
1

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

ECE1724

MapReduce: Simplified Data
Processing on Large Clusters

Authors: Jeffrey Dean and Sanjay Ghemawat

2

How Google Works

2
Rest of the lecture

focuses on the

index servers

3

• Web page indexing: which webpages contain given
keyword (e.g., “NBA”)?

• Need to crawl and analyze all web pages

• Output: <word, list(URLs)>

• Example: <“NBA”, (www.nba.com, www.espn.com, …)>

Two Indexing Challenges

3
www.nba.com

www.cnn.comwww.espn.com nba nba

nba

4

Two Indexing Challenges

• Web page ranking: which webpages are important for a
given keyword?

• Need to first find source pages that link to a target page

• Output: <target url, list(source url)>

• Example: <www.nba.com, (www.espn.com, www.cnn.com, …)>

• Need to rank pages based on output (PageRank)

www.nba.com

www.cnn.comwww.espn.com nba nba

nba

5

// input: list of all web pages
// output: for each word, list of web pages that contain the word

index(List webpages) {
 Hash output = new Hash<string word, List<string url>>;

 for each page p in webpages {
 for each word w in p {
 if (!output.exists(w))
 output{w} = new List<string>;
 // append web page for this word
 output{w}.push(URL(p));
 }
 }
}

How can we scale with billions of web pages?

Web Page Indexing

5

6

• Need to parallelize indexing on multiple machines

Parse espn.com and nba.com output:
<“nba”, (espn.com, nba.com)>
<“nfl”, (espn.com)>

Parse cnn.com, yahoo.com, ny.com output:
<“trump”, (ny.com)>
<“nba”, (yahoo.com, cnn.com)>

Parallel Web Page Indexing

6

Assign web pages
to different nodes

List of web pages

Merge results:
<“nba”, (espn.com, nba.com, yahoo.com, cnn.com)>
<“nfl”, (espn.com)>
<“trump”, (ny.com)>

7

• What if we also want to parallelize the merge process?

Parallel Web Page Indexing

7
Merge “nba”, “trump” results:
<“nba”, (espn.com, nba.com, yahoo.com, cnn.com)>
 <“trump”, (ny.com)>

Merge “nfl” results:
<“nfl”, (espn.com)>

Assign keywords to
different nodes

Parse espn.com and nba.com output:
<“nba”, (espn.com, nba.com)>
<“nfl”, (espn.com)>

Assign web pages
to different nodes

List of web pages

Parse cnn.com, yahoo.com, ny.com output:
<“trump”, (ny.com)>
<“nba”, (yahoo.com, cnn.com)>

8

// index a subset of web pages
index(List webpages) {
 Hash output = new Hash<string word,
 List<string url>>;

 foreach page p in webpages {
 for each word w in p {
 if (!output.exists(w))
 output{w} = new List<string>;
 // append web page for word w
 output{w}.push(URL(p));
 }
 }

 // partition data
 // send output to merge servers
 foreach word w in keys(output) {
 if (w in range [‘a’ – ‘d’])
 send(merge_serverA, output{w});
 else if (w in range [‘e’ – ‘h’]
 send(merge_serverB, output{w});

 }
}

8

merge() {
 // while any index server has data
 while (index_serverN sends data) {
 // receive data
 recv(index_serverN, output{w});
 // merge results in final_output
 final_output{w}.push(output{w});
 }
}

Problem

final_output stores results for all
words, what if it is so large that
merge() runs out of memory?

9

9

merge() {
 // while any index server has data
 while (index_serverN sends data) {
 // receive and buffer data
 // in output, possibly on disk
 output += recv(index_serverN,
 output{w});
 }
 // group output by word,
 // may require disk-based sort
 group_by_word(output);

 foreach w in keys(output) {

 // merge results in final_output
 final_output{w}.push(output{w});

 if (w != prev_w) {
 // done with prev_w
 // write prev_w output to disk
 write(final_output{prev_w});
 }
 }
}

Are we done?

// index a subset of web pages
index(List webpages) {
 Hash output = new Hash<string word,
 List<string url>>;

 foreach page p in webpages {
 for each word w in p {
 if (!output.exists(w))
 output{w} = new List<string>;
 // append web page for word w
 output{w}.push(URL(p));
 }
 }

 // partition data
 // send output to merge servers
 foreach word w in keys(output) {
 if (w in range [‘a’ – ‘d’])
 send(merge_serverA, output{w});
 else if (w in range [‘e’ – ‘h’]
 send(merge_serverB, output{w});

 }
}

10

Not So Fast!

• Need to handle failures

• What if indexer is slow or fails?

• Need to restart the indexer, mergers need to wait

• What if merger fails?

• Need to restart merger, need to wait for all mergers to finish

• Need to ensure idempotent operation under all failures

• Operation can be run multiple times, without additional side-effects

• What if partitioning is skewed?

• E.g., frequency of words by initial letters is not the same

• S (12%), C (9%), P, …. Y, Z (0.38%), X (0.09%)

• Leads to load imbalance at merger

• Need to repartition output of indexer for better performance

10

11

merge() {
 // while any index server has data
 while (index_serverN sends data) {
 // receive and buffer data
 // in output, possibly on disk
 output += recv(index_serverN,
 output{w});
 }
 // group output by word,
 // may require disk-based sort
 group_by_word(output);

 foreach w in keys(output) {

 // merge results in final_output
 final_output{w}.push(output{w});

 if (w != prev_w) {
 // done with prev_w
 // write prev_w output to disk
 write(final_output{prev_w});
 }
 }
}

// index a subset of web pages
index(List webpages) {
 Hash output = new Hash<string word,
 List<string url>>;

 foreach page p in webpages {
 for each word w in p {
 if (!output.exists(w))
 output{w} = new List<string>;
 // append web page for word w
 output{w}.push(URL(p));
 }
 }

 // partition data
 // send output to merge servers
 foreach word w in keys(output) {
 if (w in range [‘a’ – ‘d’])
 send(merge_serverA, output{w});
 else if (w in range [‘e’ – ‘h’]
 send(merge_serverB, output{w});

 }
}

What if programmers only had to write code inside the boxes?

11

12

Solution: MapReduce

• Programming model for big data analytics

• Programmer writes two fns, called map and reduce

• Widely used model

• At Google, used for indexing and many analytic jobs

• Hadoop (open-source version)

• Used by > 50% of the Fortune 50 companies

12

map(in_key, in_value)-> list(out_key, intermediate_val)

Processes input key/value pair, produces set of intermediate pairs

reduce(out_key, list(intermediate_val))-> list(out_key, outvalue)

Processes a set of intermediate key-values, produces value for each key

13

13

Programer writes M and R
functions

MapReduce framework takes
care of the rest of the details!

14

// input: <url, web page content>
map(url, content) {
 for each word w in content {
 // output: <word, url>
 Emit(<w, url>);
 }
}

// input: <word, list of url>
reduce(char *word, List<url> l) {
 if (!final_output.exists(word))
 final_output{word} = new List<url>;

 // output: <word, list(url)>
 foreach url in l {
 final_output{word}.push(url);
 }
}

Web Page Indexing With
MapReduce

14

MapReduce Framework:

Mapper:
• Partitions intermediate output
• Sends same keys to same

reducer

Reducer:
• Receives data
• Sorts and groups data by key

Master:
• Performs error handling

15

Input:

<“espn.com”,esppage>
<“nba.com”, nbapage>
Output:

<“nba”, espn.com>
<“nba”, nba.com>
<“nfl”, espn.com>

Input:

<“yahoo.com”, yahoopage>
<“ny.com”, nypage>
<“cnn.com”, cnnpage>
Output:

<“nba”, yahoo.com>
<“trump”, ny.com>
<“nba”, cnn.com)>

Input:

<“nba”, espn.com>
<“nba”, nba.com>
<“nba”, yahoo.com>
<“trump”, ny.com>
<“nba”, cnn.com)>
Output:

<“nba”, (espn.com, nba.com, yahoo.com, cnn.com)>
 <“trump”, (ny.com)>

Input:

<“nfl”, (espn.com)>
Output:

<“nfl”, (espn.com)>

Mapper 2Mapper 1

Reducer 1 Reducer 2

16

// input: <url, web page content>
map(url, content) {
 for each target_url in content {
 // output: <target_url, url>
 Emit(<target_url, url>);
 }
}

Reverse Web Links With MapReduce

Just need to replace word with
target_url!

// input: <target_url, list of url>
reduce(target_url, List<url>l) {
 if (!final_output.exists(target_url))
 final_output{target_url} = new List<url>;

 // output: <target_url, list(url)>
 foreach url in l {
 final_output{target_url}.push(url);
 }
}

17

Map-Reduce Architecture

17

Locality optimization:
map/reduce tries to run
map task on machine
storing the file split

18

Map-Reduce Implementation

• Map task:

• Reads a data partition (e.g., GFS chunk)

• Runs mapper fn on each data item in the partition

• Writes intermediate file per reduce task on local disk

• On completion, informs master about its map output files

• Master informs all reduce tasks about their map output files

• Reduce task:

• Reads (pulls) data from its map output files

• After reading all map output files, sorts the data in all the files

• Runs the reduce fn on each data item

19

Handling Failures

• Machine failures are common in large systems

• “One node crashes per day in a 10K node cluster” - Jeff Dean

• Worker failure

• Master detects worker failure via periodic heartbeats

• Re-executes map/reduce tasks whose results are not available

• Assumption: map/reduce tasks are deterministic

• Master failure

• Single point of failure

• Master writes periodic checkpoints

• Another master started from the last checkpointed state

• Google: Lost 200 of 1800 workers but finished fine!

19

20

Refinement: Redundant Execution

• Slow workers significantly lengthen completion time

• Called stragglers

• Caused by many reasons

• Other jobs consuming resources on machine

• Bad disks with soft errors transfer data very slowly

• Software bugs

• Solution

• Near end of phase, spawn backup copies of tasks

• Whichever one finishes first “wins”

• Doesn’t cause overhead if stragglers don’t exist
20

21

Various Advancements

• Master can become bottleneck

• Split functionality of master

• Scheduling, monitoring, recovery, etc.

• Only scheduler is centralized

• I/O on intermediate results is slow

• Buffer intermediate result in memory

• Other programming models

• E.g., SQL on distributed systems (HIVE)

21

22

Conclusions

• Powerful, simple-to-use distributed programming
model

• Scales well since many analytic tasks are embarrassingly
parallel

• Ensures that computation produces the same output as
running the computation sequentially, even in the
presence of failures

• Highly influential

• Apache Hadoop builds on map-reduce design

23

Discussion

24

Q1

• How are data partitions created for map tasks, and for
reduce tasks, and why?

25

Q2

• Why is sorting required on reduce side? What impact
does this sorting have on concurrent operation?

26

Q3

• Why is data stored on disk on map side (and not on the
reduce side)?

27

Q4

• Why is data stored on map side made visible to the
reducer only after the mapper ends?

28

Q5

• Why do the map tasks need to be deterministic?
Hint: what might happen if M dies and is restarted?

Mapper M

Reducer R1

Reducer R2

	Slide 1: MapReduce: Simplified Data Processing on Large Clusters
	Slide 2: How Google Works
	Slide 3: Two Indexing Challenges
	Slide 4: Two Indexing Challenges
	Slide 5: Web Page Indexing
	Slide 6: Parallel Web Page Indexing
	Slide 7: Parallel Web Page Indexing
	Slide 8
	Slide 9
	Slide 10: Not So Fast!
	Slide 11
	Slide 12: Solution: MapReduce
	Slide 13
	Slide 14: Web Page Indexing With MapReduce
	Slide 15
	Slide 16: Reverse Web Links With MapReduce
	Slide 17: Map-Reduce Architecture
	Slide 18: Map-Reduce Implementation
	Slide 19: Handling Failures
	Slide 20: Refinement: Redundant Execution
	Slide 21: Various Advancements
	Slide 22: Conclusions
	Slide 23: Discussion
	Slide 24: Q1
	Slide 25: Q2
	Slide 26: Q3
	Slide 27: Q4
	Slide 28: Q5

