
1

Ashvin Goel

Electrical and Computer Engineering
University of Toronto

ECE1724

Stream Processing



2

A Typical Big Data System

Data Storage (File System, Database)

Resource Manager (Workload Manager, Task Scheduler)

Batch 

Processing

Analytical 

SQL

Stream 

Processing

Machine 

Learning
Other 

Applications



3

Open-Source Apache Ecosystem

Hadoop NoSQL (Hbase)

Hadoop Distributed File System (HDFS)

Resource Manager (YARN, Mesos)

Apache 

Hadoop, 

Spark

Hive

Flink, 

Spark 

Streaming

Spark 

MLlib

Other 

Apps



4

Background

• Real world has physical objects

• E.g., users, thermostat, trains, …

• These objects have state

• E.g., user has shipping address, thermostat has on/off state, 
train has cargo, …

• Traditionally

• This state was stored in database

• Users ran queries on the state, e.g., return thermostat state

• Worked well for decades

• But what if we want to know about state changes?

• How often did thermostat turn on today?



5

What is Stream Processing?

• Rather than thinking in terms of state, why not think in 
terms of events

• E.g., user updates shipping address, thermostat reports it has 
turned on, train unloads cargo, …

• Easy to answer: “how often did thermostat turn on today?”

• Just count the number of such events generated today

• Stream processing refers to storing and processing 
streams of data events



6

Storing Streaming Data

• Each event also has state

• E.g., user’s shipping address and time when it was changed

• How should this state be ingested and stored?

• Problem: Traditional databases are not designed for 
ingesting high volume real-time streaming data

• Each update requires significant processing, e.g., index update

• Solution: Ingest data in a log, process it later



7

Data Ingestion

Data 

Ingest 

Systems

e.g., Kafka, 

Flume

Apache 

Hadoop, 

Spark

Hive

Flink, 

Spark 

Streaming

Spark 

MLlib

Other 

Apps

Hadoop NoSQL (Hbase)

Hadoop Distributed File System (HDFS)

Resource Manager (YARN, Mesos)



8

Kafka – In a Nutshell

• Kafka is a distributed, replicated logging service

• A log is called a topic

• A Kafka cluster stores many topics, each arbitrary size

• A topic is an ordered sequence of events

• Partitioned across multiple 
nodes for scalability

• Replicated and stored on 
disk for durability



9

Kafka Stream Processing

• Processing in Kafka involves services (computations) 
that produce and consume data

• Producers add data into topics

• Consumers read data from topics

• E.g., a consumer service 
can generate data for 
a real-time dashboard



10

Stream Processing Pipelines

• Many open-source stream processing applications 
available today, including Storm, Flink, Samza …

• Kakfa used for logging real-world data

• Processing pipeline at Uber



11

Stream Processing Applications

• Applications often perform database-type operations 
on unbounded data streams

• Operations can be stateless or stateful



12

Stateless Operations

• Conversion

• E.g., convert Fahrenheit to Celcius

• emit (input * 5/9) - 32

• Filter

• if (input > threshold) emit input

FtoC

Filter



13

Stateful Operations

• Stateful conversion

• temp = a * ((input * 5/9) – 32) + (1 – a) * last_temp

• last_temp = temp

• emit temp

• Aggregation, e.g., average per window

• Window can be in elements (10), time (1s)

• Window can be disjoint (5s) or sliding (5s window every 1s)

Moving

Average

operator maintains
last_temp

Average



14

Stateful Operations By Keys

• Group by key

• E.g., count vote by story 

• Join by key

count

by key

2

3

1

vote for orange story

Join

by key

vote for orange story

orange story

2

3

1



15

Stream Processing Dataflow

• A stream processing application consists of operations 
connected together in a directed graph, processing data 
in dataflow manner

Average

Conversion

Conversion

Filter

Count

by Sensor

Sensor 1

Sensor 2



16

Scalable Processing – Stateless Ops

• Simple to parallelize stateless operations

• Partition the inputs

Conversion Filter

Filter

Filter

Filter

Filter

Conversion

Conversion

Conversion

Conversion



17

Scalable Processing – Stateful Ops

• Stateful operations complicate parallelization

• Need to join results across parallel computations

Average

Filter

Filter

Filter

Filter

Average

Conversion

Conversion

Conversion

Conversion

Sum, count

Sum, count

Sum, count

Sum, count

Conversion Filter



18

Scalable Aggregation by Keys

• Aggregation operations by keys can be parallelized by 
partitioning by key

Join

by key

vote for orange story orange story

3

Join

by key

2

1

User

User

User

User



19

Scalable Processing Complicates 
Fault Tolerance

• How to ensure exactly-once semantics?

Join

by key

vote for orange story orange story

3

Join

by key

2

1

User

User

User

User



20

Stream Processing Requirements

• Process data with low end-to-end latency

• End-to-end latency: from when data is generated to when it is 
fully processed

• Handle data that arrives out-of-order

• Real-time data may be delayed, dropped

• Exactly-once processing semantics

• Ensure that each event is processed once by each computation 
(even under failures)

• Scalable storage and processing

• Reliability and fault tolerance



21

Today’s Papers

• Millwheel

• Describes motivation for streaming applications

• Describes programming model for streaming applications

• Early system providing exactly-once semantics

• Today, part of Google Cloud Dataflow

• Noria

• Websites often cache results obtained from streaming 
databases

• How should these caches be kept up-to-date efficiently?


	Slide 1: Stream Processing
	Slide 2: A Typical Big Data System
	Slide 3: Open-Source Apache Ecosystem
	Slide 4: Background
	Slide 5: What is Stream Processing?
	Slide 6: Storing Streaming Data
	Slide 7: Data Ingestion
	Slide 8: Kafka – In a Nutshell
	Slide 9: Kafka Stream Processing
	Slide 10: Stream Processing Pipelines
	Slide 11: Stream Processing Applications
	Slide 12: Stateless Operations
	Slide 13: Stateful Operations
	Slide 14: Stateful Operations By Keys
	Slide 15: Stream Processing Dataflow
	Slide 16: Scalable Processing – Stateless Ops
	Slide 17: Scalable Processing – Stateful Ops
	Slide 18: Scalable Aggregation by Keys
	Slide 19: Scalable Processing Complicates Fault Tolerance
	Slide 20: Stream Processing Requirements
	Slide 21: Today’s Papers

