
1

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

ECE1724

Dynamo: Amazon’s Highly Available 
Key-value Store

Authors: Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan

Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter 

Vosshall and Werner Vogels

Many slides adapted from a talk by Peter Vosshall



2

Amazon’s eCommerce Platform 
Architecture

• Loosely coupled, 
service-oriented architecture

• Stateful services manage their 
own state

• Stringent latency requirements

• Services must adhere to formal SLAs

• Measured at 99.9 percentile

• Availability is paramount

• Large scale, keeps growing

• 10,000s servers worldwide



3

How does Amazon use Dynamo?

• Shopping cart

• Session information

• E.g., recently visited products

• Product list

• Mostly read-only, replicated for high read throughput



4

Motivation

• Need a highly available, scalable storage system

• Key-value storage is prevalent, powerful pattern

• Data is mostly accessed by primary key

• Data served is often self-describing blobs (not structured)

• RDMS is not a good fit

• Most features are unused, e.g., query optimizer, stored 
procedures, triggers, etc.

• Scales up, not out so easily

• Strongly consistent, limits availability



5

Key Requirements

• High “always writable” availability is critical

• Accept writes during failure scenarios

• Total ordering not possible

• Allow writes without prior context

• Ordering a client’s writes may not be possible

• User-perceived consistency is also very important

• Anomalies due to weak consistency should be rare

• Guaranteed latency, measured in 99.9 percentile

• Incremental scalability, reduces TCO

• Tunable latency, consistency, availability, durability



6

Design Overview

• Dynamo is a decentralized (peer-to-peer) replicated, 
distributed hash table

• Key design questions

• How is data placed and replicated on nodes?

• How to provide availability and consistency under failures?

• How to route requests to nodes storing the data?

• Techniques

• Consistent hashing for partitioning the key space

• Sloppy quorum for high availability and consistency

• Optimistic replication for eventual consistency

• Gossip-based protocols for membership and mapping



7

Dynamo API

• The get(k) and put(k, v) API includes a context that 
contains version information (discussed later)

// get returns one or more object versions, and a context.
//
object[], context = get(key)

// put supplies context returned by previous get.
//
put(key, object, context)



8

Consistent Hashing



9

Why Consistent Hashing?

• Enables partitioning the key space across nodes

• Handles adding and deleting nodes

• If you use standard hashing, why would this be a problem?

• Enables incremental scalability

• Handles data replication



10

Hash ID

• Hash the key to a 128 bit ID

• ID = h(key), where h is MD5

• ID lies in a circular key space
0

2127

2128 − 1

h(key2)

h(key1)



11

Node and Key Assignment

• Key idea of consistent hashing:

• Each node is assigned an ID, e.g., h(A), in the key space

• Each key (based on its ID) is owned by first clockwise node

h(key2)

A

B

C

h(key1)



12

Nodes Store Key Ranges

• Each node owns keys in the range between its 
predecessor and itself

h(key2)

A

B

C

h(key1)



13

Node Addition/Deletion

• Adding or removing a node affects only a part of the key 
range

AC

B

D

h(key1)



14

Replication

• A key is replicated at the first 3 clockwise nodes

• Each node stores key ranges between its 3rd 
predecessor and itself

h(key1)

AC

B

D

E

F

G



15

Key Load Imbalance

• Key range can be unbalanced

AC

B

D

E
G

F

large
range

small
range



16

Load Balancing via Virtual Nodes

• Map each physical node to multiple virtual nodes

• Pros: reduces key range skew across physical nodes

• Cons: increases membership size

small
range

AA

B

A

B
B

B

large
range



17

Sloppy Quorum



18

Why Sloppy Quorum?

• Challenge is to ensure both high availability and user-
perceived consistency, with two goals:

• Data should be always writable

• Avoid anomalies due to weak consistency with high probability

• Solution: Be available

• Consistent during normal operation, sloppy during failures



19

• Sloppy quorum builds on majority quorum protocol

• Basic Majority Quorum protocol

• Assume

• N: Number of nodes (or replicas) storing a key

• R: Successful read involves at least R nodes

• W: Successful write involves at least W nodes

• Choose: R + W > N

• Since reads and writes overlap at least one replica, 
majority quorum ensures reads will read the latest data

• Example:

• N = 3, R = 2, W = 2

Majority Quorum Protocol

write readA BE



20

Majority Quorum Example

• Assume N = 3, R = 2, W = 2

• put(k, v)

• Coordinated by a node that stores key k

• Typically, first replica is chosen

• However, other replicas may also be chosen for load balancing

• Returns when at least W=2 replicas update key and respond to 
the coordinator

• get(k)

• Coordinated by any node (whether node stores k or not)

• Returns when at least R=2 replicas respond with the value of 
key to the coordinator



21

Majority Quorum Example

• N = 3, R = 2, W = 2

• Assume client performs put(k1, v1)

AC

B

D

E

F

G

put(k1, v1) is performed
by coordinator A

A forwards put
to E and B

put returns when
 A receives response 

from E or B
E’s response

B’s response

k1=v1

k1=v1

k1=v1

B could have failed but
put returns successfully

h(key1)



22

• When a node is not available, writes sent to a new node

• Reads and writes are performed on N healthy nodes

• So failed nodes are skipped

• Sloppy: R+W > N does not guarantee that reads, writes overlap

• However, reads still often read the latest data

Sloppy Quorum
always writable operation



23

Sloppy Quorum

• Assume client performs put(k1, v2)

• If B fails, A forwards put(k1, v2) to D (temporary replica)

• Even if B restarts, get(k1) often returns latest version

AC

B

D

E

F

G
A forwards put

to E and D

E’s response

D’s response

B has failed

k1=v2

k1=v2

k1=v1

k1=v2

put(k1, v2) is performed
by coordinator A

put returns when
 A receives response 

from E or D

h(key1)



24

Sloppy Quorum and Replica 
Divergence

• After node B fails, it will have a stale replica

AC

B

D

E

F

G
replicas have

diverged

k1=v2

k1=v1

k1=v2

k1=v2

h(key1)



25

Sloppy Quorum and Failure 
Recovery

• After node B fails, it will have a stale replica

• When temporary replica D finds that B has recovered:

• D sends v2 to B, and may delete v2 from its store

AC

B

D

E

F

G
k1=v2

k1=v1

k1=v2

k1=v2

k1=v2
Node B recovers 

from failure

h(key1)



26

Replica Synchronization

• Nodes may have stale replicas, leave or fail permanently

• Replicas of key ranges are synchronized with an 
efficient anti-entropy protocol that uses Merkle trees

AC

F

G

h(key1)

E

D

B
Node B failed,

A or E can send
(F-A) range to D

A and E can compare 
and update (F-A) range



27

Sloppy Quorum Configuration

N R W Application

3 2 2 Consistent, durable, user state
(typical configuration)

N 1 N High performance read engine

1 1 1 Distributed web cache



28

Optimistic Replication



29

Why Optimistic Replication?

• With sloppy quorum, replicas may be stale or conflicting

• Stale replica: replica has old version

• Conflicting replica: process wrote to a stale replica

• Optimistic replication is used to 

• Detect stale and conflicting replicas

• Synchronize them so replicas become eventually consistent

• Dynamo implements optimistic replication using 
immutable versions and version histories

• put() creates new, immutable object version

• Each node tracks version history, i.e., version information for 
each object version and how they are related



30

Optimistic Replication Example

• put(k, v1) writes to A, E, B

• Assume v1 is both a value, 
and a new version 
associated with the value

A E DB

v1 v1 v1

Version history

v1

put(k, v1)



31

Example

• B and E fail

• put(k, v2), based on v1, 
writes to A and D

• D is a temporary replica

• v1 is an ancestor of v2 
in version history

A E DB

put(k, v2)

v1 v1 v1

Version history

v2 v2

v1

v2



32

Example

• B and E fail

• put(k, v2), based on v1, 
writes to A and D

• D is a temporary replica

• v1 is an ancestor of v2 
in version history

• A removes v1 (stale version)

A E DB

v1 v1 v1

Version history

v2 v2

v1

v2

put(k, v2)



33

Example

• B and E recover

• A fails

• get(k) reads v1 from E and B

• v1 is a stale version

A E DB

v1 = get(k)

v1 v1 v1

Version history

v2 v2

v1

v2



34

Example

• A recovers

• put(k, v3), based on v1,
writes to E, A, B

• Creates branch in history, 
since put() performed based 
on stale version v1

A E DB

put(k, v3), based on v1

v1 v1 v1

Version history

v2 v2

v1

v2

v3 v3 v3

v3



35

Example

• A recovers

• put(k, v3), based on v1,
writes to E, A, B

• Creates branch in history, 
since put() performed based 
on stale version v1

• Nodes store versions that are 
leaves in version history

• E and B remove v1, ancestor of v3

• A stores v2 and v3, since they conflict

v1 v1 v1

Version history

v2 v2

v1

v2

v3 v3 v3

v3

A E DB

put(k, v3), based on v1



36

Example

• get(k) reads conflicting [v2, v3]
from A, E, B

• Dynamo provides all conflicting 
versions to client, since client 
knows best how to reconcile them

• E.g., app can merge two conflicting 
shopping carts

A E DB

[v2, v3] = get(k)

v1 v1 v1

Version history

v2 v2

v1

v2

v3 v3 v3

v3



37

Example

• put(k, v4),
based on [v2, v3],
writes to A, E, B

• Dynamo expects app 
reconciled [v2, v3] 
when it created v4

A E DB

put(k, v4), based on [v2, v3]

v1 v1 v1

Version history

v2 v2
v3 v3 v3
v4 v4 v4

v1

v2 v3



38

Example

• put(k, v4),
based on [v2, v3],
writes to A, E, B

• Dynamo expects app 
reconciled [v2, v3] 
when it created v4

• put() merges conflicting versions
into single new version

• Version history has single head

A E DB

put(k, v4), based on [v2, v3]

v1 v1 v1

Version history

v2 v2
v3 v3 v3
v4 v4 v4

v1

v2 v3

v4



39

Example

• put(k, v4),
based on [v2, v3],
writes to A, E, B

• Dynamo expects app 
reconciled [v2, v3] 
when it created v4

• put() merges conflicting versions
into single new version

• Version history has single head

• A, E, B and D can remove 
stale versions v2 and v3

A E DB

put(k, v4), based on [v2, v3]

v1 v1 v1

Version history

v2 v2
v3 v3 v3
v4 v4 v4

v1

v2 v3

v4



40

Example

• put(k, v4),
based on [v2, v3],
writes to A, E, B

• Dynamo expects app 
reconciled [v2, v3] 
when it created v4

• put() merges conflicting versions
into single new version

• Version history has single head

• A, E, B and D can remove 
stale versions v2 and v3

• Object is eventually consistent

A E DB

put(k, v4), based on [v2, v3]

v1 v1 v1

Version history

v2 v2
v3 v3 v3
v4 v4 v4

v1

v2 v3

v4



41

Implementing Version History With 
Vector Clocks

• Dynamo uses vector clocks to 
implement version history

• Efficiently capture causality

• Stale versions can be forgotten

• Concurrent versions are conflicting, 
require reconciliation

• Each object version stores a
vector clock:

A E DB

v1 v1 v1

Version history

v2 v2
v3 v3 v3
v4 v4 v4

v1

v2 v3

v4

[(A, 1)]

[(A, 2)] [(A, 1),
 (E, 1)]

[(A, 3), (E, 1)]

[(node1, #updates1),
 (node2, #updates2), …]

v1
v2
v4

v3



42

Dynamo API With Vector Clocks

• The get(k) and put(k, v) API includes a context that 
contains version information (vector clock)

// get returns one or more object versions, and a context.
// context contains version information for each returned version.
object[], context = get(key)

// put supplies context returned by previous get.
// context helps generate version information for new object version.
put(key, object, context)



43

Gossip-Based Protocols



44

Why Gossip-Based Protocols?

• Gossip protocols exchange information between nodes 
in a peer-to-peer (symmetric) manner

• A<->B: A and B learn about each other’s state

• B<->C: B and C learn about each other’s state,
so C learns about A’s state as well

• In general, these protocols enable nodes to

• Learn about the state of other nodes

• Use version history of state to become eventually consistent

• Tradeoffs:

• Pros: avoid need for a coordinator, provide higher availability

• Cons: nodes may have stale information for a while



45

Membership and Mapping

• Dynamo uses gossiping to propagate membership, 
mapping information

• Administrator explicitly adds and remove nodes

• Membership: After that, nodes communicate with each 
other to eventually learn about an added/deleted node

• Mapping information: Nodes also learn about node 
mappings, i.e., the key ranges stored on a node



46

Routing Key Lookup

• With gossiping, each node knows about 1) all other 
nodes, and 2) the key ranges each node stores

• Allows one-hop routing (critical for low latency)

AC

B

D

E

F

G

h(key1)



47

Failure Detection

• Initially implemented node failure detection via gossip

• Not needed due to explicit node add/remove

• No need to distinguish between temporarily failed/recovering 
nodes versus removed/added nodes

• Simple failure detection

• A detects B as failed if it doesnt respond to a ping message

• A periodically checks if B is alive again

• In the absense of requests, A doesn’t need to know if B is alive



48

Evaluation 500 ms SLA for storage system
for shopping cart application



49

Lessons Learned: Tail Latency

• 99.9 percentile is a high bar

• Packet losses, waiting on disk, accessing large objects, JVM 
garbage collection, …

• Techniques used to reduce tail latency

• Use buffered writes to avoid waiting on disk

• Need to deal with version consistency, e.g., if version number is 
increased on disk, but failure loses the object version

• Lazy removal of stale versions

• Adaptive throttling of background operations based on 
observed foreground operation latency



50

Lessons Learned: Repartitioning

• Slow repartitioning

• Successor (C) splits key range to bootstrap new node (D)

• Requires ordered key traversal (scan), causes heavy random 
disk I/O at C, with throttling, takes hours/days to finish

AC

B

Dnew node

C splits its key range
to send to D



51

Lessons Learned: Repartitioning

• Use fixed arcs strategy

• Divide hash ring into many fixed key ranges called segments

• Coordinate assignment of segments to nodes

• New node (D) steals entire existing segments 
from other nodes, allowing 
simple file transfer, sequential IO

• Scales better

• However, moves away
from decentralized 
principle

A

C

Bnew node

C

A

B

AC
B

CA
B

D

D

D



52

Dynamo: Pros and Cons

• Pros

• Highly available - 99.9995% request success over one year

• Meets tight latency requirements

• Incrementally scalable

• Tunable consistency, durability

• Cons

• No transactional semantics

• More challenging programming model, e.g., handling conflicts

• Doesn’t support ordered key operations, streaming operations

• Not appropriate for large (> 1MB) objects



53

Conclusions

• Highly scalable, replicated, eventually consistent key-
value store

• Decentralized (peer-to-peer) techniques can be used for 
building highly available system

• High availability: provides an ”always-on” experience

• Mostly consistent: clients rarely see conflicting versions

• Highly influential

• Apache Cassandra builds on Dynamo’s design



54

Discussion



55

Q1

• What design constraints are imposed by the “always 
writable” requirement?



56

Q2

• How would you compare Dynamo against Bigtable in 
terms of:

• API

• Workloads

• Availability

• Consistency



57

Q3

• Say dynamo is heavily loaded, i.e., many of the nodes 
are loaded, and so the dynamo administrator decides to 
add a node. Would that help reduce load on all the 
nodes?



58

Q4

• Under what scenarios can a client read multiple 
conflicting versions of an object? Why is this unlikely in 
Dynamo?



59

Q5

• What are the scalability limitations of Dynamo?


	Slide 1: Dynamo: Amazon’s Highly Available Key-value Store
	Slide 2: Amazon’s eCommerce Platform Architecture
	Slide 3: How does Amazon use Dynamo?
	Slide 4: Motivation
	Slide 5: Key Requirements
	Slide 6: Design Overview
	Slide 7: Dynamo API
	Slide 8: Consistent Hashing
	Slide 9: Why Consistent Hashing?
	Slide 10: Hash ID
	Slide 11: Node and Key Assignment
	Slide 12: Nodes Store Key Ranges
	Slide 13: Node Addition/Deletion
	Slide 14: Replication
	Slide 15: Key Load Imbalance
	Slide 16: Load Balancing via Virtual Nodes
	Slide 17: Sloppy Quorum
	Slide 18: Why Sloppy Quorum?
	Slide 19: Majority Quorum Protocol
	Slide 20: Majority Quorum Example
	Slide 21: Majority Quorum Example
	Slide 22: Sloppy Quorum
	Slide 23: Sloppy Quorum
	Slide 24: Sloppy Quorum and Replica Divergence
	Slide 25: Sloppy Quorum and Failure Recovery
	Slide 26: Replica Synchronization
	Slide 27: Sloppy Quorum Configuration
	Slide 28: Optimistic Replication
	Slide 29: Why Optimistic Replication?
	Slide 30: Optimistic Replication Example
	Slide 31: Example
	Slide 32: Example
	Slide 33: Example
	Slide 34: Example
	Slide 35: Example
	Slide 36: Example
	Slide 37: Example
	Slide 38: Example
	Slide 39: Example
	Slide 40: Example
	Slide 41: Implementing Version History With Vector Clocks
	Slide 42: Dynamo API With Vector Clocks
	Slide 43: Gossip-Based Protocols
	Slide 44: Why Gossip-Based Protocols?
	Slide 45: Membership and Mapping
	Slide 46: Routing Key Lookup
	Slide 47: Failure Detection
	Slide 48: Evaluation
	Slide 49: Lessons Learned: Tail Latency
	Slide 50: Lessons Learned: Repartitioning
	Slide 51: Lessons Learned: Repartitioning
	Slide 52: Dynamo: Pros and Cons
	Slide 53: Conclusions
	Slide 54: Discussion
	Slide 55: Q1
	Slide 56: Q2
	Slide 57: Q3
	Slide 58: Q4
	Slide 59: Q5

