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Why Built Spanner?

• BigTable [OSDI 2006]

• Eventually consistent across datacenters

• Lesson: Don’t need distributed transactions…

• MegaStore [CIDR 2011] 

• Strongly consistent across datacenters

• Supported distributed transactions, relational model

• However, performance was not great…

• Spanner [OSDI 2012] 

• Strictly serializable distributed transactions at global scale

• Goals: Make it easy for developers to build their applications, 
provide good performance
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What is Spanner?

• Spanner is a globally distributed (multi-datacenter) and 
replicated storage system

• Spanner supports

• General-purpose transactions with SQL interface

• Strong consistency (strict serializability)

• High availability with wide-area replication

• These properties ease app development

• Behaves like a single-machine database
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Spanner Architecture

• Spanner is deployed over multiple, geographically-
distributed datacenters (zones)

• Each zone has a Bigtable style deployment

• 100-1000s of servers per zone, 100-1000s of tablets per server

Assigns data to 
spanservers

Serve data to 
clients

Helps clients locate 
spanservers that 
serve their data

Moves data between 
zones for load balancing, 

meeting replication 
constraints, etc., in 
minutes timescale.
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Spanner Replication

• Each tablet is replicated using state machine replication 
(Paxos) for fault-tolerance

• Tablet replicas can cross data centers
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Spanner Transactions

• Uses strict two-phase locking and two-phase commit for 
read-write transactions, ensuring strict serializability

• Spanner provides external consistency

Replication of coordinator and participant transaction state 
ensures non-blocking commit, high availability

coordinator
leader

This is the same guarantee 
as strict serializability.

So, what specific problem 
are they solving?
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Read-Heavy Workloads

• Reads are dominant in many workloads

• Facebook’s TAO had 500:1 reads-write ratio [ATC 2013]

• Google Ads (F1) on Spanner has 1000:1 read-write ratio

• One data center in 24 hours had  

• 21.5B reads

• 31.2M single-shard transactions

• 32.1M multi-shard transactions
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Fast Read-Only Transactions

• Transactions that only read data

• Predeclared, e.g., developer uses READ_ONLY flag

• Spanner provides lock-free reads while ensuring strict 
serializability!

• Reads don't acquire locks and thus don't block writers

• Reads may block on writers but are consistent, 
i.e., read latest committed version

• Snapshot reads (reads in the past) are supported

• How can we perform lock-free reads correctly?
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Multi-versioning and Timestamps

• Lock-free reads can be performed by keeping multiple 
immutable versions of data and using timestamps

• Writer: Each write creates a new immutable version with a 
timestamp of the transaction that issues the write

• Reader: A read at a timestamp returns the value of the most 
recent version prior to that timestamp

• Reader doesn’t block writer

• The approach above allows lock-free reads, 
but how can we perform consistent reads?

• i.e., after a read-write transaction completes, a later read-only 
transaction (in real-time order) returns the value written by 
the read-write transaction (or later read-write transaction)
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Lock-Free Read-Only Transactions 
(Basic Idea)

• Read-write transactions:

• On commit, assign timestamp Tw = current time  to transaction

• All replicas track how up-to-date they are: Tsafe

• => Replica has all committed transactions with timestamp T < Tsafe

• Read-only transactions:

• Assign timestamp Tr = current time  to transaction

• Wait until Tr < Tsafe at any replica

• Read data as of Tr

• Guarantees read reflects
all transactions committed before Tr,
i.e., linearizable read-only transactions

assume
global wall-clock time

assume
global wall-clock time
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Timestamp Synchronization Problem

• Read-write transactions:

• On commit, assign timestamp Tw = current time

• All servers track how up-to-date they are Tsafe

• => Replica has all committed transactions with timestamp T < Tsafe

• Read-only transactions:

• Assign timestamp Tr = current time

• Wait until Tr < Tsafe

• Read data as of Tr

• Guarantees read reflects 
all transactions committed before Tr , 
i.e., linearizable read-only transactions

• Transactions are initiated and committed on different 
machines, so times may not be synchronized

How can the boxed 
operations be 

performed correctly?
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Timestamp Problem

• Say a person issues transaction T1 in Zone Z1

• T1 writes A=1 at Z1, B=2 at Z2

• Then the same person issues transaction T2 in Zone Z2

• T2 reads B at Z2

• Person expects that T2’s read B will return 2

T1 w(A=1)Z1

T1 w(B=2)Z2 T2 r(B)
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Timestamp Problem

• But what if Z2 is running much behind Z1?

• T1 is assigned timestamp based on Z1, e.g., Tw=10

• T2 is assigned timestamp Tr based on Z2, e.g., Tr=8

• Then, T2 reads previous version of B!

T1 w(B=2, Tw = 10)Z2 T2 r(B, Tr = 8)

T1 w(A=1, Tw = 10)Z1
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Key Innovation in Spanner

• Spanner provides a time API called TrueTime that 
provides bounded error

• Clocks on all Spanner machines, across all data centers, are 
engineered to have a maximum divergence!

• TrueTime enables three innovations:

1. Using the bounded error to ensure lock-free consistent reads

2. Assigning commit timestamps to transactions that reflect 
serialization order in real time without global communication

3. Allowing consistent reads for replicated data from any replica
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TrueTime 

• A global wall-clock time with bounded uncertainty

• Consider event e that invokes tt = TT.now()

• TrueTime tt is an interval (earliest, latest) with the guarantee:

• tt.earliest <= tabs(e) <= tt.latest, tabs is global wall-clock time

• Error bound ε is determined based on worst-case clock 
drift, communication delay to time masters

ε

time
earliest latest

ε
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True Time Architecture

• Each client periodically synchronizes its clock:

• Contacts multiple GPS and atomic-clock timeservers

• Estimates reference now, reference error bound (ε)

…

Datacenter 1

GPS 
timemaster

Client

GPS 
timemaster

Atomic-clock
timemaster

GPS 
timemaster

Datacenter 2

GPS 
timemaster

GPS 
timemaster

Datacenter N
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True Time Implementation

• TrueTime in between clock synchronizations:

now = reference now + local-clock offset

ε  = reference ε   + worst-case local-clock drift

TrueTime = now ± ε
Assumed to be 200 μs/sec 

for Google’s machines

time

ε

0sec 30sec 60sec 90sec

+6ms

TrueTime interval is 2*ε, 
roughly 10 ms
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Read-Only Txns with TrueTime

• Read-write transactions:

• On commit, assign timestamp Tw = current time  to transaction

• All replicas track how up-to-date they are: Tsafe

• => Replica has all committed transactions with timestamp T < Tsafe

• Read-only transactions:

• Assign timestamp Tr = TT.now().latest to transaction

• Wait until Tr < Tsafe at any replica

• Read data as of Tr

• Bounded error guarantees read reflects
all transactions committed before Tr,
i.e., linearizable read-only transactions

still assume
global wall-clock time

With TrueTime,
Tr >= global wall-clock time

Innovation 1 
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txn
reads

acquire
locks

Read-Write Txns with TrueTime

• Read-write transactions:

• On commit, assign timestamp Tw = TT.now().latest to 
transaction (similar to read-only transactions)

• Wait until Tw < TT.now().earliest to commit

On commit, pick
Tw = TT.now().latest

TT

𝑡𝑎𝑏𝑠
Wait until 

Tw < TT.now().earliest

Tw
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Commit Timestamp and 
Real-Time Serialization Order

• Read-write transactions:

• On commit, assign timestamp Tw = TT.now().latest to 
transaction (similar to read-only transactions)

• Wait until Tw < TT.now().earliest to commit

With TrueTime,
Tw < end of commit

With TrueTime,
Tw >= begin of commit

On commit, pick
Tw = TT.now().latest

TT

𝑡𝑎𝑏𝑠
Wait until 

Tw < TT.now().earliest

Tw𝑡𝑎𝑏𝑠

txn
reads

acquires
locks

commit timestamp 
respects real-time 
serialization order

Innovation 2
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Commit Wait Time

• Read-write transactions:

• On commit, assign timestamp Tw = TT.now().latest to 
transaction (similar to read-only transactions)

• Wait until Tw = TT.now().earliest to commit

• Expected wait is roughly 2*ε, TrueTime interval

Commit wait (2*ε)

On commit, pick
Tw = TT.now().latest

Wait until 
Tw < TT.now().earliest

Tw

release
locks

txn
reads

acquires
locks
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Consistent Lock-Free Reads

• TrueTime guarantees consistent lock-free reads because 
commit timestamps reflect real-time serialization order

1. Tw < RW_txn ends (commit wait)

2. RW_txn ends < RO_txn starts (RO starts after RW ends)

3. RO_txn starts <= Tr (timestamp assignment)

On commit, pick
Tw = TT.now().latest

Wait until 
Tw < TT.now().earliest

Tw

read-write
transaction

read-only
transaction

pick
Tr = TT.now().latest

⇒Tw < Tr

Innovation 1+2

Tw < Tr, and
RO txn waits until Tr < Tsafe, 
so RO txn is guaranteed to read 
RW txn’s writes (without locks!)



23

Transaction Replication

On commit, pick
Tw = TT.now().latest

Wait until 
Tw < TT.now().earliest

release
locks

Commit wait (2*ε)

consensus
done

consensus
start

• A read-write transaction 
runs at leader replica

• During commit, transaction log
is replicated using consensus

• Commit wait and consensus overlap in time!

txn
reads

acquires
locks
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Distributed Transactions

• For read-write transactions, clients read data from 
leader replicas, drive two-phase commit

coordinator
leader

coordinator
leader

Client
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Distributed Transaction Execution

• Read-write transaction execution:

• Client issues reads to leader (replica) of each tablet

• Leaders acquire read locks, return most recent data

• Recall, data is versioned

• Client buffers writes

• Read-write transaction commit:

• Client chooses coordinator from set of leaders

• Client sends commit message to each leader, 
including identify of coordinator and buffered writes

• Client waits for commit from coordinator
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Two-Phase Commit

• On commit msg from client, participant leaders:

• Acquire write locks

• Choose increasing prepare timestamp (Tp) > all previously logged local ts

• Log prepare record through Paxos

• Notify coordinator of prepare timestamp

• On receiving all participant replies, coordinator leader:

• Chooses monotonically increasing commit timestamp (Tc), such that:
1) >= all Tp, 2) > previously logged local ts, 3) > TT.now.latest()

• Logs commit record through Paxos

• Waits until Tc < TT.now.earliest(), i.e., commit-wait period

• Sends commit timestamp to other leaders, client

• All leaders log commit timestamp and transaction outcome 
through Paxos, and release locks
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Two-Phase Commit

• Client chooses coordinator from set of leaders

• Client sends commit message to each leader (C, P1, P2), 
including identify of coordinator and buffered writes

P1

P2

C 

Client
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Two-Phase Commit

• Client waits for commit from coordinator

• Client wait done

acquire
write locks

P1

P2

C 
acquire

write locks

acquire
write locks

Compute Tp,
log it via Paxos

send
Tp

compute Tc,
log it via Paxos

commit
wait done

release
locks

send
Tc

release
locks

release
locks

Client

log Tc via Paxos
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Tracking Progress at Replicas

• Recall that read-only transactions wait until Tr < Tsafe

• All transactions with timestamp T < Tsafe have committed

• But how is Tsafe determined?

• Spanner ensures

1. Leaders use TrueTime to have disjoint lease intervals, assign 
timestamps to Paxos writes in monotonically increasing order

2. Each replica assigns and logs prepare and commit timestamps 
via Paxos in monotonically increasing order

⇒ Tsafe is roughly the highest commit timestamp 
     before which there are no prepare timestamps

• Each replica tracks Tsafe, so consistent reads can be 
performed at any replica Innovation 3
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Conclusions

• Spanner is a globally-distributed database that 
combines concurrency control (2PL) with atomic 
commit (2PC) and replication (Paxos)

• Provides strong consistency and availability at global scale!

• Makes it easy for developers to build apps

• Optimizes for reads, which are dominant

• Enables strongly consistent, lock-free reads

• TrueTime exposes clock uncertainty

• Transactions wait out this uncertainty to ensure real-time 
ordering of transactions

• CockroachDB, YugabyteDB build on Spanner
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Discussion
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Q1

• In what ways does Spanner use TrueTime?
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Q2

• Databases generally use single-version, lock-based 
concurrency control, or multi-versioned concurrency 
control. Why does Spanner use both locking and multi-
versioning?
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Q3

• Spanner keeps a lock table at the leader replicas (of the 
tablets). Why is this table not replicated using Paxos at 
the participant replicas?



35

Q4

• How would a large TrueTime error bound affect 
Spanner?
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Q5

• Compared to Dynamo, how may Spanner limit 
availability and performance for writes, reads?
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