
1

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

ECE1724

Resilient Distributed Datasets: A
Fault‐Tolerant Abstraction for In-
Memory Cluster Computing

Authors: Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley,
Michael Franklin, Scott Shenker, Ion Stoica

2

Background

• MapReduce greatly simplified “big data” analysis on
large, unreliable clusters

• But as soon as it got popular, users wanted more

• More complex, iterative multi‐stage applications

• E.g., graph processing, machine learning

• More interactive ad-hoc queries

• Why not use MapReduce?

• Iterative and interactive queries require jobs to share data
efficiently

• With MapReduce, the only way to share data across jobs is
through disks, which is slow

3

iter. 1 iter. 2 . . .

Input

HDFS
read

HDFS
write

HDFS
read

HDFS
write

Input

query 1

query 2

query 3

result 1

result 2

result 3

. . .

HDFS
read

Slow due to disk I/O and replication,
but necessary for fault tolerance

MapReduce Example

Iterative
analysis

Interactive
queries

4

iter. 1 iter. 2 . . .

query 1

query 2

query 3

result 1

result 2

result 3

. . .

10‐100× faster than network/disk,
but what about fault-tolerance?

Goal: Use Memory to Share Data

one-time

processing

Iterative
analysis

Interactive
queries

Input

Input

5

Challenge With In-Memory Analytics

• How to design a distributed memory abstraction that is
both efficient and fault-tolerant?

• Existing storage abstractions are based on fine-grained
updates to mutable state

• E.g., Databases, distributed shared memory, etc.

• Require replicating data/logs for fault tolerance

• Costly for data‐intensive apps

• 10‐100x slower than memory writes

6

Solution: Resilient Distributed
Datasets (RDDs)

• RDDs are immutable, partitioned collections of records

• Support coarse-grained, deterministic , data-parallel
transformations (map, filter, reduce, join, groupby, …)

• A restricted form of distributed memory abstraction
that enables efficient fault-tolerance

• During normal operation, log transformations (input logging)

• On failure, re-execute the deterministic transformations
needed to recover lost partitions of RDDs

RDD A RDD Bmap RDD A RDD Bgroupby

7

Generality of RDDs

• RDDs can express many parallel algorithms that apply
the same operation to many items

• Unify many current programming models

• Data flow models: MapReduce, Dryad, SQL, …

• Specialized models for iterative apps: BSP (Pregel), iterative
MapReduce (Haloop), …

• Support new applications beyond these models

8

Spark Programming Interface

• Operations on RDDs

• Transformations - create new RDDs

• Actions - compute and output results

• Programmers can control partitioning

• How data in RDD is partitioned across nodes

• Programmers can control persistence

• Whether partitions are stored in RAM, disk, etc.

9

Example: Log Mining

• Load error messages from a log into memory, then
interactively search for various patterns

Results: scaled to 1 TB of data in 5-7

seconds (vs 170 s for on-disk data)

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

messages.persist()

messages.filter(_.contains(“foo”)).count
messages.filter(_.contains(“bar”)).count

Base RDD

Transformed RDDs

Actions

10

Architecture

• Spark app runs a driver program (master) and one or
more executor programs on worker nodes

• Executors access input data blocks, perform data
transformations on data partitions, and store outputs

• A cluster manager allocates resources (e.g., worker
nodes) to different Spark apps

11

Implementation

• RDD nodes are grouped
into stages

• Stages are connected by
shuffle-type operations
(e.g., groupBy, reduce)

• Within each stage,
transformations are:

• Partition-aware

• Avoids shuffles

• Pipelined

• Provides better locality

12

• RDDs track their lineage, i.e., the graph of
transformations that built them

Tracking Lineage

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))

HadoopRDD FilteredRDDfilter MappedRDDmap

13

Failure Recovery with Lineage

• Tracking lineage enables selectively recovering data
partitions on failure

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))

HadoopRDD FilteredRDDfilter MappedRDDmap

14

• Tracking lineage enables selectively recovering data
partitions on failure

Failure Recovery with Lineage

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))

Need to re-execute filter and
map on these partitions

HadoopRDD FilteredRDDfilter MappedRDDmap

15

119

57 56 58 58

81

57 59 57 59

140

120

100

80

60

40

20

0
1 2 3 4 5 6 7 8 9 10

Iteration

It
e
ra
tr
io
n
ti
m
e
(s
) Failure happens

Fault Recovery Results

16

Example: PageRank (simplified)

• Start each page with a rank of 1

• On each iteration, update each page’s rank to:

Σi∈neighbors (ranki / |neighborsi|)

links = // RDD of (url, neighbors) pairs
ranks = // RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
 // map operation
 contribs = links.join(ranks).flatMap {
 (url, (nbrs, rank)) =>
 nbrs.map(neighbor => (neighbor, rank/nbrs.size))
 }
 // shuffle operation
 ranks = contribs.reduceByKey(_ + _)
}

17

Example: PageRank
// input: RDD of (url, outgoing neighbors) pairs
links = {(url1, (url2, url3, url4)),
 (url2, (url3, url4)),
 (url3, (url4)),
 (url4, ())}

// output at start of iteration: RDD of (url, rank) pairs
ranks = {(url1, R1),
 (url2, R2),
 (url3, R3),
 (url4, R4)}

// contributions from incoming neighbors
contribs = {(url2, R1/3), (url3, R1/3), (url4, R1/3),

(url3, R2/2), (url4, R2/2),
(url4, R3/1)}

// shuffle operation, output at end of iteration
ranks = {(url2, R1/3), (url3, R1/3+R2/2), (url4, R1/3+R2/2+R3/1)}

18

Optimizing Placement

• links & ranks are
repeatedly joined

• Can co-partition them to
avoid shuffles

• E.g., hash by URL

• Can also use app knowledge,
e.g., partition by domain name

reduce

Contribs0

join

join

Contribs2

Ranks0

(url, rank)

Links
(url, neighbors)

Ranks2

. . .

reduce

Ranks1

19

PageRank, Optimized Placement
// input: RDD of (url, outgoing neighbors) pairs
links = {(url1, (url2, url3, url4)),
 (url2, (url3, url4)),
 (url3, (url4)),
 (url4, ())}

// output at start of iteration: RDD of (url, rank) pairs
ranks = {(url1, R1),
 (url2, R2),
 (url3, R3),
 (url4, R4)}

// contributions from incoming neighbors
contribs = {(url2, R1/3), (url3, R1/3), (url4, R1/3),

(url3, R2/2), (url4, R2/2),
(url4, R3/1)}

// shuffle operation, output at end of iteration
ranks = {(url2, R1/3), (url3, R1/3+R2/2), (url4, R1/3+R2/2+R3/1)}

20

PageRank Performance

171

72

23

0

50

100

150

200

T
im

e
p
e
r
it
e
ra
ti
o
n
(s
)

Hadoop

Basic Spark

Spark + Controlled
Partitioning

21

Conclusion

• RDDs offer a simple and efficient programming model
for a broad range of applications

• Leverage the coarse-grained nature of many parallel
algorithms for low-overhead recovery

22

Discussion

23

Q1

• Why does Spark require using immutable data
structures and deterministic transformations?

24

Q2

• Why does the paper argue that Spark has minimal cost
when nothing fails? Is this correct?

25

Q3

• What are the types of applications for which Spark is
suitable?

26

Q4

• What are the types of applications for which Spark is
not suitable?

27

Q5

• What problems can arise when transformations cause
skew? How can these problems be handled?

RDD A RDD Bgroupby

	Slide 1: Resilient Distributed Datasets: A Fault‐Tolerant Abstraction for In-Memory Cluster Computing
	Slide 2: Background
	Slide 3: MapReduce Example
	Slide 4: Goal: Use Memory to Share Data
	Slide 5: Challenge With In-Memory Analytics
	Slide 6: Solution: Resilient Distributed Datasets (RDDs)
	Slide 7: Generality of RDDs
	Slide 8: Spark Programming Interface
	Slide 9: Example: Log Mining
	Slide 10: Architecture
	Slide 11: Implementation
	Slide 12: Tracking Lineage
	Slide 13: Failure Recovery with Lineage
	Slide 14: Failure Recovery with Lineage
	Slide 15: Fault Recovery Results
	Slide 16: Example: PageRank (simplified)
	Slide 17: Example: PageRank
	Slide 18: Optimizing Placement
	Slide 19: PageRank, Optimized Placement
	Slide 20: PageRank Performance
	Slide 21: Conclusion
	Slide 22: Discussion
	Slide 23: Q1
	Slide 24: Q2
	Slide 25: Q3
	Slide 26: Q4
	Slide 27: Q5

