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Motivation

Modern web apps add an in-memory cache in front of 

traditional databases for high performance

Classic database
reads are expensive

Database + in-memory cache
reads are fast
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Motivation

What about using a dataflow/streaming database?

Write path is expensive
Primarily support window operations

Generate data that may never be read
Require significant memory for caching

Join

by key
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Key Idea in Noria

Use a partial-state dataflow model

Cache state on reads: Like traditional cache

Update cached state on writes: Like dataflow databases

Evict cache state if needed: Limits memory requirements

No need to update evicted state: Reduces cost of writes

Adapts dataflow dynamically: Simplifies adding and removing queries that need 
caching
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Data-flow state is partial:

entries for some keys are absent ( ).
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Start new views and operator 

state empty, fill via upqueries.

Partial state enables 

live data-flow changes
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SUM

Start new views and operator 

state empty, fill via upqueries.
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Partial state enables 

live data-flow changes
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Challenges implementing partially-stateful data-flow

1. Concurrent upqueries and update processing — races!

Must maintain correctness under concurrency!
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Correctness under concurrency

Goal: upquery restores state as if present all along.
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Correctness under concurrency
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Upquery response is a snapshot of state

2
COUNT

2

16



Correctness under concurrency

Goal: upquery restores state as if present all along.

Upquery response is a snapshot of state

COUNT

2

1includes 2

does not include3

2

1

3

16



Correctness under concurrency

Goal: upquery restores state as if present all along.

Upquery response is a snapshot of state

COUNT

2

1includes 2

does not include

Solution: Maintain order of upquery response and surrounding 

updates, despite lack of global coordination.
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Challenges implementing partially-stateful data-flow

1. Concurrent upqueries and forward processing — races!

Must maintain correctness under concurrency!

2. Update processing may require absent state
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Challenges implementing partially-stateful data-flow

1. Concurrent upqueries and forward processing — races!

Must maintain correctness under concurrency!

2. Update processing may require absent state

COUNT
2

3

…

absent

Drop updates that touch absent 

state, future upquery repeats them.
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Noria implementation

Data-flow graph

MySQL adapter

• 45k lines of Rust + 15k libraries

• RocksDB for base table storage

• ZooKeeper for leader election
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1. Can Noria improve a real web application’s performance?

Evaluation



Case study: Lobsters (http://lobste.rs)

21

‣ Ruby-on-Rails application 

with MySQL backend

‣ Hand-optimized by 

developers to pre-compute 

aggregations

‣ Noria data-flow with 

235 operators, 35 views

‣ Emulate production load



Noria with natural queries supports 5x MySQL’s throughput.

Can Noria improve Lobsters’ performance?
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• New partially-stateful data-flow model

• Noria: new web application backend based on data-flow

• Partial state saves space and allows live change

• Supports high throughput on one or more machines

• Open source, try it out!

Noria — Summary



Q1

Noria ensures that clients read eventually consistent data. 

What problem are they trying to solve? Why is eventual 

consistency okay?



Q2

How does Noria ensure eventual consistency?

Consider the following example: say there are two updates 

u1, u2 that update two views, and a upquery uq issued by 

the user also updates these views.

base table:
view1 (upstream)   op1:
view2 (downstream) op2:



Q3

What complicates Join processing in Noria?

Consider the following example:

Table A:    [K A1]               [K A2] 
Table B:            [K B1]                   [K B2]

Join
output:     []      [K A1 B1]    [K A2 B1]   [K A1 B2]

[K A2 B2]

Time
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