MapReduce: Simplified Data
Processing on Large Clusters

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

ECE1724

Authors: Jeffrey Dean and Sanjay Ghemawat

How Google Works

Google Webd Sorvo\

1. The web server sends the query to the index
servers. The content inside the index servers is
similar to the index in the back of a book--it tells
which pages contain the words that match any
particular query term.

3. The search
results are returned
to the userin a
fraction of a second.

2. The query travels to the doc
servers, which actually retrieve the
stored documents. Snippets are -
generated to describe each search Sy s

result. \

= Rest of the lecture
focuses on the

Doc Servers index servers

Two Indexing Challenges

* Web page indexing: which webpages contain given
keyword (e.g., “NBA”)?

* Need to crawl and analyze all web pages

e Qutput: <word, list(URLs)>

Example: <“NBA”, (www.nba.com, www.espn.com, ...)>

www.espn.com -nba nba- www.cnn.com

Aba WWW.nba.com

Two Indexing Challenges

* Web page ranking: which webpages are important for a
given keyword?

* Need to first find source pages that link to a target page

e Qutput: <target url, list(source url)>

e Example: <www.nba.com, (www.espn.com, www.cnhn.com, ...)>

www.espn.com nba] Clnba www.cnn.com

l

Aba WWW.nba.com

* Need to rank pages based on output (PageRank)

Web Page Indexing

// input: list of all web pages
// output: for each word, list of web pages that contain the word

index(List webpages) {
Hash output = new Hash<string word, List<string url>>;

for each page p in webpages {
for each word w in p {
if (loutput.exists(w))
output{w} = new List<string>;
// append web page for this word
output{w}.push(URL(p));
}
}
}

How can we scale with billions of web pages?

Parallel Web Page Indexing

* Need to parallelize indexing on multiple machines

List of web pages

Assign web pages
to different nodes

Parse espn.com and nba.com output: Parse cnn.com, yahoo.com, ny.com output:
<“nba”, (espn.com, nba.com)> <“trump”, (ny.com)>
<“nfl”, (espn.com)> <“nba”, (yahoo.com, cnn.com)>

\/

Merge results:

<“nba”, (espn.com, nba.com, yahoo.com, cnn.com)>
<“nfl”, (espn.com)>

<“trump”, (ny.com)>

Parallel Web Page Indexing

* What if we also want to parallelize the merge process?

List of web pages

Assign web pages
to different nodes

Parse espn.com and nba.com output:
<“nba”, (espn.com, nba.com)>
<“nfl”, (espn.com)>

Assign keywords to
different nodes

Parse cnn.com, yahoo.com, ny.com output:
<“trump”, (ny.com)>
<“nba”, (yahoo.com, cnn.com)>

Merge “nba”, “trump” results:

<“trump”, (ny.com)>

Merge “nfl” results:

<“nba”, (espn.com, nba.com, yahoo.com, cnn.com)> <“nfl”, (espn.com)>

// index a subset of web pages
index(List webpages) {
Hash output = new Hash<string word,
List<string url>>;

foreach page p in webpages {
for each word w in p {
if ('output.exists(w))
output{w} = new List<string>;
// append web page for word w
output{w}.push(URL(p));
}
}

// partition data
// send output to merge servers
foreach word w in keys(output) {
if (w in range [‘a’ - ‘d’])
send(merge_serverA, output{w});
else if (w in range [‘e’ - ‘h’]
send(merge_serverB, output{w});

merge() {
// while any index server has data

while (index_serverN sends data) {
// receive data
recv(index_serverN, output{w});
// merge results in final output
final output{w}.push(output{w});

} /

Problem

final _output stores results for all
words, what if it is so large that
merge() runs out of memory?

// index a subset of web pages
index(List webpages) {
Hash output = new Hash<string word,
List<string url>>;

foreach page p in webpages {
for each word w in p {
if ('output.exists(w))
output{w} = new List<string>;
// append web page for word w
output{w}.push(URL(p));
}
}

// partition data
// send output to merge servers
foreach word w in keys(output) {
if (w in range [‘a’ - ‘d’])
send(merge_serverA, output{w});
else if (w in range [‘e’ - ‘h’]
send(merge_serverB, output{w});

merge() {
// while any index server has data

while (index_serverN sends data) {
// receive and buffer data
// in output, possibly on disk
output += recv(index_serverNn,

output{w});

}

// group output by word,

// may require disk-based sort

group_by word(output);
foreach w in keys(output) {

// merge results in final output
final output{w}.push(output{w});

if (w !'= prev_w) {
// done with prev_w
// write prev_w output to disk
write(final output{prev_w});

}
} Are we done?

}

Not So Fast!

e Need to handle failures

* What if indexer is slow or fails?

 Need to restart the indexer, mergers need to wait
 What if merger fails?

 Need to restart merger, need to wait for all mergers to finish
* Need to ensure idempotent operation under all failures

* QOperation can be run multiple times, without additional side-effects

 What if partitioning is skewed?
 E.g., frequency of words by initial letters is not the same
e S(12%),C(9%), P, Y, Z (0.38%), X (0.09%)
* Leads to load imbalance at merger

* Need to repartition output of indexer for better performance

10

/‘?6reach page p in webpages {
for each word w in p {
if ('output.exists(w))
output{w} = new List<string>;
// append web page for word w
output{w}.push(URL(p));
}

L

~

[

// merge results in final output
final output{w}.push(output{w});

]

What if programmers only had to write code inside the boxes?

11

Solution: MapReduce

* Programming model for big data analytics

 Programmer writes two fns, called map and reduce

map(in_key, in value)-> list(out key, intermediate val)
Processes input key/value pair, produces set of intermediate pairs

reduce(out_key, list(intermediate val))-> list(out_key, outvalue)
Processes a set of intermediate key-values, produces value for each key

* Widely used model

* At Google, used for indexing and many analytic jobs

 Hadoop (open-source version)
 Used by > 50% of the Fortune 50 companies 12

___________________ - —_—— o — — — =
IF Map Task 1 -: Ir Map Task 2 | Ir Map Task 3

| L L

| L Lo

| L L

| L L

| L L

| L L

| klwvklvk2w kv | | k3 kdiv kd:v kS:v || | k4 v kl:vk3:v

| Partitioning Function | | Partitioning Function | | Partitioning Function

Sort and Group
klv,v,vv

: |

: |

Programer writes M and R | '
functions : :

: |

| |

| |

| |

Sort and Group
kd:v,v,v

XX

Reduce Task |

MapReduce framework takes
care of the rest of the details!

Reduce Task 2

Web Page Indexing With

MapReduce

// input: <url, web page content>
map(url, content) {
for each word w in content {
// output: <word, url>
Emit(<w, url>);
}
}

// input: <word, list of url>
reduce(char *word, List<url> 1) {
if (!final_output.exists(word))
final output{word} = new List<url>;

// output: <word, list(url)>
foreach url in 1 {

final output{word}.push(url);
}

MapReduce Framework:

Mapper:

* Partitions intermediate output

* Sends same keys to same
reducer

Reducer:
* Receives data
e Sorts and groups data by key

Master:
e Performs error handling

14

Mapper 1

Mapper 2

Input:
<“espn.com”,esppage>
<“nba.com”, nbapage>
Output:

<“nba”, espn.com>
<“nba”, nba.com>
<“nfl”, espn.com>

Input:
<“yahoo.com”, yahoopage>
<“ny.com”, nypage>
<“cnn.com”, cnnpage>
Output:

<“nba”, yahoo.com>
<“trump”, ny.com>

<“nba”, cnn.com)>

Reducer 1 Reducer 2
Input: Input:
<“nba”, espn.com> <“nfl”, (espn.com)>
<“nba”, nba.com> Output:

‘o pon <“nfl”, (espn.com)>
<“nba”, yahoo.com> , \espn.

<“trump”, ny.com>
<“nba”, cnn.com)>
Output:

<“nba”, (espn.com, nba.com, yahoo.com, cnn.com)>

<“trump”, (ny.com)>

15

Reverse Web Links With MapReduce

// input: <url, web page content>
map(url, content) {

-— .

for each target_url in content { N Just need to replace word with
// output: <target url, url> target_url!
Emit(<target url, url>);

}

}

// input: <target url, list of url>
reduce(target url, List<url>l) {
if (!final_ output.exists(target url))
final output{target url} = new List<url>;

// output: <target url, list(url)>
foreach url in 1 {

final output{target url}.push(url);
}

16

Map-Reduce Architecture

Locality optimization:
map/reduce tries to run

. [l}l’ﬂrk_-'-
map task on machine
storing the file split
2
. assign
map

“#1) fork

. (2)

" assign

reduce

split O
Spht ! (5) remote read
split 2 M@ (4) local write
worker

split 3
split 4

Input Map Intermediate files

files phase (on local disks)

Figure 1: Execution overview

(6) write

output
file O

worker

file 1

Reduce Output
phase files

17

Map-Reduce Implementation

Map task:

Reads a data partition (e.g., GFS chunk)

Runs mapper fn on each data item in the partition

Writes intermediate file per reduce task on local disk

On completion, informs master about its map output files

Master informs all reduce tasks about their map output files

Reduce task:

Reads (pulls) data from its map output files

e After reading all map output files, sorts the data in all the files

Runs the reduce fn on each data item

18

Handling Failures

 Machine failures are common in large systems

 “One node crashes per day in a 10K node cluster” - Jeff Dean

e Worker failure

 Master detects worker failure via periodic heartbeats

* Re-executes map/reduce tasks whose results are not available
* Assumption: map/reduce tasks are deterministic
e Master failure

* Single point of failure
 Master writes periodic checkpoints

 Another master started from the last checkpointed state

e Google: Lost 200 of 1800 workers but finished fine! 19

Refinement: Redundant Execution

* Slow workers significantly lengthen completion time

* C(Called stragglers

 Caused by many reasons
e Other jobs consuming resources on machine
e Bad disks with soft errors transfer data very slowly

e Software bugs

e Solution
 Near end of phase, spawn backup copies of tasks
 Whichever one finishes first “wins”

 Doesn’t cause overhead if stragglers don’t exist

20

Various Advancements

 Master can become bottleneck
e Split functionality of master
Scheduling, monitoring, recovery, etc.
* Only scheduler is centralized
* |/O on intermediate results is slow

e Buffer intermediate result in memory

 Other programming models
 E.g.,, SQL on distributed systems (HIVE)

21

Conclusions

 Powerful, simple-to-use distributed programming
model

* Scales well since many analytic tasks are embarrassingly
parallel

 Ensures that computation produces the same output as
running the computation sequentially, even in the
presence of failures

* Highly influential

* Apache Hadoop builds on map-reduce design

22

Discussion

23

Ql

How are data partitions created for map tasks, and for
reduce tasks, and why?

24

Q2

* Why is sorting required on reduce side? What impact
does this sorting have on concurrent operation?

25

Q3

Why is data stored on disk on map side (and not on the
reduce side)?

26

Q4

Why is data stored on map side made visible to the
reducer only after the mapper ends?

27

Q5

Why do the map tasks need to be deterministic?
Hint: what might happen if M dies and is restarted?

Reducer R1
Mapper M
Reducer R2

28

	Slide 1: MapReduce: Simplified Data Processing on Large Clusters
	Slide 2: How Google Works
	Slide 3: Two Indexing Challenges
	Slide 4: Two Indexing Challenges
	Slide 5: Web Page Indexing
	Slide 6: Parallel Web Page Indexing
	Slide 7: Parallel Web Page Indexing
	Slide 8
	Slide 9
	Slide 10: Not So Fast!
	Slide 11
	Slide 12: Solution: MapReduce
	Slide 13
	Slide 14: Web Page Indexing With MapReduce
	Slide 15
	Slide 16: Reverse Web Links With MapReduce
	Slide 17: Map-Reduce Architecture
	Slide 18: Map-Reduce Implementation
	Slide 19: Handling Failures
	Slide 20: Refinement: Redundant Execution
	Slide 21: Various Advancements
	Slide 22: Conclusions
	Slide 23: Discussion
	Slide 24: Q1
	Slide 25: Q2
	Slide 26: Q3
	Slide 27: Q4
	Slide 28: Q5

