Resilient Distributed Datasets: A
Fault-Tolerant Abstraction for In-
Memory Cluster Computing

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

ECE1724

Authors: Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley,
Michael Franklin, Scott Shenker, lon Stoica

Background

* MapReduce greatly simplified “big data” analysis on
large, unreliable clusters

* But assoon as it got popular, users wanted more

* More complex, iterative multi-stage applications
 E.g., graph processing, machine learning

 More interactive ad-hoc queries

* Why not use MapReduce?

* lterative and interactive queries require jobs to share data
efficiently

 With MapReduce, the only way to share data across jobs is
through disks, which is slow

MapReduce Example

HDFS HDFS HDFS HDFS
. read write read write
Ilterative S
analysis .
Input
result 1
result 2
Interactive
ueries
g result 3

Input

Slow due to disk I/O and replication,
but necessary for fault tolerance

Goal: Use Memory to Share Data

Iterative
analysis

Input

one e LaueaL—) result
processing EEEE—

result 2
Interactive

gueries
nput Laena L et

10-100x% faster than network/disk,
but what about fault-tolerance?

Challenge With In-Memory Analytics

* How to design a distributed memory abstraction that is
both efficient and fault-tolerant?

* Existing storage abstractions are based on fine-grained
updates to mutable state

 E.g., Databases, distributed shared memory, etc.

* Require replicating data/logs for fault tolerance

Costly for data-intensive apps

10-100x slower than memory writes

Solution: Resilient Distributed
Datasets (RDDs)

RDDs are immutable, partitioned collections of records

Support coarse-grained, deterministic , data-parallel
transformations (map, filter, reduce, join, groupby, ...)

RDD A—— map — RDD B RDD A— groupby = RDD B

(I11)

A restricted form of distributed memory abstraction
that enables efficient fault-tolerance

* During normal operation, log transformations (input logging)

 On failure, re-execute the deterministic transformations
needed to recover lost partitions of RDDs

Generality of RDDs

 RDDs can express many parallel algorithms that apply
the same operation to many items
* Unify many current programming models

* Data flow models: MapReduce, Dryad, SQL, ...

* Specialized models for iterative apps: BSP (Pregel), iterative
MapReduce (Haloop), ...

* Support new applications beyond these models

Spark Programming Interface

* QOperations on RDDs

 Transformations - create new RDDs

e Actions - compute and output results

* Programmers can control partitioning

e How datain RDD is partitioned across nodes

* Programmers can control persistence

 Whether partitions are stored in RAM, disk, etc.

Example: Log Mining

 Load error messages from a log into memory, then
interactively search for various patterns

Base RDD
Tines = spark.textFile(*hdfs://...”)

errors = lines.filter(_.startswith(“ERROR")) Transformed RDDs
messages = errors.map(_.split(‘\t’)(2))
messages.persist()

messages.filter(_.contains(“foo”)).count Actions
messages.filter(_.contains(“bar”)).count

Results: scaled to 1 TB of data in 5-7
seconds (vs 170 s for on-disk data)

Architecture

e Spark app runs a driver program (master) and one or

more executor programs on worker nodes

 Executors access input data blocks, perform data
transformations on data partitions, and store outputs

* A cluster manager allocates resources (e.g., worker

nodes) to different Spark apps

Worker Mode

Executor

Cache

—
Dri'h"'Er ngrﬂm / TaSk

Task

SparkContext

Worker Node

\ Executor

Cache

| Task

Task

Implementation

e RDD nodes are grouped
Into stages

e Stages are connected by
shuffle-type operations
(e.g., groupBy, reduce)

* Within each stage,
transformations are:

* Partition-aware) = cached data partition
* Avoids shuffles
* Pipelined

* Provides better locality

11

Tracking Lineage

 RDDs track their lineage, i.e., the graph of
transformations that built them

Tines = spark.textFile(*hdfs://...”)
errors = lines.filter(_.startswith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))

HadoopRDD— filter — FilteredRDD— map —* MappedRDD

(I11)

12

Failure Recovery with Lineage

Tracking lineage enables selectively recovering data
partitions on failure

Tines = spark.textFile(*hdfs://...”)

errors = lines.filter(_.startswith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))

HadoopRDD— filter — FilteredRDD— map —* MappedRDD

(I11)

13

Failure Recovery with Lineage

Tracking lineage enables selectively recovering data
partitions on failure

Tines = spark.textFile(*hdfs://...”)

errors = lines.filter(_.startswith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))

HadoopRDD— filter — FilteredRDD— map —* MappedRDD

(I11)

Need to re-execute filter and
map on these partitions

14

Fault Recovery Results

[
~
@)

_ 119 Failure happens
W 120
dg) 100 \81
+ 8o
S 57 56 58 58 57 59 57 59
.= 60
b
: I I I I I I I I l
Q
£ 20

0

1 2 3 4 5 6 7 8 9 10

Iteration

15

Example: PageRank (simplified)

e Start each page with arank of 1
* On each iteration, update each page’s rank to:

ZiEneighbors (ranki / | neighborsi |)

links
ranks

// RDD of (url, neighbors) pairs
// RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
// map operation
contribs = links.join(ranks).flatMap {
(url, (nbrs, rank)) =>
nbrs.map(neighbor => (neighbor, rank/nbrs.size))
}
// shuffle operation
ranks = contribs.reduceByKey(+)

¥

16

Example: PageRank

// input: RDD of (url, outgoing neighbors) pairs
links = {(urll, (url2, url3, urld)),

(url2, (url3, url4d)),

(url3, (urld)),

(urld, ())}

// output at start of iteration: RDD of (url, rank) pairs
ranks = {(urll, R1),

(url2, R2),

(url3, R3),

(urld, R4)}

// contributions from incoming neighbors

contribs = {(url2, R1/3), (url3, R1/3), (url4d, R1/3),
(url3, R2/2), (urld, R2/2),
(url4d, R3/1)}

// shuffle operation, output at end of iteration
ranks = {(url2, R1/3), (url3, R1/3+R2/2), (urld, R1/3+R2/2+R3/1)}

17

Optimizing Placement

e 1links & ranks are
repeatedly joined

 (Can co-partition them to
avoid shuffles

* E.g., hash by URL

 (Can also use app knowledge,
e.g., partition by domain name

|

Links Ranks,
(url, neighbors) (url, rank)

join
{ Contribs, J

reduce
[Ranks, J

-§---§"““‘jll join
[Contribs,]
reduce

Ranks,

\u

18

PageRank, Optimized Placement

// input: RDD of (url, outgoing neighbors) pairs
links = {|(urll, (url2, url3, urld)),

(url2, (url3, url4d)),

(url3, (urld)),

(urld, ())}

// output at start of iteration: RDD of (url, rank) pairs
ranks = {(urll, R1),

(url2, R2),

(url3, R3),

(urld, R4)}

// contributions from incoming neighbors

contribs = {(url2, R1/3), (url3, R1/3), (url4d, R1/3),
(url3, R2/2), (urld, R2/2),
(urld, R3/1)}

// shuffle operation, output at end of iteration
ranks = {(url2, R1/3), (url3, R1/3+R2/2), (urld, R1/3+R2/2+R3/1)}

19

PageRank Performance

Time per iteration (s)

200

150

100

5O

171

23

“ Hadoop
W Basic Spark

Spark + Controlled
Partitioning

20

Conclusion

 RDDs offer a simple and efficient programming model
for a broad range of applications

* Leverage the coarse-grained nature of many parallel
algorithms for low-overhead recovery

21

Discussion

22

Ql

* Why does Spark require using immutable data
structures and deterministic transformations?

23

Q2

* Why does the paper argue that Spark has minimal cost
when nothing fails? Is this correct?

24

Q3

* What are the types of applications for which Spark is
suitable?

25

Q4

* What are the types of applications for which Spark is
not suitable?

26

Q5

* What problems can arise when transformations cause
skew? How can these problems be handled?

RDD A groupby > RDD B

X<

|

=3

(111
‘%
i

	Slide 1: Resilient Distributed Datasets: A Fault­‐Tolerant Abstraction for In-­Memory Cluster Computing
	Slide 2: Background
	Slide 3: MapReduce Example
	Slide 4: Goal: Use Memory to Share Data
	Slide 5: Challenge With In-Memory Analytics
	Slide 6: Solution: Resilient Distributed Datasets (RDDs)
	Slide 7: Generality of RDDs
	Slide 8: Spark Programming Interface
	Slide 9: Example: Log Mining
	Slide 10: Architecture
	Slide 11: Implementation
	Slide 12: Tracking Lineage
	Slide 13: Failure Recovery with Lineage
	Slide 14: Failure Recovery with Lineage
	Slide 15: Fault Recovery Results
	Slide 16: Example: PageRank (simplified)
	Slide 17: Example: PageRank
	Slide 18: Optimizing Placement
	Slide 19: PageRank, Optimized Placement
	Slide 20: PageRank Performance
	Slide 21: Conclusion
	Slide 22: Discussion
	Slide 23: Q1
	Slide 24: Q2
	Slide 25: Q3
	Slide 26: Q4
	Slide 27: Q5

