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How Google Works

2
Rest of the lecture 

focuses on the 

index servers
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• Web page indexing: which webpages contain given 
keyword (e.g., “NBA”)?

• Need to crawl and analyze all web pages

• Output: <word, list(URLs)>

• Example: <“NBA”, (www.nba.com, www.espn.com, …)>

Two Indexing Challenges

3
www.nba.com

www.cnn.comwww.espn.com nba nba

nba
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Two Indexing Challenges

• Web page ranking: which webpages are important for a 
given keyword?

• Need to first find source pages that link to a target page

• Output: <target url, list(source url)>

• Example: <www.nba.com, (www.espn.com, www.cnn.com, …)>

• Need to rank pages based on output (PageRank)

www.nba.com

www.cnn.comwww.espn.com nba nba

nba
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// input: list of all web pages
// output: for each word, list of web pages that contain the word

index(List webpages) {
  Hash output = new Hash<string word, List<string url>>;

  for each page p in webpages {
    for each word w in p {
      if (!output.exists(w)) 
        output{w} = new List<string>;
      // append web page for this word
      output{w}.push(URL(p));
    }
  }
}

How can we scale with billions of web pages?

Web Page Indexing

5
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• Need to parallelize indexing on multiple machines

Parse espn.com and nba.com output:
<“nba”, (espn.com, nba.com)>
<“nfl”, (espn.com)>

Parse cnn.com, yahoo.com, ny.com output:
<“trump”, (ny.com)>
<“nba”, (yahoo.com, cnn.com)>

Parallel Web Page Indexing
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Assign web pages 
to different nodes

List of web pages

Merge results:
<“nba”, (espn.com, nba.com, yahoo.com, cnn.com)>
<“nfl”, (espn.com)>
<“trump”, (ny.com )>
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• What if we also want to parallelize the merge process?

Parallel Web Page Indexing

7
Merge “nba”, “trump” results:
<“nba”, (espn.com, nba.com, yahoo.com, cnn.com)>
 <“trump”, (ny.com )>

Merge “nfl” results:
<“nfl”, (espn.com)>

Assign keywords to 
different nodes

Parse espn.com and nba.com output:
<“nba”, (espn.com, nba.com)>
<“nfl”, (espn.com)>

Assign web pages 
to different nodes

List of web pages

Parse cnn.com, yahoo.com, ny.com output:
<“trump”, (ny.com)>
<“nba”, (yahoo.com, cnn.com)>
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// index a subset of web pages
index(List webpages) {
  Hash output = new Hash<string word,
                List<string url>>;

  foreach page p in webpages {
    for each word w in p {
      if (!output.exists(w)) 
        output{w} = new List<string>;
      // append web page for word w
      output{w}.push(URL(p));
    }
  }

  // partition data
  // send output to merge servers
  foreach word w in keys(output) {
   if (w in range [‘a’ – ‘d’])
    send(merge_serverA, output{w});
   else if (w in range [‘e’ – ‘h’]
    send(merge_serverB, output{w});
   .. ..
  }
}
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merge() {
  // while any index server has data
  while (index_serverN sends data) {
    // receive data
    recv(index_serverN, output{w});
    // merge results in final_output
    final_output{w}.push(output{w});
  }
}

Problem

final_output stores results for all 
words, what if it is so large that 
merge() runs out of memory?
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merge() {
  // while any index server has data
  while (index_serverN sends data) {
    // receive and buffer data
    // in output, possibly on disk
    output += recv(index_serverN,
                   output{w});
  }
  // group output by word,
  // may require disk-based sort
  group_by_word(output);

  foreach w in keys(output) {

    // merge results in final_output
    final_output{w}.push(output{w});

    if (w != prev_w) {
      // done with prev_w
      // write prev_w output to disk
      write(final_output{prev_w});
    }
  }
}

Are we done?

// index a subset of web pages
index(List webpages) {
  Hash output = new Hash<string word,
                List<string url>>;

  foreach page p in webpages {
    for each word w in p {
      if (!output.exists(w)) 
        output{w} = new List<string>;
      // append web page for word w
      output{w}.push(URL(p));
    }
  }

  // partition data
  // send output to merge servers
  foreach word w in keys(output) {
   if (w in range [‘a’ – ‘d’])
    send(merge_serverA, output{w});
   else if (w in range [‘e’ – ‘h’]
    send(merge_serverB, output{w});
   .. ..
  }
}
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Not So Fast!

• Need to handle failures

• What if indexer is slow or fails?

• Need to restart the indexer, mergers need to wait

• What if merger fails?

• Need to restart merger, need to wait for all mergers to finish

• Need to ensure idempotent operation under all failures

• Operation can be run multiple times, without additional side-effects

• What if partitioning is skewed?

• E.g., frequency of words by initial letters is not the same 

• S (12%), C (9%), P, …. Y, Z (0.38%), X (0.09%)

• Leads to load imbalance at merger

• Need to repartition output of indexer for better performance

10
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merge() {
  // while any index server has data
  while (index_serverN sends data) {
    // receive and buffer data
    // in output, possibly on disk
    output += recv(index_serverN,
                   output{w});
  }
  // group output by word,
  // may require disk-based sort
  group_by_word(output);

  foreach w in keys(output) {

    // merge results in final_output
    final_output{w}.push(output{w});

    if (w != prev_w) {
      // done with prev_w
      // write prev_w output to disk
      write(final_output{prev_w});
    }
  }
}

// index a subset of web pages
index(List webpages) {
  Hash output = new Hash<string word,
                List<string url>>;

  foreach page p in webpages {
    for each word w in p {
      if (!output.exists(w)) 
        output{w} = new List<string>;
      // append web page for word w
      output{w}.push(URL(p));
    }
  }

  // partition data
  // send output to merge servers
  foreach word w in keys(output) {
   if (w in range [‘a’ – ‘d’])
    send(merge_serverA, output{w});
   else if (w in range [‘e’ – ‘h’]
    send(merge_serverB, output{w});
   .. ..
  }
}

What if programmers only had to write code inside the boxes?

11
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Solution: MapReduce

• Programming model for big data analytics

• Programmer writes two fns, called map and reduce

• Widely used model

• At Google, used for indexing and many analytic jobs

• Hadoop (open-source version)

• Used by > 50% of the Fortune 50 companies

12

map(in_key, in_value)-> list(out_key, intermediate_val)

Processes input key/value pair, produces set of intermediate pairs

reduce(out_key, list(intermediate_val))-> list(out_key, outvalue)

Processes a set of intermediate key-values, produces value for each key
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Programer writes M and R 
functions

MapReduce framework takes 
care of the rest of the details!
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// input: <url, web page content>
map(url, content) {
  for each word w in content {
    // output: <word, url>
    Emit(<w, url>);
  }
}

// input: <word, list of url>
reduce(char *word, List<url> l) {
  if (!final_output.exists(word))
    final_output{word} = new List<url>;

  // output: <word, list(url)>
  foreach url in l {
    final_output{word}.push(url);
  }
}  

Web Page Indexing With 
MapReduce

14

MapReduce Framework:

Mapper:
• Partitions intermediate output
• Sends same keys to same 

reducer

Reducer:
• Receives data
• Sorts and groups data by key

Master:
• Performs error handling
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Input:

<“espn.com”,esppage>
<“nba.com”, nbapage>
Output:

<“nba”, espn.com>
<“nba”, nba.com>
<“nfl”, espn.com>

Input:

<“yahoo.com”, yahoopage>
<“ny.com”, nypage>
<“cnn.com”, cnnpage>
Output:

<“nba”, yahoo.com>
<“trump”, ny.com>
<“nba”, cnn.com)>

Input:

<“nba”, espn.com>
<“nba”, nba.com>
<“nba”, yahoo.com>
<“trump”, ny.com>
<“nba”, cnn.com)>
Output:

<“nba”, (espn.com, nba.com, yahoo.com, cnn.com)>
 <“trump”, (ny.com )>

Input:

<“nfl”, (espn.com)>
Output:

<“nfl”, (espn.com)>

Mapper 2Mapper 1

Reducer 1 Reducer 2
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// input: <url, web page content>
map(url, content) {
  for each target_url in content {
    // output: <target_url, url>
    Emit(<target_url, url>);
  }
}

Reverse Web Links With MapReduce

Just need to replace word with 
target_url!

// input: <target_url, list of url>
reduce(target_url, List<url>l) {
  if (!final_output.exists(target_url))
    final_output{target_url} = new List<url>;

  // output: <target_url, list(url)>
  foreach url in l {
    final_output{target_url}.push(url);
  }
}
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Map-Reduce Architecture
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Locality optimization: 
map/reduce tries to run 
map task on machine 
storing the file split
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Map-Reduce Implementation

• Map task:

• Reads a data partition (e.g., GFS chunk)

• Runs mapper fn on each data item in the partition

• Writes intermediate file per reduce task on local disk

• On completion, informs master about its map output files

• Master informs all reduce tasks about their map output files

• Reduce task:

• Reads (pulls) data from its map output files

• After reading all map output files, sorts the data in all the files

• Runs the reduce fn on each data item
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Handling Failures

• Machine failures are common in large systems

• “One node crashes per day in a 10K node cluster” - Jeff Dean

• Worker failure

• Master detects worker failure via periodic heartbeats

• Re-executes map/reduce tasks whose results are not available

• Assumption: map/reduce tasks are deterministic

• Master failure

• Single point of failure

• Master writes periodic checkpoints

• Another master started from the last checkpointed state

• Google: Lost 200 of 1800 workers but finished fine!

19
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Refinement: Redundant Execution

• Slow workers significantly lengthen completion time

• Called stragglers

• Caused by many reasons

• Other jobs consuming resources on machine

• Bad disks with soft errors transfer data very slowly

• Software bugs

• Solution

• Near end of phase, spawn backup copies of tasks

• Whichever one finishes first “wins”

• Doesn’t cause overhead if stragglers don’t exist
20
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Various Advancements

• Master can become bottleneck

• Split functionality of master

• Scheduling, monitoring, recovery, etc.

• Only scheduler is centralized

• I/O on intermediate results is slow

• Buffer intermediate result in memory

• Other programming models

• E.g., SQL on distributed systems (HIVE)

21
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Conclusions

• Powerful, simple-to-use distributed programming 
model

• Scales well since many analytic tasks are embarrassingly 
parallel

• Ensures that computation produces the same output as 
running the computation sequentially, even in the 
presence of failures

• Highly influential

• Apache Hadoop builds on map-reduce design
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Discussion
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Q1

• How are data partitions created for map tasks, and for 
reduce tasks, and why?
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Q2

• Why is sorting required on reduce side? What impact 
does this sorting have on concurrent operation?
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Q3

• Why is data stored on disk on map side (and not on the 
reduce side)?
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Q4

• Why is data stored on map side made visible to the 
reducer only after the mapper ends?
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Q5

• Why do the map tasks need to be deterministic?
Hint: what might happen if M dies and is restarted?

Mapper M

Reducer R1

Reducer R2
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