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What are Web-Scale Apps?

• Applications that are 
hosted in massive-scale 
computing infrastructures 
such as data centers

• Used by millions of 
geographically distributed 
users

• Via web browsers, 
mobile clients, etc.

• Produce, store, consume massive amounts of data

• Scale is hard to comprehend
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What Kind of Data is Stored?

• Companies store data based on their business model …

• Google, e.g., daily snapshot of all the web pages in the world

• Amazon, e.g., current product data & price for every product

• Facebook, e.g., social networking graph

• …

• We have seen various types of storage systems for 
storing this data

• Data is typically sharded across many machines

• Sharded data is replicated for fault tolerance, fast read access

• Much focus on scalability, data availability, consistency, etc.
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How is the Data Used? i.e, What is 
“Big Data”?

• Web search (e.g., Google) needs to analyze billions of 
web pages to determine the most relevant pages

• Product search (e.g., Amazon) needs to analyze millions 
of products, who bought them, their reviews, etc.

• Recommendation systems (e.g., LinkedIn, Facebooks) 
need to analyze massive social graphs

• All the above can be used to generate revenue streams, 
e.g., smart ad placement, recommendations

• These are restaurants you might like based on your tastes …

• These stores have hugde Christmas sales for things you like …
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A Simple Example: Web Search

• Data collection and storage

• Collect web pages, store them

• Data analytics

• Grep, sort, word count, e.g., extract words (or phases) from 
web pages

• Index pages, e.g., associate each word with a ranked list of 
web pages that contain these words

• Log analysis

• Data serving

• When user searches for word, serve associated list of pages
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Data Analytics Requirements 

• Data analytics

• Extract words (or phases) from web pages

• Associate each word with a ranked list of web pages that 
contain these words

• Massive computation needs

• Parse all pages

• Rank all pages, similar to sorting a very large data set

• E.g., find the “most authoritative pages” by organizing web pages in a 
graph, then finding the graph nodes with highest weight (rank)
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Data Analytics Challenges 

• Data is massive

• Need sharding across large numbers of machines

• Need storage on disk

• Need to handle storage failures

• Need to handle updates (later)

• Computation is massive

• Need scalable, parallel computation models

• Need to handle massive intermediate, final results

• Need to handle compute failures
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Data Analytics Frameworks

• These frameworks perform massively parallel (“always 
sharded”) computing efficiently

• The data starts out sharded

• Often the intermediary states and results are sharded

• Results are typically human-useful output, e.g., charts

http://www.cs.cornell.edu/courses/cs5412/2018sp8
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A Typical Big Data System
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Open-Source Apache Ecosystem
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Data Ingestion
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Coordination
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Batch Processing Frameworks

• Focus on simplifying the complexity of distributed 
programming

• Developer focuses on logic for processing data

• Framework takes care of parallelization, fault tolerance, 
scheduling, caching, …

• Hadoop (MapReduce)

• Suited for individual batch (long running) jobs

• Spark

• Also suited for iterative and interactive batch jobs
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History of Hadoop and Spark

14
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Map Reduce

• MapReduce enables distributing (parallelizing) a job 
across multiple nodes of a cluster

• Allows programmers to describe processing in terms of 
simple map and reduce functions on items

• Framework takes care of scaling, scheduling, hardware 
and software failures
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Spark

• Same goal as Map Reduce, i.e., enable distributing 
(parallelizing) a job across multiple nodes of a cluster

• Allows programmers to describe processing in terms of 
transformations on fault-tolerant, distributed datasets

• Datasets are nodes, transformations are edges in a graph

• Transformations are evaluated only when needed (lazily)

• Framework takes care of caching, data locality, scaling, 
scheduling, hardware and software failures

• Key idea is to cache intermediate data that is reused

16
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Challenges

• Parallelization

• Fault tolerance
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Parallelization

• Key intuition

• Often same processing is required for all items

• Processing is independent for each item

• E.g., update count of the # of accesses to each website

• Same operation is performed for each website

• Operation (e.g., map) can be performed in parallel

• Like a SIMD instruction

• However, operation works on shards on different machines

• Produces intermediate data that is also sharded across 
machines

18
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Why Batching?

• Shards are typically large, e.g., 16-64MB

• Recall GFS chunk size

• Batch processing, i.e., processing all the data in a shard 
amortizes processing costs

• Cost of processing each item is typically low, e.g., count++

• Cost of accessing each item from storage is high

• Batching reduces the latter cost

• However, batching requires enough data (or updates) to 
be available, so trades latency for efficiency

19
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Fault Tolerance

• Why is it vital for large computations?

• Aim is to hide failures from applications

• Provide behavior equivalent to fail-free operation

• You will hear terms like exactly-once operation

• Both Map Reduce and Spark provide strong consistency 
and fault tolerance guarantees

• Their behavior is equivalent to running a sequential 
computation, even in the presence of failures

• Next, we will discuss these ideas in detail
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