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Motivation

Modern web apps add an in-memory cache in front of
traditional databases for high performance
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Motivation

In-memory cache work well, but programmer needs to
handle invalidations correctly
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Motivation

What about using a dataflow/streaming database?

Write path is expensive

Primarily support window operations

Generate data that may never be read
Require sighificant memory for caching
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Key ldea In Noria

Use a partial-state dataflow model

Cache state on reads: Like traditional cache

Update cached state on writes: Like dataflow databases
Evict cache state if needed: Limits memory requirements
No need to update evicted state: Reduces cost of writes

Adapts dataflow dynamically: Simplifies adding and removing queries that need
caching
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Partially-stateful
data-flow: upqueries
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Partially-stateful
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Partial state enables
live data-flow changes

Start new views and operator
state empty, fill via upqueries.
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Partial state enables Stories
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Updates and upqueries
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Challenges implementing partially-stateful data-flow

1. Concurrent upgueries and update processing — races!

Must maintain correctness under concurrency!
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Correctness under concurrency

Goal: upguery restores state as If present all along.
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Correctness under concurrency

Goal: upguery restores state as If present all along.
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Correctness under concurrency

Goal: upguery restores state as If present all along.

Upguery response Is a snapshot of state

Includes 2 1

does not Iinclude

Solution: Maintain order of upguery response and surrounding
updates, despite lack of global coordination.
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Challenges implementing partially-stateful data-flow

1. Concurrent upqueries and forward processing — races!

Must maintain correctness under concurrency!

2. Update processing may require absent state
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Challenges implementing partially-stateful data-flow

1. Concurrent upqueries and forward processing — races!

Must maintain correctness under concurrency!

2. Update processing may require absent state

|
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Noria Implementation

/* base tables */
CREATE TABLE stories
(id int, author int, title text, url text);
CREATE TABLE votes (user int, story_id int);
CREATE TABLE users (id int, username text);
/* internal view: vote count per story */
CREATE INTERNAL VIEW VoteCount AS
SELECT story_id, COUNT(*) AS vcount
FROM votes GROUP BY story_id;
/* external view: story details */
CREATE VIEW StoriesWithVC AS
SELECT id, author, title, url, vcount
FROM stories
JOIN VoteCount ON VoteCount.story_id = stories.id
WHERE stories.id = ?7;
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* 45k lines of Rust + 15k libraries
* RocksDB for base table storage
* ZooKeeper for leader election

19



Evaluation

1. Can Noria improve a real web application’s performance?
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Case study: Lobsters (http://lobste.rs)

u Lobsters Recent Comments Search Login

Falling in love with Rust | programming | | rust | dtrace.org

g via blake 11 hours ago | cached | 7 comments

FreeBSD Desktop - Part 16 - Configuration - Pause Any Application ==  freebsd | | illumos | | linux | vermaden.wordpress.com

# authored by vermaden 6 hours ago | cached | 4 comments

You Think the Visual Studio Code binary you use is a Free Software? Think again law | privacy carichenet.com

. authored by chaica 31 hours ago | cached | 30 comments

Using Make — writing less Makefile | programming | text.causal.agency

1

#' authored by causal_agent 23 hours ago | cached | 11 comments

LLVM 7.0.0 Release release | lists.llvm.org

S via colin 43 minutes ago | cached | no comments

Kit programming language | programming = kitlang.org
@ via btbytes 25 hours ago | cached | 21 comments

Why Aren’t More Users More Happy With Our VMs? Part 2 ==  performance  tratt.net

£, via edd 4 hours ago | cached | no comments

aggregations

Spleen - Monospaced bitmap fonts | design cambus.net

Q authored by fcambus 3 minutes ago | cached | no comments

The Singleton module in Ruby - Part | | ruoy medium.com

@ authored by mehdi-farsi 14 minutes ago | cached | no comments

You Can't Always Hash Pointers in C ¢ nullprogram.com

v@; via calvin 4 hours ago | cached | 1 comment

Learn Go with Seam Carving and Rockets == go getstream.io
' authored by tschellenbach 18 minutes ago | cached | no comments

Times Newer Roman is a sneaky font designed to make your essays look longer | education | | graphics | theverge.com

via Ricardus 15 hours ago | cached | 5 comments

end
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> Ruby-on-Rails application
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developers to pre-compute
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Can Noria improve Lobsters' performance?
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Noria with natural queries supports 5x MySQL'’s throughput.
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Noria — Summary

* New partially-stateful data-flow model

* Noria: new web application backend based on data-flow
* Partial state saves space and allows live change

* Supports high throughput on one or more machines

* Open source, try It out!
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Q1

Noria ensures that clients read eventually consistent data.
What problem are they trying to solve? Why Is eventual
consistency okay?



Q2

How does Noria ensure eventual consistency?

Consider the following example: say there are two updates
ul, u2 that update two views, and a upquery ug issued by
the user also updates these views.

base table:
viewl (upstream) opl:
view2 (downstream) op2:



Q3
What complicates Join processing in Noria?

Consider the following example:

Time
Table A: [K Al] [K A2]
Table B: [K B1] [K B2]
Join l l l l
output: [] [K Al B1] [K A2 B1] [K Al B2]

[K A2 B2]
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