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Background

• MapReduce greatly simplified “big data” analysis on 
large, unreliable clusters

• But as soon as it got popular, users wanted more

• More complex, iterative multi‐stage applications

• E.g., graph processing, machine learning 

• More interactive ad-hoc queries

• Why not use MapReduce?

• Iterative and interactive queries require jobs to share data 
efficiently

• With MapReduce, the only way to share data across jobs is 
through disks, which is slow
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Challenge With In-Memory Analytics

• How to design a distributed memory abstraction that is 
both efficient and fault-tolerant?

• Existing storage abstractions are based on fine-grained 
updates to mutable state

• E.g., Databases, distributed shared memory, etc.

• Require replicating data/logs for fault tolerance

• Costly for data‐intensive apps

• 10‐100x slower than memory writes
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Solution: Resilient Distributed 
Datasets (RDDs)

• RDDs are immutable, partitioned collections of records

• Support coarse-grained, deterministic , data-parallel 
transformations (map, filter, reduce, join, groupby, …)

• A restricted form of distributed memory abstraction 
that enables efficient fault-tolerance

• During normal operation, log transformations (input logging)

• On failure, re-execute the deterministic transformations 
needed to recover lost partitions of RDDs

RDD A RDD Bmap RDD A RDD Bgroupby
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Generality of RDDs

• RDDs can express many parallel algorithms that apply 
the same operation to many items

• Unify many current programming models

• Data flow models: MapReduce, Dryad, SQL, …

• Specialized models for iterative apps: BSP (Pregel), iterative 
MapReduce (Haloop), …

• Support new applications beyond these models



8

Spark Programming Interface

• Operations on RDDs

• Transformations - create new RDDs

• Actions - compute and output results

• Programmers can control partitioning

• How data in RDD is partitioned across nodes

• Programmers can control persistence

• Whether partitions are stored in RAM, disk, etc.
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Example: Log Mining

• Load error messages from a log into memory, then 
interactively search for various patterns

Results: scaled to 1 TB of data in 5-7 

seconds (vs 170 s for on-disk data)

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”)) 

messages = errors.map(_.split(‘\t’)(2)) 

messages.persist()

messages.filter(_.contains(“foo”)).count 
messages.filter(_.contains(“bar”)).count

Base RDD

Transformed RDDs

Actions
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Architecture

• Spark app runs a driver program (master) and one or 
more executor programs on worker nodes

• Executors access input data blocks, perform data 
transformations on data partitions, and store outputs

• A cluster manager allocates resources (e.g., worker 
nodes) to different Spark apps
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Implementation

• RDD nodes are grouped 
into stages

• Stages are connected by 
shuffle-type operations
(e.g., groupBy, reduce)

• Within each stage, 
transformations are:

• Partition-aware

• Avoids shuffles

• Pipelined

• Provides better locality
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• RDDs track their lineage, i.e., the graph of 
transformations that built them

Tracking Lineage

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”)) 
messages = errors.map(_.split(‘\t’)(2))

HadoopRDD FilteredRDDfilter MappedRDDmap
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Failure Recovery with Lineage

• Tracking lineage enables selectively recovering data 
partitions on failure

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”)) 
messages = errors.map(_.split(‘\t’)(2))

HadoopRDD FilteredRDDfilter MappedRDDmap
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• Tracking lineage enables selectively recovering data 
partitions on failure

Failure Recovery with Lineage

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”)) 
messages = errors.map(_.split(‘\t’)(2))

Need to re-execute filter and 
map on these partitions

HadoopRDD FilteredRDDfilter MappedRDDmap
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Example: PageRank (simplified)

• Start each page with a rank of 1

• On each iteration, update each page’s rank to:

Σi∈neighbors (ranki / |neighborsi|)

links = // RDD of (url, neighbors) pairs
ranks = // RDD of (url, rank) pairs

for (i  <- 1 to ITERATIONS) {
  // map operation
  contribs = links.join(ranks).flatMap {
    (url, (nbrs, rank)) =>
        nbrs.map(neighbor => (neighbor, rank/nbrs.size))
  }
  // shuffle operation
  ranks = contribs.reduceByKey(_ + _)
}
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Example: PageRank
// input: RDD of (url, outgoing neighbors) pairs
links = {(url1, (url2, url3, url4)),
         (url2, (url3, url4)),
         (url3, (url4)),
         (url4, ())}

// output at start of iteration: RDD of (url, rank) pairs
ranks = {(url1, R1), 
         (url2, R2),
         (url3, R3),
         (url4, R4)}

// contributions from incoming neighbors
contribs = {(url2, R1/3), (url3, R1/3), (url4, R1/3),

(url3, R2/2), (url4, R2/2),
(url4, R3/1)}

// shuffle operation, output at end of iteration
ranks = {(url2, R1/3), (url3, R1/3+R2/2), (url4, R1/3+R2/2+R3/1)}
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Optimizing Placement

• links & ranks are 
repeatedly joined

• Can co-partition them to 
avoid shuffles

• E.g., hash by URL

• Can also use app knowledge, 
e.g., partition by domain name

reduce

Contribs0

join

join

Contribs2

Ranks0

(url, rank)

Links
(url, neighbors)

Ranks2

. . .

reduce

Ranks1
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PageRank, Optimized Placement
// input: RDD of (url, outgoing neighbors) pairs
links = {(url1, (url2, url3, url4)),
         (url2, (url3, url4)),
         (url3, (url4)),
         (url4, ())}

// output at start of iteration: RDD of (url, rank) pairs
ranks = {(url1, R1), 
         (url2, R2),
         (url3, R3),
         (url4, R4)}

// contributions from incoming neighbors
contribs = {(url2, R1/3), (url3, R1/3), (url4, R1/3),

(url3, R2/2), (url4, R2/2),
(url4, R3/1)}

// shuffle operation, output at end of iteration
ranks = {(url2, R1/3), (url3, R1/3+R2/2), (url4, R1/3+R2/2+R3/1)}
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PageRank Performance
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Conclusion

• RDDs offer a simple and efficient programming model 
for a broad range of applications

• Leverage the coarse-grained nature of many parallel 
algorithms for low-overhead recovery
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Discussion
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Q1

• Why does Spark require using immutable data 
structures and deterministic transformations?
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Q2

• Why does the paper argue that Spark has minimal cost 
when nothing fails? Is this correct?
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Q3

• What are the types of applications for which Spark is 
suitable?
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Q4

• What are the types of applications for which Spark is 
not suitable?
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Q5

• What problems can arise when transformations cause 
skew? How can these problems be handled?

RDD A RDD Bgroupby
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