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Background

* MapReduce greatly simplified “big data” analysis on
large, unreliable clusters

* But assoon as it got popular, users wanted more

* More complex, iterative multi-stage applications
 E.g., graph processing, machine learning

 More interactive ad-hoc queries

* Why not use MapReduce?

* lterative and interactive queries require jobs to share data
efficiently

 With MapReduce, the only way to share data across jobs is
through disks, which is slow



MapReduce Example
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Slow due to disk I/O and replication,
but necessary for fault tolerance




Goal: Use Memory to Share Data
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10-100x% faster than network/disk,
but what about fault-tolerance?




Challenge With In-Memory Analytics

* How to design a distributed memory abstraction that is
both efficient and fault-tolerant?

* Existing storage abstractions are based on fine-grained
updates to mutable state

 E.g., Databases, distributed shared memory, etc.

* Require replicating data/logs for fault tolerance

Costly for data-intensive apps

10-100x slower than memory writes



Solution: Resilient Distributed
Datasets (RDDs)

RDDs are immutable, partitioned collections of records

Support coarse-grained, deterministic , data-parallel
transformations (map, filter, reduce, join, groupby, ...)

RDD A—— map — RDD B RDD A— groupby = RDD B

(I11)

A restricted form of distributed memory abstraction
that enables efficient fault-tolerance

* During normal operation, log transformations (input logging)

 On failure, re-execute the deterministic transformations
needed to recover lost partitions of RDDs



Generality of RDDs

 RDDs can express many parallel algorithms that apply
the same operation to many items
* Unify many current programming models

* Data flow models: MapReduce, Dryad, SQL, ...

* Specialized models for iterative apps: BSP (Pregel), iterative
MapReduce (Haloop), ...

* Support new applications beyond these models



Spark Programming Interface

* QOperations on RDDs

 Transformations - create new RDDs

e Actions - compute and output results

* Programmers can control partitioning

e How datain RDD is partitioned across nodes

* Programmers can control persistence

 Whether partitions are stored in RAM, disk, etc.



Example: Log Mining

 Load error messages from a log into memory, then
interactively search for various patterns

Base RDD
Tines = spark.textFile(*hdfs://...”)

errors = lines.filter(_.startswith(“ERROR")) Transformed RDDs
messages = errors.map(_.split(‘\t’)(2))
messages.persist()

messages.filter(_.contains(“foo”)).count Actions
messages.filter(_.contains(“bar”)).count

Results: scaled to 1 TB of data in 5-7
seconds (vs 170 s for on-disk data)




Architecture

e Spark app runs a driver program (master) and one or

more executor programs on worker nodes

 Executors access input data blocks, perform data
transformations on data partitions, and store outputs

* A cluster manager allocates resources (e.g., worker

nodes) to different Spark apps
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Implementation

e RDD nodes are grouped
Into stages

e Stages are connected by
shuffle-type operations
(e.g., groupBy, reduce)

* Within each stage,
transformations are:

* Partition-aware ) = cached data partition
* Avoids shuffles
* Pipelined

* Provides better locality
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Tracking Lineage

 RDDs track their lineage, i.e., the graph of
transformations that built them

Tines = spark.textFile(*hdfs://...”)
errors = lines.filter(_.startswith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))

HadoopRDD— filter — FilteredRDD— map —* MappedRDD

(I11)
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Failure Recovery with Lineage

Tracking lineage enables selectively recovering data
partitions on failure

Tines = spark.textFile(*hdfs://...”)

errors = lines.filter(_.startswith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))

HadoopRDD— filter — FilteredRDD— map —* MappedRDD

(I11)
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Failure Recovery with Lineage

Tracking lineage enables selectively recovering data
partitions on failure

Tines = spark.textFile(*hdfs://...”)

errors = lines.filter(_.startswith(“ERROR”))
messages = errors.map(_.split(‘\t’)(2))

HadoopRDD— filter — FilteredRDD— map —* MappedRDD

(I11)

Need to re-execute filter and
map on these partitions
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Fault Recovery Results
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Example: PageRank (simplified)

e Start each page with arank of 1
* On each iteration, update each page’s rank to:

ZiEneighbors (ranki / | neighborsi | )

links
ranks

// RDD of (url, neighbors) pairs
// RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
// map operation
contribs = links.join(ranks).flatMap {
(url, (nbrs, rank)) =>
nbrs.map(neighbor => (neighbor, rank/nbrs.size))
}
// shuffle operation
ranks = contribs.reduceByKey( + )

¥
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Example: PageRank

// input: RDD of (url, outgoing neighbors) pairs
links = {(urll, (url2, url3, urld)),

(url2, (url3, url4d)),

(url3, (urld)),

(urld, ())}

// output at start of iteration: RDD of (url, rank) pairs
ranks = {(urll, R1),

(url2, R2),

(url3, R3),

(urld, R4)}

// contributions from incoming neighbors

contribs = {(url2, R1/3), (url3, R1/3), (url4d, R1/3),
(url3, R2/2), (urld, R2/2),
(url4d, R3/1)}

// shuffle operation, output at end of iteration
ranks = {(url2, R1/3), (url3, R1/3+R2/2), (urld, R1/3+R2/2+R3/1)}
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Optimizing Placement

e 1links & ranks are
repeatedly joined

 (Can co-partition them to
avoid shuffles

* E.g., hash by URL

 (Can also use app knowledge,
e.g., partition by domain name
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PageRank, Optimized Placement

// input: RDD of (url, outgoing neighbors) pairs
links = {|(urll, (url2, url3, urld)),

(url2, (url3, url4d)),

(url3, (urld)),

(urld, ())}

// output at start of iteration: RDD of (url, rank) pairs
ranks = {(urll, R1),

(url2, R2),

(url3, R3),

(urld, R4)}

// contributions from incoming neighbors

contribs = {(url2, R1/3), (url3, R1/3), (url4d, R1/3),
(url3, R2/2), (urld, R2/2),
(urld, R3/1)}

// shuffle operation, output at end of iteration
ranks = {(url2, R1/3), (url3, R1/3+R2/2), (urld, R1/3+R2/2+R3/1)}
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PageRank Performance

Time per iteration (s)
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Conclusion

 RDDs offer a simple and efficient programming model
for a broad range of applications

* Leverage the coarse-grained nature of many parallel
algorithms for low-overhead recovery
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Discussion
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Ql

* Why does Spark require using immutable data
structures and deterministic transformations?
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Q2

* Why does the paper argue that Spark has minimal cost
when nothing fails? Is this correct?
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Q3

* What are the types of applications for which Spark is
suitable?
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Q4

* What are the types of applications for which Spark is
not suitable?
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Q5

* What problems can arise when transformations cause
skew? How can these problems be handled?

RDD A groupby > RDD B
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