
11

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

ECE1724

Data Parallel Frameworks

Some of these slides are heavily modified slides from 
Prof. Ken Birman’s course on Cloud Computing



22

What are Web-Scale Apps?

• Applications that are 
hosted in massive-scale 
computing infrastructures 
such as data centers

• Used by millions of 
geographically distributed 
users

• Via web browsers, 
mobile clients, etc.

• Produce, store, consume massive amounts of data

• Scale is hard to comprehend



33

What Kind of Data is Stored?

• Companies store data based on their business model …

• Google, e.g., daily snapshot of all the web pages in the world

• Amazon, e.g., current product data & price for every product

• Facebook, e.g., social networking graph

• …

• We have seen various types of storage systems for 
storing this data

• Data is typically sharded across many machines

• Sharded data is replicated for fault tolerance, fast read access

• Much focus on scalability, data availability, consistency, etc.



44

How is the Data Used? i.e, What is 
“Big Data”?

• Web search (e.g., Google) needs to analyze billions of 
web pages to determine the most relevant pages

• Product search (e.g., Amazon) needs to analyze millions 
of products, who bought them, their reviews, etc.

• Recommendation systems (e.g., LinkedIn, Facebooks) 
need to analyze massive social graphs

• All the above can be used to generate revenue streams, 
e.g., smart ad placement, recommendations

• These are restaurants you might like based on your tastes …

• These stores have hugde Christmas sales for things you like …



55

A Simple Example: Web Search

• Data collection and storage

• Collect web pages, store them

• Data analytics

• Grep, sort, word count, e.g., extract words (or phases) from 
web pages

• Index pages, e.g., associate each word with a ranked list of 
web pages that contain these words

• Log analysis

• Data serving

• When user searches for word, serve associated list of pages



66

Data Analytics Requirements 

• Data analytics

• Extract words (or phases) from web pages

• Associate each word with a ranked list of web pages that 
contain these words

• Massive computation needs

• Parse all pages

• Rank all pages, similar to sorting a very large data set

• E.g., find the “most authoritative pages” by organizing web pages in a 
graph, then finding the graph nodes with highest weight (rank)



77

Data Analytics Challenges 

• Data is massive

• Need sharding across large numbers of machines

• Need storage on disk

• Need to handle storage failures

• Need to handle updates (later)

• Computation is massive

• Need scalable, parallel computation models

• Need to handle massive intermediate, final results

• Need to handle compute failures



88

Data Analytics Frameworks

• These frameworks perform massively parallel (“always 
sharded”) computing efficiently

• The data starts out sharded

• Often the intermediary states and results are sharded

• Results are typically human-useful output, e.g., charts

http://www.cs.cornell.edu/courses/cs5412/2018sp8



99

A Typical Big Data System

Data Storage (File System, Database)

Resource Manager (Workload Manager, Task Scheduler)

Batch 

Processing

Analytical 

SQL

Stream 

Processing

Machine 

Learning
Other 

Applications



1010

Open-Source Apache Ecosystem

Hadoop NoSQL (Hbase)

Hadoop Distributed File System (HDFS)

Resource Manager (YARN, Mesos)

Apache 

Hadoop, 

Spark

Hive

Flink, 

Spark 

Streaming

Spark 

MLlib

Other 

Apps



1111

Data Ingestion

Data 

Ingest 

Systems

e.g., Kafka, 

Flume

Apache 

Hadoop, 

Spark

Hive

Flink, 

Spark 

Streaming

Spark 

MLlib

Other 

Apps

Hadoop NoSQL (Hbase)

Hadoop Distributed File System (HDFS)

Resource Manager (YARN, Mesos)



1212

Coordination

A
p
a
c
h
e

Z
o
o
k
e
e
p
e
r

Apache 

Hadoop, 

Spark

Hive

Flink,

Spark 

Streaming

Spark 

MLlib

Other 

Apps

Hadoop NoSQL (Hbase)

Hadoop Distributed File System (HDFS)

Resource Manager (YARN, Mesos)



1313

Batch Processing Frameworks

• Focus on simplifying the complexity of distributed 
programming

• Developer focuses on logic for processing data

• Framework takes care of parallelization, fault tolerance, 
scheduling, caching, …

• Hadoop (MapReduce)

• Suited for individual batch (long running) jobs

• Spark

• Also suited for iterative and interactive batch jobs



1414

History of Hadoop and Spark

14



1515

Map Reduce

• MapReduce enables distributing (parallelizing) a job 
across multiple nodes of a cluster

• Allows programmers to describe processing in terms of 
simple map and reduce functions on items

• Framework takes care of scaling, scheduling, hardware 
and software failures



1616

Spark

• Same goal as Map Reduce, i.e., enable distributing 
(parallelizing) a job across multiple nodes of a cluster

• Allows programmers to describe processing in terms of 
transformations on fault-tolerant, distributed datasets

• Datasets are nodes, transformations are edges in a graph

• Transformations are evaluated only when needed (lazily)

• Framework takes care of caching, data locality, scaling, 
scheduling, hardware and software failures

• Key idea is to cache intermediate data that is reused

16



1717

Challenges

• Parallelization

• Fault tolerance



1818

Parallelization

• Key intuition

• Often same processing is required for all items

• Processing is independent for each item

• E.g., update count of the # of accesses to each website

• Same operation is performed for each website

• Operation (e.g., map) can be performed in parallel

• Like a SIMD instruction

• However, operation works on shards on different machines

• Produces intermediate data that is also sharded across 
machines

18



1919

Why Batching?

• Shards are typically large, e.g., 16-64MB

• Recall GFS chunk size

• Batch processing, i.e., processing all the data in a shard 
amortizes processing costs

• Cost of processing each item is typically low, e.g., count++

• Cost of accessing each item from storage is high

• Batching reduces the latter cost

• However, batching requires enough data (or updates) to 
be available, so trades latency for efficiency

19



2020

Fault Tolerance

• Why is it vital for large computations?

• Aim is to hide failures from applications

• Provide behavior equivalent to fail-free operation

• You will hear terms like exactly-once operation

• Both Map Reduce and Spark provide strong consistency 
and fault tolerance guarantees

• Their behavior is equivalent to running a sequential 
computation, even in the presence of failures

• Next, we will discuss these ideas in detail


	Slide 1: Data Parallel Frameworks
	Slide 2: What are Web-Scale Apps?
	Slide 3: What Kind of Data is Stored?
	Slide 4: How is the Data Used? i.e, What is “Big Data”?
	Slide 5: A Simple Example: Web Search
	Slide 6: Data Analytics Requirements 
	Slide 7: Data Analytics Challenges 
	Slide 8: Data Analytics Frameworks
	Slide 9: A Typical Big Data System
	Slide 10: Open-Source Apache Ecosystem
	Slide 11: Data Ingestion
	Slide 12: Coordination
	Slide 13: Batch Processing Frameworks
	Slide 14: History of Hadoop and Spark
	Slide 15: Map Reduce
	Slide 16: Spark
	Slide 17: Challenges
	Slide 18: Parallelization
	Slide 19: Why Batching?
	Slide 20: Fault Tolerance

