Noria:
Partially-Stateful Data-flow

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

ECE1/24

Authors: Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens, and Lara Timbo Araujo, Martin EK,
Eddie Kohler, M. Frans Kaashoek and Robert Morris

Motivation

Modern web apps add an in-memory cache in front of
traditional databases for high performance

Write —— @ Write

‘ stories votes ‘ users ﬂstories

ﬂ votes -‘ USECTS

N
\\ Invalidate

@ cache

uery on

=
\\ A Yy read miss
& Read I:I LB o Read

Read-side work Write work

Classic database Database + in-memory cache
reads are expensive reads are fast

Motivation

In-memory cache work well, but programmer needs to
handle invalidations correctly

Incorrect design may lead @ Write—_
to stale data In caches stories ;
forever 3
Invalidate
@cache w
e

cache \ —
ca

Database + in-memory cache
reads are fast

Motivation

What about using a dataflow/streaming database?

Write path is expensive

Primarily support window operations

Generate data that may never be read
Require sighificant memory for caching

@Write ——

stories votes users

> —
@ Update view

through
data-flow

StoryWithVC

Join
by key

vote for orange story

Key ldea In Noria

Use a partial-state dataflow model

Cache state on reads: Like traditional cache

Update cached state on writes: Like dataflow databases
Evict cache state if needed: Limits memory requirements
No need to update evicted state: Reduces cost of writes

Adapts dataflow dynamically: Simplifies adding and removing queries that need
caching

Partially-stateful ST

data-flow
s

Data-flow state Is partial:
entries for some keys are absent ().

Votes

Frontend

COUNT

10

Partially-stateful ST

data-flow
s

Data-flow state Is partial:
entries for some keys are absent ().

Frontend

Votes

COUNT

10

Partially-stateful ST

data-flow
s

Data-flow state Is partial:
entries for some keys are absent ().

Votes

Frontend

10

Partially-stateful
data-flow: upqueries

READ

Stories
__

Frontend

11

Partially-stateful
data-flow: upqueries

READ

Stories
__

Frontend

11

Partially-stateful
data-flow: upqueries

Solution: upguery through data-flow.
* Compute missing entry from

upstream state

READ

Frontend

11

Partially-stateful
data-flow: upqueries

Solution: upguery through data-flow.

* Compute missing entry from
upstream state

* Response fills missing entry

READ

Frontend

12

Partially-stateful
data-flow: upqueries

Solution: upguery through data-flow.

* Compute missing entry from
upstream state

* Response fills missing entry

READ

Frontend

12

Partial state enables
live data-flow changes

Start new views and operator
state empty, fill via upqueries.

Stories
__

2
gon\l J L

FILTER

Frontend

13

Partial state enables
live data-flow changes

Start new views and operator
state empty, fill via upqueries.

Stories
-

COUNT I
l JOIN ! 8
UM

FILTER

Frontend

S

2

1
3
>

13

Partial state enables Stories

Votes

live data-flow changes

Start new views and operator
state empty, fill via upqueries.

READ

Frontend

13

Partial state enables
live data-flow changes

Start new views and operator
state empty, fill via upqueries.

Stories

READ

Frontend

13

Partial state enables Stories

Votes

live data-flow changes

Start new views and operator
state empty, fill via upqueries.

READ

Frontend

13

Updates and upqueries

@Write ——

‘ stories ﬂ votes users

(2) Stream
[|=‘ S through

/ data-flow
P
@ Update view

StoryWithVC

Stories

FILTER

READ

Frontend

Votes

Challenges implementing partially-stateful data-flow

1. Concurrent upgueries and update processing — races!

Must maintain correctness under concurrency!

15

Correctness under concurrency

Goal: upguery restores state as If present all along.

16

Correctness under concurrency

Goal: upguery restores state as If present all along.

|

COUNT

16

Correctness under concurrency

Goal: upguery restores state as If present all along.

|

COUNT

2
1

16

Correctness under concurrency

Goal: upguery restores state as If present all along.

16

Correctness under concurrency

Goal: upguery restores state as If present all along.

16

Correctness under concurrency

Goal: upguery restores state as If present all along.

1 Upguery response Is a snapshot of state

uEN
IIIIIIIIII

16

Correctness under concurrency

Goal: upguery restores state as If present all along.

Upguery response Is a snapshot of state

Includes 2 1

does not Iinclude

16

Correctness under concurrency

Goal: upguery restores state as If present all along.

Upguery response Is a snapshot of state

Includes 2 1

does not Iinclude

Solution: Maintain order of upguery response and surrounding
updates, despite lack of global coordination.

16

Challenges implementing partially-stateful data-flow

1. Concurrent upqueries and forward processing — races!

Must maintain correctness under concurrency!

2. Update processing may require absent state

18

Challenges implementing partially-stateful data-flow

1. Concurrent upqueries and forward processing — races!

Must maintain correctness under concurrency!

2. Update processing may require absent state

|

COUNT

absent —»

2
L
08

18

Challenges implementing partially-stateful data-flow

1. Concurrent upqueries and forward processing — races!

Must maintain correctness under concurrency!

2. Update processing may require absent state

|

Drop updates that touch absent
state, future upquery repeats them.

absent —»

18

Noria Implementation

/* base tables */
CREATE TABLE stories
(id int, author int, title text, url text);
CREATE TABLE votes (user int, story_id int);
CREATE TABLE users (id int, username text);
/* internal view: vote count per story */
CREATE INTERNAL VIEW VoteCount AS
SELECT story_id, COUNT(*) AS vcount
FROM votes GROUP BY story_id;
/* external view: story details */
CREATE VIEW StoriesWithVC AS
SELECT id, author, title, url, vcount
FROM stories
JOIN VoteCount ON VoteCount.story_id = stories.id
WHERE stories.id = ?7;

O© 00 I O W BOWON

e e e e
Wb A W N = O

MHS&@ MySQL adapter

Data-flow gra

X
Transtorm L
f _é:(; r(/: (;;

* 45k lines of Rust + 15k libraries
* RocksDB for base table storage
* ZooKeeper for leader election

19

Evaluation

1. Can Noria improve a real web application’s performance?

20

Case study: Lobsters (http://lobste.rs)

u Lobsters Recent Comments Search Login

Falling in love with Rust | programming | | rust | dtrace.org

g via blake 11 hours ago | cached | 7 comments

FreeBSD Desktop - Part 16 - Configuration - Pause Any Application == freebsd | | illumos | | linux | vermaden.wordpress.com

authored by vermaden 6 hours ago | cached | 4 comments

You Think the Visual Studio Code binary you use is a Free Software? Think again law | privacy carichenet.com

. authored by chaica 31 hours ago | cached | 30 comments

Using Make — writing less Makefile | programming | text.causal.agency

1

#' authored by causal_agent 23 hours ago | cached | 11 comments

LLVM 7.0.0 Release release | lists.llvm.org

S via colin 43 minutes ago | cached | no comments

Kit programming language | programming = kitlang.org
@ via btbytes 25 hours ago | cached | 21 comments

Why Aren’t More Users More Happy With Our VMs? Part 2 == performance tratt.net

£, via edd 4 hours ago | cached | no comments

aggregations

Spleen - Monospaced bitmap fonts | design cambus.net

Q authored by fcambus 3 minutes ago | cached | no comments

The Singleton module in Ruby - Part | | ruoy medium.com

@ authored by mehdi-farsi 14 minutes ago | cached | no comments

You Can't Always Hash Pointers in C ¢ nullprogram.com

v@; via calvin 4 hours ago | cached | 1 comment

Learn Go with Seam Carving and Rockets == go getstream.io
' authored by tschellenbach 18 minutes ago | cached | no comments

Times Newer Roman is a sneaky font designed to make your essays look longer | education | | graphics | theverge.com

via Ricardus 15 hours ago | cached | 5 comments

end

> Noria data-flow wiith
235 operators, 35

> Emulate production load

Views

> Ruby-on-Rails application
with MySQL back
» Hand-optimized hy

developers to pre-compute

21

Can Noria improve Lobsters' performance?

— 100 |- —— MySQL, baseline queries
1S -~ Noria, natural queries
&> 80
-
g 9
,§'|5 g 60 |-
'3 a0
S _
D
ol
< 20
)
o>
0 | | | | |
0 1000 2000 3000 4000 5000

Offered load [page views/secC] Better —p

Noria with natural queries supports 5x MySQL'’s throughput.

22

Noria — Summary

* New partially-stateful data-flow model

* Noria: new web application backend based on data-flow
* Partial state saves space and allows live change

* Supports high throughput on one or more machines

* Open source, try It out!

28

Q1

Noria ensures that clients read eventually consistent data.
What problem are they trying to solve? Why Is eventual
consistency okay?

Q2

How does Noria ensure eventual consistency?

Consider the following example: say there are two updates
ul, u2 that update two views, and a upquery ug issued by
the user also updates these views.

base table:
viewl (upstream) opl:
view2 (downstream) op2:

Q3
What complicates Join processing in Noria?

Consider the following example:

Time
Table A: [K Al] [K A2]
Table B: [K B1] [K B2]
Join l l l l
output: [] [K Al B1] [K A2 B1] [K Al B2]

[K A2 B2]

	Slide 1: Noria: Partially-Stateful Data-flow
	Slide 2: Motivation
	Slide 3: Motivation
	Slide 4: Motivation
	Slide 5: Key Idea in Noria
	Slide 6: Partially-stateful data-flow
	Slide 7: Partially-stateful data-flow
	Slide 8: Partially-stateful data-flow
	Slide 9: Partially-stateful data-flow: upqueries
	Slide 10: Partially-stateful data-flow: upqueries
	Slide 11: Partially-stateful data-flow: upqueries
	Slide 12: Partially-stateful data-flow: upqueries
	Slide 13: Partially-stateful data-flow: upqueries
	Slide 14: Partial state enables live data-flow changes
	Slide 15: Partial state enables live data-flow changes
	Slide 16: Partial state enables live data-flow changes
	Slide 17: Partial state enables live data-flow changes
	Slide 18: Partial state enables live data-flow changes
	Slide 19: Updates and upqueries
	Slide 20: Challenges implementing partially-stateful data-flow
	Slide 21: Correctness under concurrency
	Slide 22: Correctness under concurrency
	Slide 23: Correctness under concurrency
	Slide 24: Correctness under concurrency
	Slide 25: Correctness under concurrency
	Slide 26: Correctness under concurrency
	Slide 27: Correctness under concurrency
	Slide 28: Correctness under concurrency
	Slide 29: Challenges implementing partially-stateful data-flow
	Slide 30: Challenges implementing partially-stateful data-flow
	Slide 31: Challenges implementing partially-stateful data-flow
	Slide 32: Noria implementation
	Slide 33: Evaluation
	Slide 34: Case study: Lobsters (http://lobste.rs)
	Slide 35: Can Noria improve Lobsters’ performance?
	Slide 36: Noria — Summary
	Slide 37: Q1
	Slide 38: Q2
	Slide 39: Q3

