
11

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

ECE1724

Transactions
- A Quick Overview

These slides are adapted from Michael Freedman & Wyatt Lloyd’s course on
Distributed Systems

22

Transactions

• A unit of work that may perform multiple operations
(e.g., reads and writes) on multiple items (e.g., A, B)

sum(A, B):

begin_tx

a = read(A)

b = read(B)

print a + b

commit_tx

transfer(A, B):

begin_tx

a = read(A)

if a < 10 then

 abort_tx

else

 write(A, a−10)

 b = read(B)

 write(B, b+10)

 commit_tx

33

Transaction Execution Model

• input(X)

• copy the disk block containing object X
to memory

• v = read(X)

• read the value of X into a local variable v

• execute input(X) first if necessary

• write(X, v)

• write value v to X in memory

• execute input(X) first if necessary

• output(X)

• write memory block containing X to disk

CPU

Memory

X, Y

X, Y

Disk

44

Transaction Properties: ACID

• Atomicity: transaction executes completely or not at all

• E.g., transfer(A,B) either commits or makes no changes

• Consistency: transaction moves database from one
consistent state to another

• E.g., writes don’t violate integrity constraints, avoids database
corruption

• Isolation: operations in the transaction appear to
happen together at a point in time

• E.g., sum(A,B) does not read intermediate updates by
transfer(A, B)

• Durability: transactions that commit are not lost, even
on failure

55

ACID Challenges

• Atomicity: transaction
executes completely or not
at all (failure atomicity)

• Consistency: transaction
moves database from one
consistent state to another

• Isolation: operations in the
transaction appear to
happen together

• Durability: transactions
that commit are not lost,
even on failure

How to control
execution of concurrent
transactions?

How to recover from
various failures?
 - app-level (txn abort)
 - system-level (e.g., oom)
 - crash failures
 - media failures

66

Failure Recovery

77

Failures

• Transaction T aborts or system crashes while T is
executing, and partial effects of T were written to disk

• How do we undo T (atomicity)?

• System crashes after a transaction T commits, and not
all effects of T were written to disk

• How do we complete T (durability)?

• Media fails or data on disk is corrupted

• How do we reconstruct the database (durability)?

• Key idea for failure recovery: always make a copy before
overwriting a block so the copy can be used for recovery

88

Write-Ahead Logging (WAL)

• Logging: write a sequence of log records to disk,
recording all changes made to the database

• Each write becomes two writes, isn’t it bad for performance?

• Write-ahead logging: before any object X is overwritten
on disk (flushed), log record for X must be flushed

• Enables failure recovery

99

Undo Based Write-Ahead-Logging

• Before Transaction T modifies X on disk, use WAL to
flush its old value to the log

• Log format: <Tid, X, old_value_of_X>

• Tid is transaction id

• X: physical address of X (block id, offset)

• old_value_of_X: physical bits (physical logging)

• Force: before commit record of a transaction is flushed
to the log, all writes of transaction must be flushed

• If system crashes before transaction commits, undo updates to
X on disk by restoring old value of X from log

• If system crashes after transaction commits, all updates have
already been applied

1010

Undo Logging Example
T1(A, B):

begin_tx

a = read(A)

write(A, a−10)

b = read(B)

write(B, b+10)

output(A)

output(B)

commit_tx

Memory

A=25 -> 15

B=40 -> 50

Log (in memory)

<T1, start>

<T1, A, 25>

<T1, B, 40>

<T1, commit>

Disk Log Disk

A=25 -> 15

B=40 -> 50

<T1, start>

<T1, A, 25>

<T1, B, 40>

<T1, commit>

1111

Redo Based Write-Ahead-Logging

• Before Transaction T modifies X on disk, use WAL to
flush its new value to the log

• Log format: <Tid, X, new_value_of_X>

• Tid is transaction id

• X: physical address of X (block id, offset)

• new_value_of_X: physical bits (physical logging)

• No steal: all log records (including commit record) must
be flushed to the log, before any writes of transaction
are flushed

• If system crashes before transaction commits, no updates
have been applied

• If system crashes after transaction commits, redo updates to X
on disk by using the new value of X from log

1212

Redo Logging Example
T1(A, B):

begin_tx

a = read(A)

write(A, a−10)

b = read(B)

write(B, b+10)

output(A)

output(B)

commit_tx

Memory

A=25 -> 15

B=40 -> 50

Log (in memory)

<T1, start>

<T1, A, 15>

<T1, B, 50>

<T1, commit>

Disk Log Disk

A=25 -> 15

B=40 -> 50

<T1, start>

<T1, A, 15>

<T1, B, 50>

<T1, commit>

1313

Isolation

1414

Isolation

• Goal: operations in the transaction appear to happen
together at a point in time

• Serial execution

• All operations in a transaction are executed before another
transaction is run, ensures isolation

• Problem: poor performance, no concurrency possible

• Concurrent execution

• Transactions are executed concurrently by interleaving their
operations, provides good performance

• Problem: certain interleavings of operations may violate
isolation, need to avoid them

1515

Serializability

• A schedule for a set of transactions is an ordering of the
operations (reads, writes) performed by those
transactions

• A schedule is serializable if it is equivalent to some serial
schedule

• A serializable schedule provides isolation

• i.e., ensures that the operations in a transaction appear to
happen together in some serial order (even if they don’t)

1616

Schedules

Serializable

Serializable

Serializable

Non-Serializable

rA:

wA:

©:

read row A

write row A

commit txn

transfer: rA wA rB wB ©

 sum: rA rB ©

transfer: rA wA rB wB ©

 sum: rA rB ©

transfer: rA wA rB wB ©

 sum: rA rB ©

transfer: rA wA rB wB ©

 sum: rA rB ©

1717

Conflicts

• Two operations from different transactions
are conflicting if they operate on the same item and
at least one of them is write

• read-write, write-read, write-write operations are
conflicting because they are non-commutative

• For serializability, conflicts must occur in same order

Serializable

Non-Serializable

rA:

wA:

©:

read row A

write row A

commit txn

transfer: rA wA rB wB ©

 sum: rA rB ©

transfer: rA wA rB wB ©

 sum: rA rB ©

1818

Linearizability vs. Serializability

• Linearizability: a guarantee about single operations on
single objects

• Reads and writes have a total order

• Once write completes, all reads that begin later (in real-time
order) should reflect that write

• Serializability: a guarantee about multiple operations
(transactions) on multiple objects

• Transactions appear to execute in some serial order

• Doesn’t impose any real-time constraints

• Strict serializability: intuitively serializability +
linearizability

1919

Implementing Serializability with
Locking

• Concurrent execution can violate serializability

• We need to control concurrent execution to ensure
serializability (i.e., so conflicts occur in same order), and so an
implementation of isolation is also called concurrency control

• Traditionally, locking is used for concurrency control

• Two types of locks maintained for each data item

• Shared: Acquire before reading object

• Exclusive: Acquire before writing object

Shared (S) Exclusive (X)

Shared (S) Yes No

Exclusive (X) No No

2020

Two-Phase Locking (2PL)

• 2PL rule: Once a transaction has released a lock it
is not allowed to obtain any other locks

• Growing phase: transaction acquires locks on its read
and write set (i.e., items it reads and writes)

• Shrinking phase: transaction releases locks

• In practice:

• Growing phase is the entire transaction

• Shrinking phase is after commit

2121

2PL Example

sum(A, B):

begin_tx

a = read(A)

b = read(B)

print a + b

commit_tx

transfer(A, B):

begin_tx

a = read(A)

if a < 10 then

 abort_tx

else

 write(A, a−10)

 b = read(B)

 write(B, b+10)

 commit_tx

S(O):

X(O):

U(O):

acquire shared lock on object O

acquire exclusive lock on object O

release lock on object O

S(A)

U(A)

X(A)

S(B)

X(B)

U(A,B)

S(A)

S(B)

U(A,B)

2222

2PL Schedules

transfer: rA wA rB wB ©

 sum: rA rB ©

transfer: rA wA rB wB ©

 sum: rA rB ©

transfer: rA wA rB wB ©

 sum: rA rB ©

transfer: rA wA rB wB ©

 sum: rA rB ©

Serializable,

Allowed

Non-Serializable,

Not allowed

Serializable,

Not allowed

Serializable,

Allowed

2323

Issues with 2PL

• What do we do if a lock is unavailable?

• Wait: wait until lock becomes available?

• Die: give up immediately, i.e., abort?

• Wound: force the lock holder to abort to acquire lock?

• Waiting for a lock can result in deadlock

• Transfer has A locked, waits on B

• Sum has B locked, waits on A

• Assuming order A and B are interchanged in the sum() code

• Many ways to prevent, detect and handle deadlocks

• Typically wait-die or wound-wait used for prevention

2424

2PL is Pessimistic

• Acquires locks to prevent all potential violations of
serializability

• But disallows many concurrent operations that are
serializable

2525

Be Optimistic!

• Assume success!

• Optimistic Concurrency Control (OCC)

• Process transaction as if it will succeed

• Check for serializability only at commit time

• If check fails, abort transaction

• Compared to locking, OCC has

• Higher performance when transactions have few conflicts

• Lower performance when transactions have many conflicts

2626

Optimistic Concurrency Control

• Optimistic execution

• Transaction executes initial reads from database (read set)

• Caches reads locally, re-reads from cache

• Buffers writes locally (write set)

• Validation and Commit

1. Acquire shared locks on read set, exclusive locks on write set

2. Validate that data in read set hasn’t changed

• i.e., reading data in read set now would give the same result

3. Apply buffered writes in write set to commit transaction

• Else abort if locks can’t be acquired in 1 or validation fails in 2

4. Release locks

Many ways to do validation

2727

2PL vs OCC: Increasing Conflict Rate

From Rococo, OSDI 2014

2828

Distributed Transactions

2929

Recap: Sharding Data

A shard with 2
replicas

A transaction A read or write to some
(key, value) tuple. Here,

Hash(key) % N =1, so
read/write Shard 1

Shard 0 Shard 1 Shard N

• Data is partitioned (sharded) across nodes

Sharded storage service with N shards,
2 replicated servers per shard

3030

Single Node (Local) Transactions

If each transaction does all its work at just one shard, never needing
to access two or more shards, then sharding scales well

Shard 0 Shard 1 Shard N

Each transaction
accesses one shard

3131

Distributed Transactions

Transactions that touch multiple shards hold locks for long time,
need 2-phase commit (agreement protocol) for atomicity,

hard to scale … let’s see why in detail

Shard 0 Shard 1 Shard N

A transaction reads
or writes one or

more shards, needs
atomic operation

3232

Distributed Txn Execution Model

A

B

Coordinator node:

runs transaction code,

coordinates participants,

uses WAL for recovery

Participant nodes:

store transaction data,

acquire/release locks,

use WAL for recovery

Participant 1

Participant 2

transfer(A, B):

begin_tx

a = read(A)

if a < 10 then

 abort_tx

else

 write(A, a−10)

 b = read(B)

 write(B, b+10)

 commit_tx

Coordinator

3333

Atomic Commit

• Problem: Participant node may not be able to complete
its operation

• Cannot acquire required lock (e.g., deadlock)

• No memory or disk space available to do write

• Transaction constraint fails (e.g., a < 10)

• Node crashes

• Atomic: All or nothing

• Either all participants agree to commit (commit) or no
participant does anything (abort)

• i.e,. abort even if one participant says no

• Common use: commit a distributed transaction that
updates data on different shards

Why?

3434

2PL Two-Phase Commit

• Phase 1

• Coordinator sends Prepare requests to all participants

• Each participant votes yes or no

• Records vote in its log

• Sends yes or no vote back to coordinator

• Coordinator inspects all votes

• If all yes, then commit, else abort

• Records commit/abort status in log (commit point)

• Phase 2

• Coordinator sends Commit or Abort to all participants

• If commit, each participant commits changes

• Each participant releases any locks it holds

• Each participant sends an Ack back to the coordinator

A

B

Participant 1

Participant 2

transfer(A, B):

begin_tx

a = read(A)

if a < 10 then

 abort_tx

else

 write(A, a−10)

 b = read(B)

 write(B, b+10)

 commit_tx

Coordinator

3535

Two-Phase Commit

commit point

3636

OCC Two-Phase Commit

• Phase 1

• Coordinator sends Prepare requests to all participants

• Prepare includes read values and buffered writes for each participant

• Participant acquires shared locks on read set, exclusive locks on write set

• Participant validates that data in read set hasn’t changed

• Each participant votes yes or no

• Records vote in its log

• Sends yes vote or no vote back to coordinator

• Coordinator inspects all votes

• If all yes, then commit, else abort

• Records commit/abort status in log (commit point)

• Phase 2

• Coordinator sends Commit or Abort to all participants

• If commit, each participant commits changes

• Each participant releases any locks it holds

• Each participant sends an Ack back to the coordinator

A

B

Participant 1

Participant 2

transfer(A, B):

begin_tx

a = read(A)

if a < 10 then

 abort_tx

else

 write(A, a−10)

 b = read(B)

 write(B, b+10)

 commit_tx

Coordinator

OCC’s validation and
commit during 2PC

3737

Distributed Transactions and
Replication

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

Replication Dimension
S

h
a

rd
in

g
 D

im
e

n
s
io

n

3838

Replication, Sharding,
Atomic Commit

• Replication (e.g., primary-backup, state-machine
replication) is about doing the same thing in multiple
places, primarily to provide fault tolerance

• Sharding is about doing different things in multiple
places, primarily for scalability

• Atomic commit is about doing different things in
multiple places together (all or nothing)

3939

Distributed Transactions and
Replication

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

Replication Dimension

(primary-backup, SMR)

S
h

a
rd

in
g

 D
im

e
n

s
io

n

(a
to

m
ic

 c
o

m
m

it
)

4040

Motivation for Today’s Paper

• Distributed transactions are expensive

• Two-phase commit requires two additional round trips, in
addition to the read and write requests made to participants

• Locks are held from the time reads and writes are performed
until the end of the two-phase commit

• Other transactions waiting on locks are also delayed

• Key idea: limit the power of transactions to enable
scaling distributed transactions

	Slide 1: Transactions - A Quick Overview
	Slide 2: Transactions
	Slide 3: Transaction Execution Model
	Slide 4: Transaction Properties: ACID
	Slide 5: ACID Challenges
	Slide 6: Failure Recovery
	Slide 7: Failures
	Slide 8: Write-Ahead Logging (WAL)
	Slide 9: Undo Based Write-Ahead-Logging
	Slide 10: Undo Logging Example
	Slide 11: Redo Based Write-Ahead-Logging
	Slide 12: Redo Logging Example
	Slide 13: Isolation
	Slide 14: Isolation
	Slide 15: Serializability
	Slide 16: Schedules
	Slide 17: Conflicts
	Slide 18: Linearizability vs. Serializability
	Slide 19: Implementing Serializability with Locking
	Slide 20: Two-Phase Locking (2PL)
	Slide 21: 2PL Example
	Slide 22: 2PL Schedules
	Slide 23: Issues with 2PL
	Slide 24: 2PL is Pessimistic
	Slide 25: Be Optimistic!
	Slide 26: Optimistic Concurrency Control
	Slide 27: 2PL vs OCC: Increasing Conflict Rate
	Slide 28: Distributed Transactions
	Slide 29: Recap: Sharding Data
	Slide 30: Single Node (Local) Transactions
	Slide 31: Distributed Transactions
	Slide 32: Distributed Txn Execution Model
	Slide 33: Atomic Commit
	Slide 34: 2PL Two-Phase Commit
	Slide 35: Two-Phase Commit
	Slide 36: OCC Two-Phase Commit
	Slide 37: Distributed Transactions and Replication
	Slide 38: Replication, Sharding, Atomic Commit
	Slide 39: Distributed Transactions and Replication
	Slide 40: Motivation for Today’s Paper

