
Ashvin Goel
Electrical and Computer Engineering

University of Toronto

ECE1724

Noria:

Partially-Stateful Data-flow

Authors: Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens, and Lara Timbó Araújo, Martin Ek,

Eddie Kohler, M. Frans Kaashoek and Robert Morris

Motivation

Modern web apps add an in-memory cache in front of

traditional databases for high performance

Classic database
reads are expensive

Database + in-memory cache
reads are fast

Motivation

In-memory cache work well, but programmer needs to

handle invalidations correctly

Incorrect design may lead

to stale data in caches

forever

Database + in-memory cache
reads are fast

Motivation

What about using a dataflow/streaming database?

Write path is expensive
Primarily support window operations

Generate data that may never be read
Require significant memory for caching

Join

by key

vote for orange story

orange story

2

3

1

Key Idea in Noria

Use a partial-state dataflow model

Cache state on reads: Like traditional cache

Update cached state on writes: Like dataflow databases

Evict cache state if needed: Limits memory requirements

No need to update evicted state: Reduces cost of writes

Adapts dataflow dynamically: Simplifies adding and removing queries that need
caching

Stories Votes

JOIN

COUNT

FILTER

2

1

3

2

3

Partially-stateful

data-flow

Data-flow state is partial:

entries for some keys are absent ().

Frontend

10

Stories Votes

JOIN

COUNT

FILTER

3

2

1

3

Partially-stateful

data-flow

Data-flow state is partial:

entries for some keys are absent ().

Frontend

10

Stories Votes

JOIN

COUNT

FILTER

3

3

2

Partially-stateful

data-flow

Data-flow state is partial:

entries for some keys are absent ().

Frontend

10

Stories Votes

JOIN

COUNT

FILTER

3

3

2

Partially-stateful

data-flow: upqueries

READ

Frontend

11

Stories Votes

JOIN

COUNT

FILTER

3

3

2

Partially-stateful

data-flow: upqueries

Need to fill absent entry

READ

Frontend

11

Stories Votes

JOIN

COUNT

FILTER

3

3

2

Partially-stateful

data-flow: upqueries

Need to fill absent entry

READ

Solution: upquery through data-flow.

• Compute missing entry from

upstream state

Frontend

11

Stories Votes

JOIN

COUNT

FILTER

3

3

2

Partially-stateful

data-flow: upqueries

Solution: upquery through data-flow.

• Compute missing entry from

upstream state

• Response fills missing entry

READ

Frontend

12

Stories Votes

JOIN

COUNT

FILTER

3

2

Partially-stateful

data-flow: upqueries

Solution: upquery through data-flow.

• Compute missing entry from

upstream state

• Response fills missing entry

2

3
READ

Frontend

12

Start new views and operator

state empty, fill via upqueries.

Partial state enables

live data-flow changes

Stories Votes

JOIN

COUNT

FILTER

2

3

2

1

3

13

Frontend

SUM

Start new views and operator

state empty, fill via upqueries.

Partial state enables

live data-flow changes

Stories Votes

JOIN

COUNT

FILTER

2

3

2

1

3

13

Frontend

SUM

Start new views and operator

state empty, fill via upqueries.

Partial state enables

live data-flow changes

Stories Votes

JOIN

COUNT

FILTER

2

3

2

1

3

READ

Frontend

13

SUM

Start new views and operator

state empty, fill via upqueries.

Partial state enables

live data-flow changes

Stories Votes

JOIN

COUNT

FILTER

2

3

2

1

3

READ

Frontend

13

SUM

Start new views and operator

state empty, fill via upqueries.

4

4

Partial state enables

live data-flow changes

Stories Votes

JOIN

COUNT

FILTER

2

3

2

1

3

READ

Frontend

13

SUM

Stories Votes

JOIN

COUNT

FILTER

2

3

2

1

3

READ

Frontend

Updates and upqueries

15

Challenges implementing partially-stateful data-flow

1. Concurrent upqueries and update processing — races!

Must maintain correctness under concurrency!

16

Correctness under concurrency

Goal: upquery restores state as if present all along.

Correctness under concurrency

Goal: upquery restores state as if present all along.

COUNT
2

16

Correctness under concurrency

Goal: upquery restores state as if present all along.

2

1

COUNT
2

16

Correctness under concurrency

Goal: upquery restores state as if present all along.

2

1

COUNT
2

16

Correctness under concurrency

Goal: upquery restores state as if present all along.

2

1

COUNT
2

16

Correctness under concurrency

Goal: upquery restores state as if present all along.

2

1

Upquery response is a snapshot of state

2
COUNT

2

16

Correctness under concurrency

Goal: upquery restores state as if present all along.

Upquery response is a snapshot of state

COUNT

2

1includes 2

does not include3

2

1

3

16

Correctness under concurrency

Goal: upquery restores state as if present all along.

Upquery response is a snapshot of state

COUNT

2

1includes 2

does not include

Solution: Maintain order of upquery response and surrounding

updates, despite lack of global coordination.

3

2

1

23

16

18

Challenges implementing partially-stateful data-flow

1. Concurrent upqueries and forward processing — races!

Must maintain correctness under concurrency!

2. Update processing may require absent state

Challenges implementing partially-stateful data-flow

1. Concurrent upqueries and forward processing — races!

Must maintain correctness under concurrency!

2. Update processing may require absent state

COUNT
2

3

…

absent

18

Challenges implementing partially-stateful data-flow

1. Concurrent upqueries and forward processing — races!

Must maintain correctness under concurrency!

2. Update processing may require absent state

COUNT
2

3

…

absent

Drop updates that touch absent

state, future upquery repeats them.

18

Noria implementation

Data-flow graph

MySQL adapter

• 45k lines of Rust + 15k libraries

• RocksDB for base table storage

• ZooKeeper for leader election

19

Transform

20

1. Can Noria improve a real web application’s performance?

Evaluation

Case study: Lobsters (http://lobste.rs)

21

‣ Ruby-on-Rails application

with MySQL backend

‣ Hand-optimized by

developers to pre-compute

aggregations

‣ Noria data-flow with

235 operators, 35 views

‣ Emulate production load

Noria with natural queries supports 5x MySQL’s throughput.

Can Noria improve Lobsters’ performance?

B
e

tt
e

r

Better

22

28

• New partially-stateful data-flow model

• Noria: new web application backend based on data-flow

• Partial state saves space and allows live change

• Supports high throughput on one or more machines

• Open source, try it out!

Noria — Summary

Q1

Noria ensures that clients read eventually consistent data.

What problem are they trying to solve? Why is eventual

consistency okay?

Q2

How does Noria ensure eventual consistency?

Consider the following example: say there are two updates

u1, u2 that update two views, and a upquery uq issued by

the user also updates these views.

base table:
view1 (upstream) op1:
view2 (downstream) op2:

Q3

What complicates Join processing in Noria?

Consider the following example:

Table A: [K A1] [K A2]
Table B: [K B1] [K B2]

Join
output: [] [K A1 B1] [K A2 B1] [K A1 B2]

[K A2 B2]

Time

	Slide 1: Noria: Partially-Stateful Data-flow
	Slide 2: Motivation
	Slide 3: Motivation
	Slide 4: Motivation
	Slide 5: Key Idea in Noria
	Slide 6: Partially-stateful data-flow
	Slide 7: Partially-stateful data-flow
	Slide 8: Partially-stateful data-flow
	Slide 9: Partially-stateful data-flow: upqueries
	Slide 10: Partially-stateful data-flow: upqueries
	Slide 11: Partially-stateful data-flow: upqueries
	Slide 12: Partially-stateful data-flow: upqueries
	Slide 13: Partially-stateful data-flow: upqueries
	Slide 14: Partial state enables live data-flow changes
	Slide 15: Partial state enables live data-flow changes
	Slide 16: Partial state enables live data-flow changes
	Slide 17: Partial state enables live data-flow changes
	Slide 18: Partial state enables live data-flow changes
	Slide 19: Updates and upqueries
	Slide 20: Challenges implementing partially-stateful data-flow
	Slide 21: Correctness under concurrency
	Slide 22: Correctness under concurrency
	Slide 23: Correctness under concurrency
	Slide 24: Correctness under concurrency
	Slide 25: Correctness under concurrency
	Slide 26: Correctness under concurrency
	Slide 27: Correctness under concurrency
	Slide 28: Correctness under concurrency
	Slide 29: Challenges implementing partially-stateful data-flow
	Slide 30: Challenges implementing partially-stateful data-flow
	Slide 31: Challenges implementing partially-stateful data-flow
	Slide 32: Noria implementation
	Slide 33: Evaluation
	Slide 34: Case study: Lobsters (http://lobste.rs)
	Slide 35: Can Noria improve Lobsters’ performance?
	Slide 36: Noria — Summary
	Slide 37: Q1
	Slide 38: Q2
	Slide 39: Q3

