
1

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

ECE1724

Spanner: Google’s
Globally-Distributed Database

Authors:

Many slides adapted from Wyatt Lloyd, Mike Freedman, Spanner OSDI talk

2

Why Built Spanner?

• BigTable [OSDI 2006]

• Eventually consistent across datacenters

• Lesson: Don’t need distributed transactions…

• MegaStore [CIDR 2011]

• Strongly consistent across datacenters

• Supported distributed transactions, relational model

• However, performance was not great…

• Spanner [OSDI 2012]

• Strictly serializable distributed transactions at global scale

• Goals: Make it easy for developers to build their applications,
provide good performance

3

What is Spanner?

• Spanner is a globally distributed (multi-datacenter) and
replicated storage system

• Spanner supports

• General-purpose transactions with SQL interface

• Strong consistency (strict serializability)

• High availability with wide-area replication

• These properties ease app development

• Behaves like a single-machine database

4

Spanner Architecture

• Spanner is deployed over multiple, geographically-
distributed datacenters (zones)

• Each zone has a Bigtable style deployment

• 100-1000s of servers per zone, 100-1000s of tablets per server

Assigns data to
spanservers

Serve data to
clients

Helps clients locate
spanservers that
serve their data

Moves data between
zones for load balancing,

meeting replication
constraints, etc., in
minutes timescale.

5

Spanner Replication

• Each tablet is replicated using state machine replication
(Paxos) for fault-tolerance

• Tablet replicas can cross data centers

6

Spanner Transactions

• Uses strict two-phase locking and two-phase commit for
read-write transactions, ensuring strict serializability

• Spanner provides external consistency

Replication of coordinator and participant transaction state
ensures non-blocking commit, high availability

coordinator
leader

This is the same guarantee
as strict serializability.

So, what specific problem
are they solving?

7

Read-Heavy Workloads

• Reads are dominant in many workloads

• Facebook’s TAO had 500:1 reads-write ratio [ATC 2013]

• Google Ads (F1) on Spanner has 1000:1 read-write ratio

• One data center in 24 hours had

• 21.5B reads

• 31.2M single-shard transactions

• 32.1M multi-shard transactions

8

Fast Read-Only Transactions

• Transactions that only read data

• Predeclared, e.g., developer uses READ_ONLY flag

• Spanner provides lock-free reads while ensuring strict
serializability!

• Reads don't acquire locks and thus don't block writers

• Reads may block on writers but are consistent,
i.e., read latest committed version

• Snapshot reads (reads in the past) are supported

• How can we perform lock-free reads correctly?

9

Multi-versioning and Timestamps

• Lock-free reads can be performed by keeping multiple
immutable versions of data and using timestamps

• Writer: Each write creates a new immutable version with a
timestamp of the transaction that issues the write

• Reader: A read at a timestamp returns the value of the most
recent version prior to that timestamp

• Reader doesn’t block writer

• The approach above allows lock-free reads,
but how can we perform consistent reads?

• i.e., after a read-write transaction completes, a later read-only
transaction (in real-time order) returns the value written by
the read-write transaction (or later read-write transaction)

10

Lock-Free Read-Only Transactions
(Basic Idea)

• Read-write transactions:

• On commit, assign timestamp Tw = current time to transaction

• All replicas track how up-to-date they are: Tsafe

• => Replica has all committed transactions with timestamp T < Tsafe

• Read-only transactions:

• Assign timestamp Tr = current time to transaction

• Wait until Tr < Tsafe at any replica

• Read data as of Tr

• Guarantees read reflects
all transactions committed before Tr,
i.e., linearizable read-only transactions

assume
global wall-clock time

assume
global wall-clock time

11

Timestamp Synchronization Problem

• Read-write transactions:

• On commit, assign timestamp Tw = current time

• All servers track how up-to-date they are Tsafe

• => Replica has all committed transactions with timestamp T < Tsafe

• Read-only transactions:

• Assign timestamp Tr = current time

• Wait until Tr < Tsafe

• Read data as of Tr

• Guarantees read reflects
all transactions committed before Tr ,
i.e., linearizable read-only transactions

• Transactions are initiated and committed on different
machines, so times may not be synchronized

How can the boxed
operations be

performed correctly?

12

Timestamp Problem

• Say a person issues transaction T1 in Zone Z1

• T1 writes A=1 at Z1, B=2 at Z2

• Then the same person issues transaction T2 in Zone Z2

• T2 reads B at Z2

• Person expects that T2’s read B will return 2

T1 w(A=1)Z1

T1 w(B=2)Z2 T2 r(B)

13

Timestamp Problem

• But what if Z2 is running much behind Z1?

• T1 is assigned timestamp based on Z1, e.g., Tw=10

• T2 is assigned timestamp Tr based on Z2, e.g., Tr=8

• Then, T2 reads previous version of B!

T1 w(B=2, Tw = 10)Z2 T2 r(B, Tr = 8)

T1 w(A=1, Tw = 10)Z1

14

Key Innovation in Spanner

• Spanner provides a time API called TrueTime that
provides bounded error

• Clocks on all Spanner machines, across all data centers, are
engineered to have a maximum divergence!

• TrueTime enables three innovations:

1. Using the bounded error to ensure lock-free consistent reads

2. Assigning commit timestamps to transactions that reflect
serialization order in real time without global communication

3. Allowing consistent reads for replicated data from any replica

15

TrueTime

• A global wall-clock time with bounded uncertainty

• Consider event e that invokes tt = TT.now()

• TrueTime tt is an interval (earliest, latest) with the guarantee:

• tt.earliest <= tabs(e) <= tt.latest, tabs is global wall-clock time

• Error bound ε is determined based on worst-case clock
drift, communication delay to time masters

ε

time
earliest latest

ε

16

True Time Architecture

• Each client periodically synchronizes its clock:

• Contacts multiple GPS and atomic-clock timeservers

• Estimates reference now, reference error bound (ε)

…

Datacenter 1

GPS
timemaster

Client

GPS
timemaster

Atomic-clock
timemaster

GPS
timemaster

Datacenter 2

GPS
timemaster

GPS
timemaster

Datacenter N

17

True Time Implementation

• TrueTime in between clock synchronizations:

now = reference now + local-clock offset

ε = reference ε + worst-case local-clock drift

TrueTime = now ± ε
Assumed to be 200 μs/sec

for Google’s machines

time

ε

0sec 30sec 60sec 90sec

+6ms

TrueTime interval is 2*ε,
roughly 10 ms

18

Read-Only Txns with TrueTime

• Read-write transactions:

• On commit, assign timestamp Tw = current time to transaction

• All replicas track how up-to-date they are: Tsafe

• => Replica has all committed transactions with timestamp T < Tsafe

• Read-only transactions:

• Assign timestamp Tr = TT.now().latest to transaction

• Wait until Tr < Tsafe at any replica

• Read data as of Tr

• Bounded error guarantees read reflects
all transactions committed before Tr,
i.e., linearizable read-only transactions

still assume
global wall-clock time

With TrueTime,
Tr >= global wall-clock time

Innovation 1

19

txn
reads

acquire
locks

Read-Write Txns with TrueTime

• Read-write transactions:

• On commit, assign timestamp Tw = TT.now().latest to
transaction (similar to read-only transactions)

• Wait until Tw < TT.now().earliest to commit

On commit, pick
Tw = TT.now().latest

TT

𝑡𝑎𝑏𝑠
Wait until

Tw < TT.now().earliest

Tw

20

Commit Timestamp and
Real-Time Serialization Order

• Read-write transactions:

• On commit, assign timestamp Tw = TT.now().latest to
transaction (similar to read-only transactions)

• Wait until Tw < TT.now().earliest to commit

With TrueTime,
Tw < end of commit

With TrueTime,
Tw >= begin of commit

On commit, pick
Tw = TT.now().latest

TT

𝑡𝑎𝑏𝑠
Wait until

Tw < TT.now().earliest

Tw𝑡𝑎𝑏𝑠

txn
reads

acquires
locks

commit timestamp
respects real-time
serialization order

Innovation 2

21

Commit Wait Time

• Read-write transactions:

• On commit, assign timestamp Tw = TT.now().latest to
transaction (similar to read-only transactions)

• Wait until Tw = TT.now().earliest to commit

• Expected wait is roughly 2*ε, TrueTime interval

Commit wait (2*ε)

On commit, pick
Tw = TT.now().latest

Wait until
Tw < TT.now().earliest

Tw

release
locks

txn
reads

acquires
locks

22

Consistent Lock-Free Reads

• TrueTime guarantees consistent lock-free reads because
commit timestamps reflect real-time serialization order

1. Tw < RW_txn ends (commit wait)

2. RW_txn ends < RO_txn starts (RO starts after RW ends)

3. RO_txn starts <= Tr (timestamp assignment)

On commit, pick
Tw = TT.now().latest

Wait until
Tw < TT.now().earliest

Tw

read-write
transaction

read-only
transaction

pick
Tr = TT.now().latest

⇒Tw < Tr

Innovation 1+2

Tw < Tr, and
RO txn waits until Tr < Tsafe,
so RO txn is guaranteed to read
RW txn’s writes (without locks!)

23

Transaction Replication

On commit, pick
Tw = TT.now().latest

Wait until
Tw < TT.now().earliest

release
locks

Commit wait (2*ε)

consensus
done

consensus
start

• A read-write transaction
runs at leader replica

• During commit, transaction log
is replicated using consensus

• Commit wait and consensus overlap in time!

txn
reads

acquires
locks

24

Distributed Transactions

• For read-write transactions, clients read data from
leader replicas, drive two-phase commit

coordinator
leader

coordinator
leader

Client

25

Distributed Transaction Execution

• Read-write transaction execution:

• Client issues reads to leader (replica) of each tablet

• Leaders acquire read locks, return most recent data

• Recall, data is versioned

• Client buffers writes

• Read-write transaction commit:

• Client chooses coordinator from set of leaders

• Client sends commit message to each leader,
including identify of coordinator and buffered writes

• Client waits for commit from coordinator

26

Two-Phase Commit

• On commit msg from client, participant leaders:

• Acquire write locks

• Choose increasing prepare timestamp (Tp) > all previously logged local ts

• Log prepare record through Paxos

• Notify coordinator of prepare timestamp

• On receiving all participant replies, coordinator leader:

• Chooses monotonically increasing commit timestamp (Tc), such that:
1) >= all Tp, 2) > previously logged local ts, 3) > TT.now.latest()

• Logs commit record through Paxos

• Waits until Tc < TT.now.earliest(), i.e., commit-wait period

• Sends commit timestamp to other leaders, client

• All leaders log commit timestamp and transaction outcome
through Paxos, and release locks

27

Two-Phase Commit

• Client chooses coordinator from set of leaders

• Client sends commit message to each leader (C, P1, P2),
including identify of coordinator and buffered writes

P1

P2

C

Client

28

Two-Phase Commit

• Client waits for commit from coordinator

• Client wait done

acquire
write locks

P1

P2

C
acquire

write locks

acquire
write locks

Compute Tp,
log it via Paxos

send
Tp

compute Tc,
log it via Paxos

commit
wait done

release
locks

send
Tc

release
locks

release
locks

Client

log Tc via Paxos

29

Tracking Progress at Replicas

• Recall that read-only transactions wait until Tr < Tsafe

• All transactions with timestamp T < Tsafe have committed

• But how is Tsafe determined?

• Spanner ensures

1. Leaders use TrueTime to have disjoint lease intervals, assign
timestamps to Paxos writes in monotonically increasing order

2. Each replica assigns and logs prepare and commit timestamps
via Paxos in monotonically increasing order

⇒ Tsafe is roughly the highest commit timestamp
 before which there are no prepare timestamps

• Each replica tracks Tsafe, so consistent reads can be
performed at any replica Innovation 3

30

Conclusions

• Spanner is a globally-distributed database that
combines concurrency control (2PL) with atomic
commit (2PC) and replication (Paxos)

• Provides strong consistency and availability at global scale!

• Makes it easy for developers to build apps

• Optimizes for reads, which are dominant

• Enables strongly consistent, lock-free reads

• TrueTime exposes clock uncertainty

• Transactions wait out this uncertainty to ensure real-time
ordering of transactions

• CockroachDB, YugabyteDB build on Spanner

31

Discussion

32

Q1

• In what ways does Spanner use TrueTime?

33

Q2

• Databases generally use single-version, lock-based
concurrency control, or multi-versioned concurrency
control. Why does Spanner use both locking and multi-
versioning?

34

Q3

• Spanner keeps a lock table at the leader replicas (of the
tablets). Why is this table not replicated using Paxos at
the participant replicas?

35

Q4

• How would a large TrueTime error bound affect
Spanner?

36

Q5

• Compared to Dynamo, how may Spanner limit
availability and performance for writes, reads?

	Slide 1: Spanner: Google’s Globally-Distributed Database
	Slide 2: Why Built Spanner?
	Slide 3: What is Spanner?
	Slide 4: Spanner Architecture
	Slide 5: Spanner Replication
	Slide 6: Spanner Transactions
	Slide 7: Read-Heavy Workloads
	Slide 8: Fast Read-Only Transactions
	Slide 9: Multi-versioning and Timestamps
	Slide 10: Lock-Free Read-Only Transactions (Basic Idea)
	Slide 11: Timestamp Synchronization Problem
	Slide 12: Timestamp Problem
	Slide 13: Timestamp Problem
	Slide 14: Key Innovation in Spanner
	Slide 15: TrueTime
	Slide 16: True Time Architecture
	Slide 17: True Time Implementation
	Slide 18: Read-Only Txns with TrueTime
	Slide 19: Read-Write Txns with TrueTime
	Slide 20: Commit Timestamp and Real-Time Serialization Order
	Slide 21: Commit Wait Time
	Slide 22: Consistent Lock-Free Reads
	Slide 23: Transaction Replication
	Slide 24: Distributed Transactions
	Slide 25: Distributed Transaction Execution
	Slide 26: Two-Phase Commit
	Slide 27: Two-Phase Commit
	Slide 28: Two-Phase Commit
	Slide 29: Tracking Progress at Replicas
	Slide 30: Conclusions
	Slide 31: Discussion
	Slide 32: Q1
	Slide 33: Q2
	Slide 34: Q3
	Slide 35: Q4
	Slide 36: Q5

