new value to the log

• Log format: <Tid, X, new_value_of_X>

• Tid is transaction id

• X: physical address of X (block id, offset)

• new_value_of_X: physical bits (physical logging)

• No steal: all log records (including commit record) must 
be flushed to the log, before any writes of transaction 
are flushed

• If system crashes before transaction commits, no updates 
have been applied

• If system crashes after transaction commits, redo updates to X 
on disk by using the new value of X from log
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Redo Logging Example
T1(A, B):

begin_tx

a = read(A)        

write(A, a−10)  

b = read(B)

write(B, b+10)

output(A)

output(B)  

commit_tx       

Memory

A=25 -> 15

B=40 -> 50

Log (in memory)

<T1, start>

<T1, A, 15>

<T1, B, 50>

<T1, commit>

Disk Log Disk

A=25 -> 15

B=40 -> 50

<T1, start>

<T1, A, 15>

<T1, B, 50>

<T1, commit>



1313

Isolation
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Isolation

• Goal: operations in the transaction appear to happen 
together at a point in time

• Serial execution

• All operations in a transaction are executed before another 
transaction is run, ensures isolation

• Problem: poor performance, no concurrency possible

• Concurrent execution

• Transactions are executed concurrently by interleaving their 
operations, provides good performance

• Problem: certain interleavings of operations may violate 
isolation, need to avoid them
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Serializability

• A schedule for a set of transactions is an ordering of the 
operations (reads, writes) performed by those 
transactions

• A schedule is serializable if it is equivalent to some serial 
schedule

• A serializable schedule provides isolation

• i.e., ensures that the operations in a transaction appear to 
happen together in some serial order (even if they don’t)
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Schedules

Serializable

Serializable

Serializable

Non-Serializable

rA:  

wA:

©:

read row A

write row A

commit txn

transfer: rA  wA  rB  wB  ©

 sum:     rA  rB  ©

transfer:              rA  wA  rB  wB  ©

 sum:      rA  rB  ©

transfer:     rA  wA           rB  wB  ©

 sum:      rA            rB  ©

transfer: rA  wA               rB  wB  ©

 sum:                rA  rB  ©
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Conflicts

• Two operations from different transactions 
are conflicting if they operate on the same item and 
at least one of them is write

• read-write, write-read, write-write operations are 
conflicting because they are non-commutative

• For serializability, conflicts must occur in same order

Serializable

Non-Serializable

rA:  

wA:

©:

read row A

write row A

commit txn

transfer:     rA  wA           rB  wB  ©

 sum:      rA            rB  ©

transfer: rA  wA               rB  wB  ©

 sum:                rA  rB  ©
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Linearizability vs. Serializability 

• Linearizability: a guarantee about single operations on 
single objects

• Reads and writes have a total order

• Once write completes, all reads that begin later (in real-time 
order) should reflect that write

• Serializability: a guarantee about multiple operations 
(transactions) on multiple objects

• Transactions appear to execute in some serial order

• Doesn’t impose any real-time constraints

• Strict serializability: intuitively serializability + 
linearizability
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Implementing Serializability with 
Locking

• Concurrent execution can violate serializability

• We need to control concurrent execution to ensure 
serializability (i.e., so conflicts occur in same order), and so an 
implementation of isolation is also called concurrency control

• Traditionally, locking is used for concurrency control

• Two types of locks maintained for each data item

• Shared: Acquire before reading object

• Exclusive: Acquire before writing object

Shared (S) Exclusive (X)

Shared (S) Yes No

Exclusive (X) No No
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Two-Phase Locking (2PL)

• 2PL rule: Once a transaction has released a lock it 
is not allowed to obtain any other locks

• Growing phase: transaction acquires locks on its read 
and write set (i.e., items it reads and writes)

• Shrinking phase: transaction releases locks

• In practice:

• Growing phase is the entire transaction

• Shrinking phase is after commit
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2PL Example

sum(A, B):

begin_tx

a = read(A)  

b = read(B)  

print a + b

commit_tx    

transfer(A, B):

begin_tx

a = read(A)

if a < 10 then

   abort_tx       

else

 write(A, a−10) 

 b = read(B)

 write(B, b+10) 

 commit_tx      

S(O):  

X(O):

U(O):

acquire shared lock on object O

acquire exclusive lock on object O

release lock on object O

S(A)

U(A)

X(A)

S(B)

X(B)

U(A,B)

S(A)

S(B)

U(A,B)
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2PL Schedules

transfer: rA  wA  rB  wB  ©

 sum:     rA  rB  ©

transfer: rA  wA               rB  wB  ©

 sum:               rA  rB  ©

transfer: rA  wA       rB  wB  ©

 sum:                 rA                rB  ©

transfer:    rA        wA      rB  wB  ©

 sum:      rA    rB  ©

Serializable,

Allowed

Non-Serializable,

Not allowed

Serializable,

Not allowed

Serializable,

Allowed
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Issues with 2PL

• What do we do if a lock is unavailable?

• Wait: wait until lock becomes available?

• Die: give up immediately, i.e., abort?

• Wound: force the lock holder to abort to acquire lock?

• Waiting for a lock can result in deadlock

• Transfer has A locked, waits on B

• Sum has B locked, waits on A

• Assuming order A and B are interchanged in the sum() code

• Many ways to prevent, detect and handle deadlocks

• Typically wait-die or wound-wait used for prevention
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2PL is Pessimistic

• Acquires locks to prevent all potential violations of 
serializability

• But disallows many concurrent operations that are 
serializable
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Be Optimistic!

• Assume success!

• Optimistic Concurrency Control (OCC)

• Process transaction as if it will succeed

• Check for serializability only at commit time

• If check fails, abort transaction

• Compared to locking, OCC has

• Higher performance when transactions have few conflicts

• Lower performance when transactions have many conflicts
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Optimistic Concurrency Control

• Optimistic execution

• Transaction executes initial reads from database (read set)

• Caches reads locally, re-reads from cache

• Buffers writes locally (write set)

• Validation and Commit

1. Acquire shared locks on read set, exclusive locks on write set

2. Validate that data in read set hasn’t changed 

• i.e., reading data in read set now would give the same result

3. Apply buffered writes in write set to commit transaction

• Else abort if locks can’t be acquired in 1 or validation fails in 2

4. Release locks

Many ways to do validation
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2PL vs OCC: Increasing Conflict Rate

From Rococo, OSDI 2014
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Distributed Transactions
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Recap: Sharding Data

A shard with 2 
replicas

A transaction A read or write to some 
(key, value) tuple.  Here, 

Hash(key) % N =1, so 
read/write Shard 1

Shard 0 Shard 1 Shard N

• Data is partitioned (sharded) across nodes

Sharded storage service with N shards,
2 replicated servers per shard
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Single Node (Local) Transactions

If each transaction does all its work at just one shard, never needing 
to access two or more shards, then sharding scales well

Shard 0 Shard 1 Shard N

Each transaction 
accesses one shard
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Distributed Transactions

Transactions that touch multiple shards hold locks for long time, 
need 2-phase commit (agreement protocol) for atomicity, 

hard to scale … let’s see why in detail

Shard 0 Shard 1 Shard N

A transaction reads 
or writes one or 

more shards, needs 
atomic operation
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Distributed Txn Execution Model

A

B

Coordinator node:

runs transaction code,

coordinates participants,

uses WAL for recovery

Participant nodes:

store transaction data,

acquire/release locks,

use WAL for recovery

Participant 1

Participant 2

transfer(A, B):

begin_tx

a = read(A)

if a < 10 then

   abort_tx       

else

 write(A, a−10) 

 b = read(B)

 write(B, b+10) 

 commit_tx      

Coordinator
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Atomic Commit

• Problem: Participant node may not be able to complete 
its operation

• Cannot acquire required lock (e.g., deadlock)

• No memory or disk space available to do write

• Transaction constraint fails (e.g., a < 10)

• Node crashes

• Atomic: All or nothing

• Either all participants agree to commit (commit) or no 
participant does anything (abort)

• i.e,. abort even if one participant says no

• Common use: commit a distributed transaction that 
updates data on different shards

Why?
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2PL Two-Phase Commit

• Phase 1

• Coordinator sends Prepare requests to all participants

• Each participant votes yes or no

• Records vote in its log

• Sends yes or no vote back to coordinator

• Coordinator inspects all votes

• If all yes, then commit, else abort

• Records commit/abort status in log (commit point)

• Phase 2

• Coordinator sends Commit or Abort to all participants

• If commit, each participant commits changes

• Each participant releases any locks it holds

• Each participant sends an Ack back to the coordinator

A

B

Participant 1

Participant 2

transfer(A, B):

begin_tx

a = read(A)

if a < 10 then

   abort_tx       

else

 write(A, a−10) 

 b = read(B)

 write(B, b+10) 

 commit_tx      

Coordinator
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Two-Phase Commit

commit point
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OCC Two-Phase Commit

• Phase 1

• Coordinator sends Prepare requests to all participants

• Prepare includes read values and buffered writes for each participant

• Participant acquires shared locks on read set, exclusive locks on write set

• Participant validates that data in read set hasn’t changed

• Each participant votes yes or no

• Records vote in its log

• Sends yes vote or no vote back to coordinator

• Coordinator inspects all votes

• If all yes, then commit, else abort

• Records commit/abort status in log (commit point)

• Phase 2

• Coordinator sends Commit or Abort to all participants

• If commit, each participant commits changes

• Each participant releases any locks it holds

• Each participant sends an Ack back to the coordinator

A

B

Participant 1

Participant 2

transfer(A, B):

begin_tx

a = read(A)

if a < 10 then

   abort_tx       

else

 write(A, a−10) 

 b = read(B)

 write(B, b+10) 

 commit_tx      

Coordinator

OCC’s validation and 
commit during 2PC



3737

Distributed Transactions and 
Replication

A-F

G-L

M-R
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Replication, Sharding, 
Atomic Commit

• Replication (e.g., primary-backup, state-machine 
replication) is about doing the same thing in multiple 
places, primarily to provide fault tolerance

• Sharding is about doing different things in multiple 
places, primarily for scalability

• Atomic commit is about doing different things in 
multiple places together (all or nothing)
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Distributed Transactions and 
Replication
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Motivation for Today’s Paper

• Distributed transactions are expensive

• Two-phase commit requires two additional round trips, in 
addition to the read and write requests made to participants

• Locks are held from the time reads and writes are performed 
until the end of the two-phase commit

• Other transactions waiting on locks are also delayed

• Key idea: limit the power of transactions to enable 
scaling distributed transactions
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