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Open-Source Apache Ecosystem
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Background

• Real world has physical objects

• E.g., users, thermostat, trains, …

• These objects have state

• E.g., user has shipping address, thermostat has on/off state, 
train has cargo, …

• Traditionally

• This state was stored in database

• Users ran queries on the state, e.g., return thermostat state

• Worked well for decades

• But what if we want to know about state changes?

• How often did thermostat turn on today?
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What is Stream Processing?

• Rather than thinking in terms of state, why not think in 
terms of events

• E.g., user updates shipping address, thermostat reports it has 
turned on, train unloads cargo, …

• Easy to answer: “how often did thermostat turn on today?”

• Just count the number of such events generated today

• Stream processing refers to storing and processing 
streams of data events
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Storing Streaming Data

• Each event also has state

• E.g., user’s shipping address and time when it was changed

• How should this state be ingested and stored?

• Problem: Traditional databases are not designed for 
ingesting high volume real-time streaming data

• Each update requires significant processing, e.g., index update

• Solution: Ingest data in a log, process it later
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Data Ingestion
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Kafka – In a Nutshell

• Kafka is a distributed, replicated logging service

• A log is called a topic

• A Kafka cluster stores many topics, each arbitrary size

• A topic is an ordered sequence of events

• Partitioned across multiple 
nodes for scalability

• Replicated and stored on 
disk for durability
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Kafka Stream Processing

• Processing in Kafka involves services (computations) 
that produce and consume data

• Producers add data into topics

• Consumers read data from topics

• E.g., a consumer service 
can generate data for 
a real-time dashboard
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Stream Processing Pipelines

• Many open-source stream processing applications 
available today, including Storm, Flink, Samza …

• Kakfa used for logging real-world data

• Processing pipeline at Uber
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Stream Processing Applications

• Applications often perform database-type operations 
on unbounded data streams

• Operations can be stateless or stateful
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Stateless Operations

• Conversion

• E.g., convert Fahrenheit to Celcius

• emit (input * 5/9) - 32

• Filter

• if (input > threshold) emit input

FtoC

Filter
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Stateful Operations

• Stateful conversion

• temp = a * ((input * 5/9) – 32) + (1 – a) * last_temp

• last_temp = temp

• emit temp

• Aggregation, e.g., average per window

• Window can be in elements (10), time (1s)

• Window can be disjoint (5s) or sliding (5s window every 1s)

Moving

Average

operator maintains
last_temp

Average
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Stateful Operations By Keys

• Group by key

• E.g., count vote by story 

• Join by key
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Stream Processing Dataflow

• A stream processing application consists of operations 
connected together in a directed graph, processing data 
in dataflow manner
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Scalable Processing – Stateless Ops

• Simple to parallelize stateless operations

• Partition the inputs
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Scalable Processing – Stateful Ops

• Stateful operations complicate parallelization

• Need to join results across parallel computations
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Scalable Aggregation by Keys

• Aggregation operations by keys can be parallelized by 
partitioning by key
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Scalable Processing Complicates 
Fault Tolerance

• How to ensure exactly-once semantics?
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Stream Processing Requirements

• Process data with low end-to-end latency

• End-to-end latency: from when data is generated to when it is 
fully processed

• Handle data that arrives out-of-order

• Real-time data may be delayed, dropped

• Exactly-once processing semantics

• Ensure that each event is processed once by each computation 
(even under failures)

• Scalable storage and processing

• Reliability and fault tolerance
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Today’s Papers

• Millwheel

• Describes motivation for streaming applications

• Describes programming model for streaming applications

• Early system providing exactly-once semantics

• Today, part of Google Cloud Dataflow

• Noria

• Websites often cache results obtained from streaming 
databases

• How should these caches be kept up-to-date efficiently?
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